【2018最新】数学分析学习指导书-word范文 (11页)
《数学分析A (2)》课程教学说明

《数学分析A (2)》课程教学说明一.课程基本信息1.开课学院(系):数学系2.课程名称:《数学分析A(2)》(Mathematical Analysis A(2))3.学时/学分:80学时/ 5学分4.先修课程:《数学分析A(1)》(Mathematical Analysis A(1))5.上课时间:周一(双周10:00-11:40),周三(10:00-11:40),周四( 8:00-9:40),周五(习题课10:00-11:40)6.上课地点:东上院1017.任课教师:周春琴(cqzhou@)8.办公室及电话:数学楼602,54743148-26029.习题课教师:王丽丹10.Office hour:周五下午2:00-4:00, 数学楼602二.课程主要内容第七章定积分(12课时)主要内容:定积分可积性定理,平面图形面积、立体体积、曲线弧长、微元法。
第八章反常积分(8课时)主要内容:反常积分的敛散性概念,反常积分计算,反常积分敛散性判别法。
第九章数项级数(18课时)主要内容:级数的收敛与发散概念,收敛性必要条件,收敛级数的性质,上下极限, Cauchy收敛准则,正项级数的判别方法,交错级数判敛法,任意项级数的判敛法,收敛级数的性质,无穷乘积。
第十章函数项级数(18课时)主要内容:点态收敛与一致收敛概念,函数列与函数级数一致收敛判别法,一致收敛函数列与函数级数的分析性质,幂级数的收敛半径与收敛域,幂级数的分析性质,函数展开成幂级数,幂级数的和函数计算。
第十一章 Euclid空间上的极限和连续(8课时)主要内容:平面点集与点列极限,R2上的基本定理,多元函数概念,二元函数的极限与连续,有界闭区域上连续函数的性质.第十二章多元函数的微分学(16课时)主要内容:偏导数与全微分的概念,偏导数与全微分的计算,复合函数微分法,方向导数与梯度,多元函数的Taylor公式,二元函数的极值与最值,隐函数概念,隐函数存在定理,隐函数及隐函数组的微分法,方程变换,多元函数微分学的几何应用,条件极值。
-数学分析

四、教学评价
学生
同行
教学督导
获奖情况
任课老师责任 教学同行认为 主讲教师治学 心强,备课认 该课程的教学 严谨、功底扎 真,思路清晰, 内容覆盖面广, 实、经验丰富、 逻辑性强,能 结构清晰,逻 年富力强、充 吸引学生的注 辑性强,理论 满活力,师资 意力。注重启 与实际的结合, 团队的年龄、 发式教学,既 提高学生解决 学历和知识结 教书又育人。 问题的能力。 构合理.
作业
二、教学内容设计
5.教学手段与方法
所谓第二课堂,是指除了传统的班级 授课形式以外,积极组织学生以兴趣 小组的形式进行专题讨论,积极鼓励 学生自己走上讲台,一方面提高了学 生自主学习的积极性,同时也给学生 提供了一个锻炼自己的机会,从而为 以后的实习奠定基础。
二、教学内容设计
6.考评体系
采用“多元考核方式”,将过程性评价与终结性评 价有机结合.
极限理论中的相关证明, 闭区间连续函数性质及其 证明,定积分的应用、无 穷级数理论中的相关证明; 含参变量的广义积分等。
特点:物理知识背景广泛, 理论性强,思维方法不易 掌握和应用,证明、推理 多且难度大,运算复杂。 容易导致学生学习厌倦, 丧失学习热情和信心,降 低教学效果。
二、教学内容设计
5.教学手段与方法
第二十章 曲线积分(12)
第六章 微分中值定理及其应用(20) 第二十一章 重积分(18)
*第七章 实数的完备性
第二十二章 曲面积分(12)
第八章 不定积分(12)
*第二十三章 形上微积分学初阶
第九章 定积分(12)
第十章 定积分的应用(10)
第十一章 反常积分(10)
其中带*为选学内容。
《数学分析》课程教学大纲

《数学分析》课程教学大纲一、教学大纲说明(一)课程的性质、地位、作用和任务《数学分析》是综合性大学数学类各专业一门重要的专业基础课程,是从初等数学到高等数学过渡的桥梁。
本课程所占学分多,跨度大(计划共四个学期),是一门内容丰富而整体性强、思想深刻而方法基本的课程,以经典微积分为主体内容,其中,极限的思想贯穿全课程,它不仅为许多后继课程提供必要的基础知识和基本技能的训练,而且对全面培养学生的现代数学素质以及运用数学思想和方法解决问题的能力起着十分重要的作用。
