《三角形与全等三角形》综合测试题一(最新整理)
三角形全等测试题及答案

三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。
答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。
答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。
()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。
()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。
答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。
答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。
证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。
10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。
证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。
三角形全等的判定专题训练题

三角形全等的判定专题训练题(1)1、如图(1):AD ⊥BC ,垂足为D ,BD=CD 。
求证:△ABD ≌△ACD 。
2、如图(2):AC ∥EF ,AC=EF ,AE=BD 。
求证:△ABC ≌△EDF 。
3、 如图(3):DF=CE ,AD=BC ,∠D=∠C 。
求证:△AED ≌△BFC 。
4、 如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE 。
求证:(1)∠B=∠C ,(2)BD=CE5、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE 。
求证:AC ⊥CE 。
6、如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上。
求证:(1)AF=EG ,(2)BF ∥DG 。
7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC 。
求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM 。
8、如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF 。
求证:△ABE ≌△DCF 。
9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
10、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE 。
求证:AB=AC 。
11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC上任一点。
求证:PA=PD 。
12、如图(12)AB ∥CD ,OA=OD ,点F 、D 、O 、A 、E 在同一直线上,AE=DF 。
求证:EB ∥CF 。
13、如图(13)△ABC ≌△EDC 。
求证:BE=AD 。
14、如图(14)在△ABC 中,∠ACB=90°,AC=BC ,AE 是BC 的中线,过点C 作CF ⊥AE 于F ,过B 作BD ⊥CB 交CF 的延长线于点D 。
2022-2023学年人教版 八年级上册《全等三角形》综合测试卷

