第十一章 全等三角形综合测试题 新人教版
第十一章全等三角形测试题(B)新人教版八年级上

- 1 -第十一章 全等三角形测试题(B )(每小题3分,共30分)1、下列说法正确的是( ):全等三角形是指形状相同的两个三角形 C :全等三角形的周长和面积分别相等 C :全等三角形是指面积相等的两个三角形 D :所有的等边三角形都是全等三角形 2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( )A :2B :3C :5D :2.53、如图:若△ABC ≌△EAC ,则∠EAC 等于( )A :∠ACB B :∠BAFC :∠CAFD :∠BAC4、如图:AB=AD ,AE 平分∠BAD ,则图中有( )对全等三角形。
A :2 B :3 C :4 D :55、如图:△ABC ≌△DEF ,△ABC 的周长等于40㎝, AB=10㎝,BC=16㎝,则DF 的长为( ) :10㎝ B :14㎝ C :16㎝ D :40㎝、能判断△ABC ≌△DEF 的是( )A :AB=DE ,BC=EF ,∠A=∠DB :∠A=∠E ,∠C=∠F ,AC=EF :∠B=∠E ,∠A=∠F ,AC=EF D :∠A=∠D ,∠B=∠E ,∠C=∠F 、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( )A :AB=CDB :EC=BFC :∠A=∠D D :AB=BC8、如图:AD=AC ,AB 平分∠DAC ,下列结论错误的是( )A :△ADB ≌△ACB B :△ADE ≌△ACEC :△EDB ≌△ECBD :△AED ≌△CEB9、如图:直线a ,b ,c 表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A :1个 B :2个 C :3个 D :4个10、如图:△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB=6㎝,则△DEB的周长是( ):6㎝ B :4㎝ C :10㎝ D :以上都不对 二、填空题(每小题3分,共30分)11、如图:AB=AC ,BD=CD ,若∠B=28°则∠C= ;12、如图:△EDF ≌△BAC ,EC=6㎝,则BF= ;13、如图:△AEC ≌△ADB ,则∠AEC= ,EC= ;(第2题)FECBA(第3题)ECB A(第4题)EDCBA(第5题)FE DC BA(第7题)FEDCB A(第8题)EDCBAcba(第9题)(第10题)EDCBA(第11题)D CBA(第12题)F EDCBA(第13题)EDCBA- 2 -14、如图5,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______;15、如图:在△ABC 中,AD=AE ,BD=EC ,∠ADB=∠AEC=105°,∠B=40°,则∠CAE= ;16、已知∠MON 的平分线上一点P ,点P 到OM 的距离为3㎝,则点P 到ON 的距离等于 ㎝;17、在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC,∠CED=35°,如图,则∠EAB = ; 18、如图:BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“ ”; 19、如图:AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB ,你补充的条件是 ;20、如图:在△ABC 中,∠B=∠C=50°,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,则∠BAD= 。
人教版八年级上册数学 第11章 全等三角形 单元测试

第11章全等三角形单元测试一.选择题1.如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为()A.2 B.3 C.5 D.72.花花不慎将一块三角形的玻璃打碎成了如图所示的四块(图中所标①、②、③)、④),若要配块与原来大小一样的三角形玻璃,应该带()A.第①块B.第②块C.第③块D.第④块3.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3 B.4 C.5 D.64.如图,已知AC=AD,再添加一个条件仍不能判定△ABC≌△ABD的是()A.∠C=∠D=90°B.∠BAC=∠BAD C.BC=BD D.∠ABC=∠ABD 5.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED 6.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA7.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC8.如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD =6,则图中阴影部分的面积为()A.12 B.20 C.24 D.489.如图,△AOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF⊥OD 于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB=90°﹣∠O,其中正确的有()A.0个B.1个C.2个D.3个10.如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若AD=8,则PE的最小值为()A.8 B.6 C.5 D.4二.填空题11.