本课程的任务是使学生系统地掌握极限理论、一元函数微积分学、无穷级数与多元函数微积分学等方面的知识,使学生获得数学思想,数学的逻辑性,严密性方面的严格训练,使学生掌握近代数学的方法、技巧,为后续课程的学习乃至毕业后能胜任相应的实际工作奠定坚实的基础。
(二)教学目的和要求本课程教学目的是通过系统的学习,使学生全面掌握数学分析的基本理论知识,初步掌握现代数学的观点与方法,使学生具备灵活、快捷的运算能力与技巧,培养学生严格的逻辑思维能力与推理论证能力,简洁、清晰运用数学符号和语言的表达能力,提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。
在教学基本要求上分为三个档次,即了解、理解和掌握。
1、掌握——能联系几何与物理的直观背景,从正反两方面理解基本概念;熟练运用基本理论较进行推理论证和分析问题;熟练运用基本方法、灵活运用基本技巧进行运算和解决应用问题。
包括实数与函数、各类极限、连续、(偏)导数、(全)微分、各类积分、级数和函数项级数的敛散性、幂级数的概念、性质、计算及应用。
2、理解——能从正面理解基本概念;能应用和了解如何证明基本理论;能掌握基本方法解决问题,但不要求很熟练和技巧性。
包括泰勒公式、函数图像的讨论、实数完备性基本定理的内容、证明及应用、一般有理函数的不定积分及万能变换、欧拉变換、隐函数定理的证明、各类敛散问题中的狄利克雷判别法与阿贝尔判别法、傅里叶级数的概念、性质、计算与应用、斯托克斯公式。
数学分析专题选讲教案目录

数学分析专题选讲教案目录第一专题极限理论中的若干基本方法教案1(数学分析专题选讲教案1-1) (1)教案2(数学分析专题选讲教案1-2) (8)教案3(数学分析专题选讲教案1-3) (16)教案4(数学分析专题选讲教案1-4) (25)第二专题函数连续性中的若干基本方法教案5(数学分析专题选讲教案2-1) (32)教案6(数学分析专题选讲教案2-2) (44)第三专题微分中值定理中的若干基本方法教案7(数学分析专题选讲教案3-1) (51)教案8(数学分析专题选讲教案3-2) (58)教案9(数学分析专题选讲教案3-3) (65)教案10(数学分析专题选讲教案3-4) (69)第四专题定积分中的若干基本方法教案11(数学分析专题选讲教案4-1) (77)教案12(数学分析专题选讲教案4-2) (88)教案13(数学分析专题选讲教案4-3) (95)教案14(数学分析专题选讲教案4-4) (103)第五专题无穷级数与无穷积分中的若干基本方法教案15(数学分析专题选讲教案5-1) (111)教案16(数学分析专题选讲教案5-2) (119)教案17(数学分析专题选讲教案5-3) (126)第六专题多元函数微分学中的若干基本方法教案18(数学分析专题选讲教案6-1) (131)教案19(数学分析专题选讲教案6-2) (141)教案20(数学分析专题选讲教案6-3) (148)第七专题函数级数与含参变量无穷积分中的若干基本方法教案21(数学分析专题选讲教案7-1) (156)教案22(数学分析专题选讲教案7-2) (162)教案23(数学分析专题选讲教案7-3) (169)教案24(数学分析专题选讲教案7-4) (177)第八专题多元函数积分学中的若干基本方法教案25(数学分析专题选讲教案8-1)……………………………………185. 教案26(数学分析专题选讲教案8-2)……………………………………195. 教案27(数学分析专题选讲教案8-3)……………………………………205. 教案28(数学分析专题选讲教案8-4)……………………………………217. 教案29(数学分析专题选讲教案8-5)……………………………………225.附件:1.数学分析专题选讲课程简介 (231)2.数学分析专题选讲课程教学大纲 (232)3.数学分析专题选讲课程考试大纲 (238)。
关于数学分析学习心得体会范文