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC≌△BAD.12.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是.13.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,若AB=5,DC=2,则△ABD的面积为.14.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC 的面积为21cm2,AB=8cm,AC=6cm,则DE的长为cm.15.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是.16.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=8,CD=3,则△ABD的面积是.17.如图,已知△ABC的周长是10cm,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=0.8cm,△ABC的面积为cm2.18.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是(填序号)三.解答题19.如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE =AB,∠BAE=∠CAD.求证:DE=CB.20.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)21.如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.22.如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E.F、G分别是OA、OB上的点,且PF=PG,DF=EG.(1)求证:OC是∠AOB的平分线.(2)若PF∥OB,且PF=8,∠AOB=30°,求PE的长.23.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.24.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).参考答案1.B2.B3.D4.D5.B6.D7.B8.A9.C10.D11.AC=BD12.7cm13.514.315.216.1217.4.18.①②④.19.证明:∵∠BAE=∠CAD,∴∠BAE+∠BAD=∠CAD+∠BAD,即∠DAE=∠CAB,在△ADE和△ACB中,,∴△ADE≌△ACB(SAS),∴DE=CB.20.证明:∵AD∥CB(已知),∴∠ADB=∠CBD(两直线平行,内错角相等),∴∠ADE=∠CBF(等角的补角相等).在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等).21.(1)证明:∵CE∥AB,∴∠B=∠DCE,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∠B=50°,∠D=22°,∴∠ECD=∠B=50°,∠A=∠D=22°,∵CE∥AB,∴∠ACE=∠A=22°,∵∠CED=180°﹣∠D﹣∠ECD=180°﹣22°﹣50°=108°,∴∠AFG=∠DFC=∠CED﹣∠ACE=108°﹣22°=86°.22.解:(1)证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.(2)∵PF∥OB,∠AOB=30°,∴∠PFD=∠AOB=30°,在Rt△PDF中,.23.(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)24.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.11 /11∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB , ∴•AE •BK =•CD •BJ ,∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△ABM ≌△DBM ,则AB =BD ,显然不可能,故①错误. 答案为②.。
(最新最全)人教版第11章全等三角形练习题综合拔高题(全word已整理)

全等三角形拔高题1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
2. 已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
3. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.4. 如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,•∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO 的值.A B C DE P D ACM NPDA CBO5.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE•⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?若将△DEC的边EC沿AC方向移动,变为如图所示时,其余条件不变,上述结论是否成立?请说明理由.6.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由。
7.已知:如图E在△ABC的边AC上,且∠AEB=∠ABC。
(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=5,AC=8,求DC的长。
GD FAC BEGD FACBEFED CBAG8. 如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M .(1) 求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.9. 已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1) 求证:△AED ≌△EBC .(2) 观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):10. 如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1) 求证:MB =MD ,ME =MF(2) 当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.BA DMOE D C B A11. 如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
第十一章_全等三角形测试题(含答案)_人教版(1)

第- 1 -页, 试卷共- 4 -页初二期中测试一、选择题(每小题3分,共30分)1、下列说法正确的是( )A :全等三角形是指形状相同的两个三角形 C :全等三角形的周长和面积分别相等 C :全等三角形是指面积相等的两个三角形 D :所有的等边三角形都是全等三角形 2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( ) A :2B :3C :5D :2.53、如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论: ①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有( )A :1个B :2个C :3个D :4个4、如图:AB=AD ,AE 平分∠BAD ,则图中有几对全等三角形。
( ) A :2 B :3 C :4 D :55、如图:在△ABC 中,AD 平分∠BAC 交BC 于D ,AE ⊥BC 于E ,∠B=40°, ∠BAC=82°,则∠DAE=( )A :7B :8°C :9°D :10°6、如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F , 且FB=CE ,则下列结论::①DE=DF ,②AE=AF ,③BD=CD ,④AD ⊥BC 。
其 中正确的个数有( )A :1个B :2个C :3个D :4个7、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( ) A :AB=CD B :EC=BF C :∠A=∠D D :AB=BC8、如图:在不等边△ABC 中,PM ⊥AB ,垂足为M ,PN ⊥AC ,垂足为N , 且PM=PN ,Q 在AC 上,PQ=QA ,下列结论:①AN=AM ,②QP ∥AM , ③△BMP ≌△QNP ,其中正确的是( ) A :①②③ B :①② C :②③ D :①(第2题)FEC BA(第4题)EDCBA(第7题)FEDCB A(第3题)D CBA(第5题)DCBAF E (第6题)B ANMQ (第8题)CBA第- 2 -页, 试卷共- 4 -页9、如图:直线a,b,c 表示三条相互交叉环湖而建的公路,现在建立一个货 物中转站,要求它到三条公路的距离相等,则可供选择的地址有( D )A :1个B :2个C :3个D :4个10、如图:△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB于E ,且AB=6㎝,则△DEB 的周长是( )A :6㎝B :4㎝C :10㎝D :以上都不对 二、填空题(每小题3分,共30分)11、如图:AB=AC ,BD=CD ,若∠B=28°则∠C= 度; 12、如图:在∠AOB 的两边截取OA=OB ,OC=OD ,连接AD ,BC 交于点P ,则下列结论中①△AOD ≌△BOC ,②△APC ≌△BPD ,③点P 在∠AOB 的平分线上。
人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)

⼈教版初中数学八年级上册第⼗⼀单元《三⾓形》综合测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2023八上·双鸭⼭期中)下列各图中,正确画出△ABC中AC边上的⾼的是( )A.B.C.D.2.(3分)(2023七上·沭阳⽉考)⼀块矩形草坪的⻓比宽多10米,它的周⻓是132米,求宽x所列的⽅程是( )A.x+10=132B.2x+10=132C.22x+10=132D.2x−10=132 3.(3分)(2020七上·庆云⽉考)代数式|x−2|+3的最⼩值是( )A.0B.2C.3D.54.(3分)(2020八上·余⼲⽉考)在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC为( )A.等腰三⾓形B.锐⾓三⾓形C.直⾓三⾓形D.钝⾓三⾓形5.(3分)(2023七下·承德期末)下列四个选项中,∠1与∠2互为邻补⾓的是( )A.B.C.D.6.(3分)(2024八上·合江期末)根据图中的数据,可得∠B的度数为( )A .40°B .50°C .60°D .70°7.(3分)(2022七上·晋州期中)已知射线OC 在∠AOB 的内部,下列4个表述中:①∠AOC =12∠AOB ;②∠AOC =∠BOC ;③∠AOB =2∠BOC ;④∠AOC +∠BOC =∠AOB ,能表⽰射线OC 是∠AOB 的⾓平分线的有( )A .1个B .2个C .3个D .4个8.