关于数学分析学习心得体会范文(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如心得体会、总结报告、工作计划、演讲致辞、合同协议、条据书信、党团资料、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as experience, summary report, work plan, speech, contract agreement, letter of agreement, party group information, teaching materials, essay encyclopedia, other sample essays, etc. I want to know Please pay attention to the different format and writing styles of sample essays!关于数学分析学习心得体会范文从小学生数学学习心理来看,学生的学习过程不是被动的吸收过程,而是一个以已有知识和经验为基础的重新建构的过程。
数学分析教案

数学分析教案第一篇:数学分析教案第九章空间解析几何教学目标:1.理解空间直角坐标系的概念,掌握两点间的距离公式.2.理解向量的概念、向量的模、单位向量、零向量与向量的方向角、方向余弦概念.3.理解向量的加法、数乘、点积与叉积的概念.4.理解基本单位向量,熟练掌握向量的坐标表示,熟练掌握用向量的坐标表示进行向量的加法、数乘、点积与叉积的运算.5.理解平面的点法式方程和空间直线的点向式方程(标准方程)、参数方程,了解平面和空间直线的一般式方程.6.理解曲面及其方程的关系,知道球面、柱面和旋转曲面的概念,掌握球面、以坐标轴为旋转轴、准线在坐标面上的旋转曲面及以坐标轴为轴的圆柱面和圆锥面的方程及其图形.7.了解空间曲线及其方程,会求空间曲线在坐标面内的投影.8.了解椭球面、椭圆抛物面等二次曲面的标准方程及其图形.教学重点:向量的概念,向量的加法、数乘、点积与叉积的概念,用向量的坐标表示进行向量的加法、数乘、点积与叉积的运算,平面的点法式方程,空间直线的标准式方程和参数方程,球面、以坐标轴为轴的圆柱面和圆锥面方程及其图形,空间曲线在坐标面内的投影.教学难点:向量的概念,向量的点积与叉积的概念与计算,利用向量的点积与叉积去建立平面方程与空间直线方程的方法,利用曲面的方程画出空间图形.教学方法:讲授为主的综合法教学学时:14学时教学手段:板书学法建议:解析几何的实质是建立点与实数有序数组之间的关系,把代数方程与曲线、曲面对应起来,从而能用代数方法研究几何图形建议在本章的学习中,应注意对空间图形想象能力的培养,有些空间图形是比较难以想像和描绘的,这是学习本章的一个难点.为了今后学习多元函数重积分的需要,同学们应自觉培养这方面的能力.参考资料:使用教材:《高等数学》(第三版),高职高专十一五规划教材,高等教育出版社,2011年5月,侯**主编.参考教材: 1.《高等数学》,21世纪高职高专精品教材,北京理工大学出版社,2005年5月,宋立温等主编.2.《高等数学》,教育部高职高专规划教材,高等教育出版社,2006年4月,盛祥耀主编.3.《高等数学》,第五版.同济大学数学教研室编,高等教育出版社.4.《高等数学应用205例》,李心灿编,1986年,高等教育出版社.5.《高等数学》,宋立温等主编,21世纪高职高专精品教材,北京理工大学出版社,2005年5月.第一节空间直角坐标系与向量的概念教学目标:1.理解空间直角坐标系的概念,掌握两点间的距离公式.2.理解向量的概念、向量的模、单位向量、零向量与向量的方向角、方向余弦概念.3.理解向量的加法、数乘、点积与叉积的概念.4.理解基本单位向量,熟练掌握向量的坐标表示,熟练掌握用向量的坐标表示进行向量的加法、数乘的运算.教学重点:向量的概念,向量的加法、数乘的概念,用向量的坐标表示进行向量的加法、数乘的运算.教学难点:向量的概念.教学方法:讲授为主的综合法教学学时:2学时教学手段:板书一、引入新课(3分钟)(提问)举几个既有大小又有方向的量.(温故知新,进行一些必要知识铺垫。
数学分析学习指导书

篇一:数学分析学习指导(ⅲ)(未含附录)数学分析课程简要学习指导书数学分析(ⅲ)课程学习简要指导书(配套教材:《数学分析》华东师大数学系编)王石安编华南农业大学理学院应用数学系二○一二年八月1□课程的性质和任务数学分析是应用数学专业的一门重要基础课,它是一系列后继课程如微分方程,微分几何,复变函数,实变函数,泛函分析,概率论以及相关课程如普通物理,理论力学等不可缺少的基础。
学习这门课程的基本内容与方法对于培养学生的分析思维能力、学生的基本功与良好素质、培养学生掌握分析问题和解决问题的思想方法以及实际工作能力有着十分重要的作用。