(3分)(2022八上·港南期中)下列图形具有稳定性的是( )A .B .C .D .9.(3分)(2021九下·曹县期中)如图,在平⾯直⾓坐标系中,点 A 1 , A 2 , A 3 ,…, A n 在 x 轴上,点 B 1 , B 2 ,…, B n 在直线 y 上,若点 A 1 的坐标为 (1,0) ,且 △A 1B 1A 2 , △A 2B 2A 3 ,…, △A n B n A n +1 都是等边三⾓形,从左到右的⼩三⾓形(阴影部分)的⾯积分别记为 S 1 , S 2 ,.., S n ,则 S n 可表⽰为( )A .22B .22n −C .22n −D .22n −10.(3分)(2021八上·诸暨⽉考)如图,BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,BF 与CE 交于G ,若∠BDC =130°,∠BGC =100°,则∠A 的度数为( )A .60°B .70°C .80°D .90°⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)过⼗边形的⼀个顶点可作对⾓线的条数为m,则m的值为 .12.(3分)(2024七下·⽞武期中)如图1,点D在△ABC边BC上,我们知道若BDCD=ab,则S△ABDS△ACD=ab;反之亦然.如图2,BE是△ABC的中线,点F在边AB上,BE、CF相交于点O,若AFBF =m,则OEOB= .13.(3分)(2024七下·⻄安期中)已知三⾓形两边的⻓分别为1cm,5cm,第三边⻓为整数,则第三边的⻓为 .14.(3分)(2024七下·淮阴期中)如图,在△ABC中,点D是边BC的中点,点E是AC边上⼀点,AD和BE交于点O,CE=14AC,△ABC的⾯积是2024,若把△ABO的⾯积记为S1,把四边形CDOE的⾯积记为S 2,则S1−S2的值为 .15.(3分)(2018八上·武汉⽉考)图中x的值为 .三、解答题(共7题,共65分)(共7题;共65分)16.(10分)(2018八上·潘集期中)某零件如图所⽰,按规定∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=146°,就断定这个零件不合格,你能说出其中的道理吗?17.(5分)(2023八上·鹿寨期中)已知⼀个多边形中,每个内⾓都相等,并且每个外⾓等于与它相,求这个多边形的边数及内⾓和.邻的内⾓的1818.(5分)(2023八上·城厢开学考)已知:△ABC中,图①中∠B、∠C的平分线相交于M,图②中∠B、∠C的外⾓平分线相交于N,(1)(1分)若∠A=80°,∠BMC= °,∠BNC= ° .(2)(1分)若∠A=β,试⽤β表⽰∠BMC和∠BNC19.(11分)(2016八上·肇庆期末)⼀个零件的形状如图所⽰,按规定∠A=90º,∠C=25º,∠B=25º,检验员已量得∠BDC=150º,请问:这个零件合格吗?说明理由。
八年级数学上册 第十一章全等三角形同步练习 人教新课标版

全等三角形同步练习时间:45分总分:100分一、选择题(每小题5分,共25分)1.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°2.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是:()A、BC=B′C′B、∠A=∠A′C、AC=A′C′D、∠C=∠C′3.根据下列条件,能判定△ABC≌△A′B′C′的是:()A、AB=A′B′,BC=B′C,∠A=∠A′B、∠A=∠A′,∠B=∠C′,AC=B′C′C、∠A=∠A′,∠B=∠B′,∠C=∠C′AB=A′B′,BC=B′C,△ABC的周长等于△A′B′C′的周长。
4.如图(2),OA=OC,OB=OD,则图中全等三角形共有:()A、2对B、3对C、4对D、5对5.两个三角形有两个角对应相等,正确的说法是()A.两个三角形全等B.如果一对等角的角平分线相等,两三角形就全等C.两个三角形一定不全等D.如果还有一个角相等,两三角形就全等二.填空题(每小题5分,共25分)图(2)A图(1)1.如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,AB =AC ,2.如图(4),已知AB=AC ,AD=AE ,∠BAD=25°,则∠CAE= 。
3.如图(5),已知AB=DC ,AD=BC ,E 、F 是DB 上两点且BF=DE ,若∠AEB=120°,∠ADB=30°,则∠BCF= °。
4.如图(6),AC=BC ,AD=BD ,AE=BE ,AF=BF ,则图中共有 对全等三角形,把它们一一表示出来为 。
图(3)图(4) ABCED图(5)B5、如图(7),已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的 图形是 。
【初二数学】第十一章全等三角形测试题(A)新人教版八年级上(共11页)

E �41图�
B
D
。长的 CA 求�㎝ 5=DB 若�2� �DC=EA�证求�1� 。D 点于线长延的 FC 交 BC⊥DB 作 B 过�F 于 EA⊥FC 作 C 点过�线中的 CB 是 EA�CB=CA�°09=BCA∠�中 CBA△在�41�图如、41
A
C E
B F D A
。C∠=B∠�证求。FC=FB�CA=BA�图如、02
B
�91图� F E
A
D
。FCD△≌EBA△�证求 C 。ED=FA�FD=EB�CD=BA�图如、91
B
F D E
�81图�
A
C
。FB+FE=EA�证求。F 于线长延的 DC 交 DC⊥FB�E 于 DG⊥EA�点一上 BA 是 D�CB=CA�°09=BCA∠�中 CBA△在�图如、81
C F
D E
B �题91第�
F E D
C �题81第� B 4 3
并 EB、EA 接连�上 DC 边在 E 点�中 DCBA 形边四在�图如、81
D
�
=BAE∠则�°53=DEC∠�CDA∠
B E C
�题71第�
1
2
A
A
C
C
O A �题61第� D B
分平 ED�点中的 CB 是 E�°09=C∠=B∠�图如、71 � 是围范值取的 DA 线中的
F C D A B
E
。F∠=C∠�证求。FE=CB�EB=DA�FD=CA�图如�分 01� 、12 �分 07 共�题答解、三
B
C
�5图�
D
E A
B
M N C
。ED=CB �DC=BA �DB⊥DE �DB⊥BA � �5 � 图如 、5 A 。DCA△≌DBA△�证求 。EC⊥CA�证求 。DC=DB�D 为足垂�CB⊥DA� �1�图如、1 题练训题专定判的等全形角三
新人教版八年级上11.1全等三角形11.2三角形全等的条件综合测试题

数学: 11.1全等三角形-11.2三角形全等的条件综合测试题(人教新课标八年级上)一、选择题(共10小题,每小题3分,共30分)*1.下列说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法为( )A .①②③④B .①③④C .①②④D .②③④2.(2021年遵义市).如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于( )A .60B .50C .45D .30*3.如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( )A .∠1=∠2B .∠B=∠CC .∠D=∠ED .∠BAE=∠CAD4.如图3,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC•与右边滑梯水平方向的长度DF 相等,则下列结论:①AB=DE ;②∠ABC=∠DEF ;•③∠ACB=∠DFE ;④∠ABC+∠DFE=90°,其中成立的有( )A .①②③④B .①②③C .①②D .②③图35.如图4所示,已知:点D 在AC 上,点B 在AE 上,△ABC ≌△DBE ,且∠BDA =∠A ,∠OEA BDCA ∶∠C =5∶3,∠DBC 等于( )A .30°B .25°C .20°D .15°6.如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )A .相等B .互补C .互余D .相等或互补7.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短8.如图5,在四边形ABCD 中,AD=CB ,DE ⊥AC 于E ,BF ⊥AC 于F ,且DE=•BF ,则图中全等三角形有( )A .1对B .2对C .3对D .4对9.如图6,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:410.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A→B→C→A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图7),若运动方向相反,则称它们是镜面合同三角形(如图8),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图9),下列各组合同三角形中,是镜面合同三角形的是()二、填空题11.已知ABC A B C '''△≌△,60A A '==∠∠,70B B '==∠∠,15cm A B ''=,则AB =_____,C =∠_____._ 图 6#12.用同样粗细,同种材料的金属粗线,构成两个全等三角形,如图2所示,△ABC和△DEF,已知∠B=∠E,AC的质量为100克,则DF的质量为.13.如图3,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP=时,才能使△ABC和△APQ全等.*14.如图4所示,有一块三角形镜子,小明不小心摔破成Ⅰ、Ⅱ两块,现需配制同样大小的镜子.为了方便起见,需带上块即可,其理由是.图4*15. 一个三角形的三边长分别为2,5,m,另一个三角形的三边长分别为n,6,2,若这两个三角形全等,则m+n=.16.已知如图5,F在正方形ABCD的边BC边上,E在AB的延长线上,FB=EB,AF交CE于G,则∠AGC的度数是______.*17.如图6,将△ABC沿经过点A的直线AD折叠,使边AC所在的直线与边AB所在的直线重合,点C落在边AB上的点E处,若∠B=450,∠BDE=200,则∠C= ,∠CAD= .#18.如图7,高速公路上有A、B两站(视为线上两点)相距30km,C、D为高速公路同旁的两个村庄(视为两点),已知DA⊥AB于A点,CB⊥AB于B点,DA=20km,CB=10km,现在要在公路AB上建一个土特产收购站E,使C、D两村庄到E站的距离相等,则E站应建在距A站______km处.三、解答题19.(8分)已知△ABC≌△A′B′C′,AD和A′D′分别是BC和B′C′边上的高,AD•和A′D′相等吗?为什么?20.(8分)如图8,AB=AC,D、E分别为AB、AC的中点,则△ABE≌△ACD,说明理由.图821.(8分)有一块三角形板材,如图所示,根据实际生产的需要,工人师傅要把∠MAN平分开,现在他手边只有一把直尺和一根细绳,你能帮工人师傅想个办法吗?并说明你的根据.22.(10分)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?请任选一对给予证明.*23. (10分)如图所示,A、B、C、D是四个村庄,B、D、C在一条东西走向公路的沿线上,BD=1千米,DC=1千米,村庄AC、AD间也有公路相连,且AD⊥BC,AC=3千米,只有村庄AB之间由于间隔了一个小湖,所以无直接相连的公路. 