其主要任务是通过教学与练习,要求学生掌握数学分析的基本概念,基本理论和基本方法和运算技能,并获得运用这些知识的能力。
□课程的内容和基本要求本课程学习数学分析(ⅲ)的基本知识,包括反常积分、多元函数的极限和连续性、多元函数微分学、隐函数定理及其应用、曲线积分、重积分及曲面积分等基本内容。
在教学上要求学生能掌握四个基本方面,即基本概念、基本理论、基本方法和基本技巧。
在教学基本要求上分为三个档次,即熟练掌握、掌握和理解。
熟练掌握--基本概念明确,能联系几何与物理的直观背景,并能从正反两方面进行理解;基本理论较扎实,具有较好的推理论证和分析问题的能力;基本方法较熟练,具备较好的运算和解决应用问题的能力,并能较灵活地运用基本技巧。
掌握--对基本概念一般只要求能从正面理解;对基本理论一般要求能应用和了解如何证明;对基本方法一般要求能掌握运用,但不要求很熟练和技巧性。
理解--对基本理论只要求能应用,不要求掌握证明方法;对基本方法一般要求会做,不要求灵活技巧。
□对学生能力的培养的要求通过理论教学,使学生熟悉数学分析的研究内容,该学科解决问题的基本原则和方法,具备较高的理论水平和计算能力。
□学习材料1、基本教材《数学分析》(华东师范大学数学系编)高等教育出版社 2、辅导教材(1)《数学分析》(面向课程教材)上、下册,陈纪修、於崇华、金路编著,高等教育出版社数学分析课程简要学习指导书(2)中国科技大学编《数学分析》(上、中、下册) 3、参考书籍《数学分析习题集》(吉米多维(苏)著) 4、授课课件□学习方法从课堂启发式教学-> 个人自学,以学生本身为主,教师引导为辅。
数学分析课程教学大纲1

数学分析课程教学大纲课程名称:数学分析/ Mathematical Analysis学时/学分:264学时/18学分(其中课内学时264学时,实验上机0学时)先修课程:初等数学适用专业:数学与应用数学、信息与计算科学开课院(系、部、室):数学与计算机科学学院一、课程的性质与任务数学分析是数学与应用数学专业一门重要的基础课。
学好本课程为进一步学习微分方程、复变函数、数值计算方法以及概率论等后继课程必将打下坚实的基础。
通过本课程的学习有助于学生树立辩证唯物主义思想和观点,有助于培养学生严密的逻辑思维能力和较强的抽象思维能力。
本课程以极限为工具,研究函数的微分和积分的一门学科,其主要内容包括极限论、一元微积分理论、多元微积分和级数等四大部分。
理论学时共264学时,分三学期完成:《数学分析I*》88学时;《数学分析II*》88学时;《数学分析III*》88学时。
其任务是:通过本课程的学习,使学生达到:1、对极限思想和极限方法有深刻的认识,从而树立辩证唯物主义观点。
2、掌握数学分析的基本知识和基本理论,能熟练地进行基本运算(如求极限、导数、微分和积分等),并具有一定的逻辑思维能力和抽象思维能力,以及分析论证能力。
3、能应用微积分方法解决一定的实际问题。
二、《数学分析I*》课程的教学内容、基本要求与学时分配(总学时88)(一)函数 6学时1、熟练掌握函数、反函数、复合函数、单调函数、有界函数、奇偶函数与周期函数等概念。
2、会求函数的定义域。
3、了解函数的各种表示法,掌握分析(或解析)表示法特别对分段表示的函数要很好地理解。
4、熟悉基本初等函数,初等函数。
重点:函数、反函数、复合函数、单调函数、有界函数、奇偶函数与周期函数等概念。
难点:反函数、复合函数的概念。
(二)极限 28学时1、掌握数列极限、函数极限、无穷小量、无穷大量及确界概念,对极限的否定形式要有所了解。
2、会用“ε-N”,“ε-δ”,“ε-A”方法处理极限问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
数学分析学习指导书
篇一:数学分析学习指导(Ⅲ)(未含附录)
数学分析课程简要学习指导书
数学分析(Ⅲ)
课程学习简要指导书
(配套教材:《数学分析》华东师大数学系编)
王石安编
华南农业大学理学院应用数学系
二○一二年八月
1
□ 课程的性质和任务
数学分析是应用数学专业的一门重要基础课,它是一系列后继课程如微分方程,微分几何,复变函数,实变函数,泛函分析,概率论以及相关课程如普通物理,理论力学等不可缺少的基础。
学习这门课程的基本内容与方法对于培养学生的
分析思维能力、学生的基本功与良好素质、培养学生掌握分析问题和解决问题