现准备在湖面上造一座斜拉桥,测得AE=1.2千米,BF=0.7千米. 试求所建造的斜拉桥长有多少千米?#24.(10分)已知:如图12,AB∥CD,AB=CE,BC=FC,∠DCB+∠ECF=180o,试说明:AC=EF.图1225. (12分)如图7是小明和小刚玩跷跷板的示意图,横板绕它的中点O 上下转动,立柱OC 与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA ',BB '有何数量关系?为什么?答案一、选择题1.A2. A. 3 .A 4.A 5.C 6.D 7. A 8.C9. D 10. B二、填空题11.15cm ;50 12.100克 13.BC 或AC14.Ⅰ,根据“SAS ”确定三角形全等 15. 1116. 90° 17.65°,35°18. 10提示:将实际问题转化为几何问题以方便求解,关键是利用或构造直角三角形全等来证明线段相等.三、解答题19.相等,证△ABD ≌△A ′B ′D ′20.解:因为AB=AC ,D 、E 分别为AB 、AC 的中点,所以AD=AE.在△ABE 和△ACD 中,()()AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩(已知)公共角已说明,所以△ABE ≌△ACD(SAS)21.根据“边边边”公理构造全等三角形,能把∠MAN 平分开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 全等三角形综合测试题 新人教版
班级_________姓名__________等级评价________
一、选一选:(5'×8=40')
1、不能判定两个三角形全等的条件是________
A 、AAS
B 、SAS
C 、SSA
D 、ASA 2、使两个直角三角形全等的条件是__________
A 、一锐角对应相等
B 、两锐角对应相等
C 、一条边对应相等
D 、两条边对应相等 3、如图,点D 、
E 在BC 上,且△ABE ≌△ACD ,对于结论①AB=AC,②∠BAE=∠CAD,③BE=CD,④AD=DE,其中正确的个数是____ 个 A 、1 B 、2 C 、3 D 、4 4、如图,AC 和BD 交于点O ,若OA=OD , 用“SAS ”证明△AOB ≌△DOC 还需________
A 、AB=DC
B 、OB=O
C C 、∠A=∠
D D 、∠AOB=∠DOC
5、△ABC 和△DEF 中,AB=DE ,∠A=∠D ,若证明△ABC ≌△DEF ,还需补充一个条 件,错误的补充方法是________
A 、∠B=∠E
B 、∠C=∠F
C 、BC=EF
D 、AC =DF 6、如图,Rt △ABC 沿直角边BC 所在直线向右 平移得到△DEF ,下列结论中错误的是_______ A 、△ABC ≌△DEF B 、∠DEF=90° C 、AC=DF D 、EC=CF
7、如图,右a 、b 、c 三条公路的位置成三角形,现决定在三条公路之间修建一个购物超市,使超市到三条公路的距离相等,则超市应建在_______
A 、在a 、b 两边高线的交点处
B 、在b 、c 两边中线的交点处
C 、在a 、b 两边中垂线的交点处
D 、在∠1、∠2两内角平分线的交点处
8、如图,某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是_______
A 、带①去
B 、带②去
C 、带③去
D 、带①②③去
A
B C D E 3题图
A B C D O 4题图 A D E
┐
6题图 ① ② ③
a
b c 1 2 7题图
8题图
二、填空:(5'×6=30') 9、如图,△ABC ≌△BAD ,点A 和点B ,点C 和点D 是对应点, 若AB=6cm ,BD=5cm ,AD=4cm ,则BC=_________
10、如图,△ABE ≌△ACD ,AB=AC ,BE=CD ,∠B=50°, ∠AEC=120°,则∠DAC=________°
11、如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,
BC=10cm ,BD=6cm ,则点D 到AB 的距离是________
12、如图,AC ⊥BD 于O ,BO=OD ,则图中有全等三角形________对 13、如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于E ,若AB=10cm ,则△DEB 的周长是_______
14、如图,AD 与BC 互相平分,且相交于点O ,则AB 与CD 的关系是_________
三、解答题:(10'×5=50')
15、如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C.
求证:∠A=∠D
16、如图,AB=CD ,AC=DB ,∠A 与∠D 相等吗?为什么?
A
B C D E
10题图
A B
C D
9题图 A B
D
A B
D C
C B
A
D E
C B A D
O O 11题图 12题图 13题图 14题图
A B C
D
E
A
B C
D
17、如图,BE ⊥AC 、CF ⊥AB 于点E 、F ,BE 与CF 交于点D ,DE=DF ,连结AD. 求证:(1)∠1=∠2(2)BD=CD
18、如图,∠B=∠C=90°,M 是BC 中点,DM 平分∠ADC , 求证:AM 平分∠DAB (提示:作MN ⊥AD 于N )
A B
C
D E F
1 2 A B
C
D M
19、如图,在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,求证:AD=CE
A B
C D E M N。