的思想方法以及实际工作能力有着十分重要的作用。
其主要任务是通过教学与
练习,要求学生掌握数学分析的基本概念,基本理论和基本方法和运算技能,
并获得运用这些知识的能力。
□ 课程的内容和基本要求
本课程学习数学分析(Ⅲ)的基本知识,包括反常积分、多元函数的极限和连
续性、多元函数微分学、隐函数定理及其应用、曲线积分、重积分及曲面积分
等基本内容。
在教学上要求学生能掌握四个基本方面,即基本概念、基本理论、基本方法和
基本技巧。
在教学基本要求上分为三个档次,即熟练掌握、掌握和理解。
熟练掌握--基本概念明确,能联系几何与物理的直观背景,并能从正反两方面进行理解;基本理论较扎实,具有较好的推理论证和分析问题的能力;基本方法较熟练,具备较好的运算和解决应用问题的能力,并能较灵活地运用基本技巧。
掌握--对基本概念一般只要求能从正面理解;对基本理论一般要求能应用和了解如何证明;对基本方法一般要求能掌握运用,但不要求很熟练和技巧性。
理解--对基本理论只要求能应用,不要求掌握证明方法;对基本方法一般要求会做,不要求灵活技巧。
□ 对学生能力的培养的要求
通过理论教学,使学生熟悉数学分析的研究内容,该学科解决问题的基本原则和方法,具备较高的理论水平和计算能力。
□ 学习材料
1、基本教材
《数学分析》(华东师范大学数学系编)高等教育出版社 2、辅导教材
(1)《数学分析》(面向课程教材)上、下册,陈纪修、於崇华、金路编著,高等教育出版社
数学分析课程简要学习指导书
(2)中国科技大学编《数学分析》(上、中、下册) 3、参考书籍
《数学分析习题集》(吉米多维(苏)著) 4、授课课件
teacher1411238@。
□ 学习方法
从课堂启发式教学-> 个人自学,以学生本身为主,教师引导为辅。
与学时安排
3
学习内容
□
数学分析(Ⅲ)
第十一章反常积分
□学习目的和要求
掌握反常积分收敛和发散的概念,能判别反常积分的敛散性,能计算收敛的反
常积分。
□ 考核目标
考核知识点:无穷积分和瑕积分收敛的判别法第一节反常积分的概念(4学时)一、无穷积分的概念二、瑕积分的概念
第二节无穷积分的性质与收敛判别法(4学时)一、无穷积分的性质
二、比较判别法,狄里克雷判别法,阿贝尔判别法第三节瑕积分的性质与收
敛判别法(4学时)一、瑕积分的性质二、收敛判别法考核要求:
(1) 理解无穷积分和瑕积分的概念、无穷积分和瑕积分的性质 (2) 掌握无穷积分的比较判别法,狄里克雷判别法,阿贝尔判别法 (3) 掌握瑕积分的收敛判别法
□ 重点与难点
无穷积分和瑕积分的收敛判别法
第十六章多元函数的极限和连续
□ 学习目的和要求
了解多元函数的概念。
了解二元函数的几何意义。
了解二元函数的极限和连续
性的概念。
了解有界闭区域上连续函数的性质。
□ 考核目标
考核知识点
数学分析课程简要学习指导书
第一节多元函数的概念
平面点集、邻域、区域、n维空间、多元函数的概念、二元函数的几何意义第
二节二元函数的极限和连续性、二元函数的极限和连续性、了解有界闭区域上连续函数的性质
考核要点
了解多元函数的概念。
了解二元函数的几何意义。
了解二元函数的极限和连续
性的概念。
□ 重点与难点
二元函数的极限和连续性
第十七章多元函数微分学
□ 学习目的和要求
理解二元函数偏导数和全微分的概念,了解全微分存在的必要条件和充分条件。
了解方向导数与梯度的概念及其计算方法。
掌握复合函数一阶偏导数的求法,
会求复合函数的二阶偏导数。
掌握全微分的求法。
会求隐函数(包括由两个方
程组成的方程组所确定的隐函数)的偏导数。
了解多元泰勒(Taylor)公式。
了解曲线的切线和法平面及曲面的切平面和法线,并会求它们的方程。
理解二
元函数极值和条件极值的概念,掌握二元函数极值存在的必要条件,了解二元
函数极值存在的充分条件,了解求条件极值的拉格朗日乘数法,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。
□ 考核目标
考核知识点第一节可微性
可微性和全微分、偏导数、可微性条件、可微性几何意义及应用第二节复合
函数微分法
复合函数和隐函数的求导法、二阶偏导数第三节方向导数与梯度方向导数
梯度
第四节泰勒公式与极值问题
5
篇二:数学分析教程
授课时间次课
篇三:数学分析(一)教学大纲
《数学分析(一)》教学大纲
课程编号: 074001
课程名称:《数学分析(一)》。