人教版八年级上册《全等三角形》综合测试卷满分:100分姓名:___________班级:___________考号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列各组图形中不是全等形的是()A.B.C.D.2.如图,一块三角形玻璃裂成①、②、③三块,现需要划一块同样大小的三角形玻璃,为了方便只需带上一块,号码和依据是()A.①SAS B.②ASA C.③AAS D.③ASA 3.如图,△ABC≌△ADE,若∠E=70°,∠D=30°,∠CAD=35°,则∠BAD=()A.40°B.45°C.50°D.55°4.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°5.如图,若△ABC≌△DEF,BC=7,CF=5,则CE的长为()A.1 B.2 C.2.5 D.36.如图,点B,E,C,F在同一条直线上,已知AB=DE,AC=DF,添加下列条件还不能判定△ABC≌△DEF的是()A.∠ABC=∠DEF B.∠A=∠D C.BE=CFD.BC=EF7.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC 于点D,若CD=5,AB=12,则△ABD的面积是()A.15 B.30 C.45 D.608.如图,在△ABC中,∠C=90°∠ABC的平分线BD交AC于点D,若BD=10厘米,BC=8厘米,DC=6厘米,则点D到直线AB 的距离是()A.6cm B.8cm C.10cm D.14cm 9.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4,﹣2)D.(4,﹣3)10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.①②③④B.①②④C.①②③D.②③④二.填空题(共6小题,满分24分,每小题4分)11.如图,在△ABC中,∠C=90°,AC=8,DC=AD,BD平分∠ABC,则点D到AB的距离等于.12.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是.13.如图,△ADE≌△BCF,AD=8cm,CD=6cm,则BD的长为cm.14.如图,AC⊥BC,AD⊥BD,垂足分别是C,D,(若要用“HL”得到Rt△ABC≌Rt△BAD,则应添加的条件是.(写一种即可)15.在正方形网格中,∠AOB的位置如图所示,点P,Q,M,N是四个格点,则这四个格点中到∠AOB两边距离相等的点是点.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=22°,∠2=34°,则∠3=.三.解答题(共7小题,满分46分)17.(5分)已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF≌△CBE.18.(5分)如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:Rt△ABE≌Rt△CBF.19.(6分)问题:已知线段AB、CD相交于点O,AB=CD.连接AD、BC,请添加一个条件,使得△AOD≌△COB小明的做法及思路小明添加了条件:∠DAB=∠BCD.他的思路是分两种情况画图①、图②,在两幅图中,都作直线DA、BC,两直线交于点E由∠DAB=∠BCD,可得∠EAB=∠ECD∵AB=CD,∠E=∠E∴△EAB≌△ECD,∴EB=ED,EA=EC图①中ED﹣EA=EB﹣EC,即AD=CB图②中EA﹣ED=EC﹣EB,即AD=CB又∵∠DAB=∠BCD,∠AOD=∠COB∴△AOD≌△COB(1)数学老师说:小明的做法不正确,请你给出解释;(2)请你重新添加一个满足问题要求的条件,并说明理由.20.(7分)如图,已知点E,D,A,B在一条直线上,BC∥EF,∠C=∠F,AD=1,AE=2.5,AB=1.5.(1)试说明:△ABC≌△DEF.(2)判断DF与AC的位置关系,并说明理由.21.(7分)已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC 的面积.22.(7分)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.23.(9分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF ⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中圆与椭圆不可能完全重合,∴不是全等形.故选:B.2.解:只需带上碎片③即可.理由:碎片③中,可以测量出三角形的两角以及夹边的大小,三角形的形状即可确定.故选:D.3.解:∵∠B=70°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°,∵△ABC≌△ADE,∴∠EAD=∠BAC=80°,∴∠EAC=∠EAD﹣∠DAC=80°﹣35°=45°,故选:B.4.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.5.解:∵BC=7,CF=5,∴BF=7﹣5=2,∵△ABC≌△DEF,∴EF=CB,∴EF﹣CF=CB﹣CF,∴EC=BF=2,故选:B.6.解:已知AB=DE,AC=DF,添加的一个条件是∠ABC=∠DEF,根据条件不可以证明△ABC≌△DEF,故选项A符合题意;已知AB=DE,AC=DF,添加的一个条件是∠A=∠D,根据SAS 可以证明△ABC≌△DEF,故选项B不符合题意;已知AB=DE,AC=DF,添加的一个条件是EB=CF,可得得到BC=EF,根据SSS可以证明△ABC≌△DEF,故选项C不符合题意;已知AB=DE,AC=DF,添加的一个条件是BC=EF,根据SSS 可以证明△ABC≌△DEF,故选项D不符合题意;故选:A.7.解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,∴DC⊥AC,∵DE⊥AB,DC⊥AC,∴DE=DC=5,∴△ABD的面积=×AB×DE=×12×5=30,故选:B.8.解:过D作DE⊥AB,交AB于点E,∵BD平分∠ABC,DC⊥CB,DE⊥BA,∴DE=DC=6厘米,则点D到直线AB的距离是6厘米,故选:A.9.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.10.解:∵BC恰好平分∠ABF,∴∠FBC=∠ABC∵BF∥AC,∴∠FBC=∠ACB,∴∠ACB=∠ABC=∠CBF,在△ABC中,AD是△ABC的角平分线,∠ACB=∠ABC,∴△ABC为等腰三角形,∴CD=BD,(故②正确),CA=AB,AD⊥BC(故③正确),∵∠ACB=∠CBF,CD=BD,∴Rt△CDE≌Rt△BDF(AAS),∴DE=DF,(故①正确),BF=CE,CA=AB=AE+CE=2BF+BF =3BF,(故④正确),故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:如图,过点D作DH⊥AB,垂足为H,∵AC=8,DC=AD,∴DC=2,∵BD平分∠ABC,∠C=90°,DH⊥AB,∴CD=DH=2,∴点D到AB的距离等于2,故答案为2.12.解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS).∴∠DAC=∠BAC,即∠QAE=∠PAE.故答案为:SSS.13.解:∵△ADE≌△BCF,∴AD=BC=8cm,∵BD=BC﹣CD,CD=6cm,∴BD=8﹣6=2(cm).故答案为:2.14.解:若添加AC=BD,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);若添加BC=AD,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL).故答案为:AC=BD或BC=AD.15.解:由图形可知,点M在∠AOB的角平分线上,∴点M到∠AOB两边距离相等,故答案为:M.16.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠2=34°,∵∠3=∠1+∠ABD,∠1=22°,∴∠3=56°,故答案为:56°.三.解答题(共7小题,满分46分)17.证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中,∴△ADF≌△CBE(ASA).18.证明:在Rt△ABE和Rt△CBF中,∵,∴Rt△ABE≌Rt△CBF(HL).19.解:(1)可画出下面的反例:图中,AB=CD,DA∥BC,小明的证明方法就错误了,理由直线AD与BC没有交点.(2)答案不唯一,如OA=OC.理由如下:∵AB=CD,OA=OC,∴AB﹣OA=CD﹣OC,即OB=OD.在△AOD和△COB中,∴△AOD≌△COB(SAS).20.(1)证明:∵BC∥EF,∴∠B=∠E,∵AD=1,AE=2.5,∴DE=AE﹣AD=2.5﹣1=1.5,∵AB=1.5,∴AB=DE,∵∠C=∠F,∴△ABC≌△DEF(AAS);(2)DF∥AC.∵△ABC≌△DEF,∴∠BAC=∠EDF,∵∠BAC+∠DAC=∠EDF+∠ADF=180°,∴∠DAC=∠ADF,∴DF∥AC.21.解:(1)∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣20°=130°;(2)作DF⊥AC于F,DH⊥BC于H,如图2,∵BD平分∠ABC,DE⊥AB,DH⊥BC,∴DH=DE=2,∵CD平分∠ACB,DF⊥AC,DH⊥BC,∴DF=DH=2,∴△ADC的面积=DF•AC=×2×4=4.22.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q 的运动速为cm/s或cm/s.23.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.。
全等三角形测试题及答案

全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。
4. SAS全等条件指的是_________。
三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。
()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。
()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。
8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。
若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。
五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。
10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。
答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。
8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。
《全等三角形》综合测试题(1)

《全等三角形》综合测试题班级_________ 姓名_________ 学号_________一、选择题1.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C2.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( ) A.线段CD 的中点 B.OA 与OB 的中垂线的交点 C.OA 与CD 的中垂线的交点 D.CD 与∠AOB 的平分线的交点第2题图 第3题图 第4题图 3.如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( ) A.△ABD 和△CDB 的面积相等 B.△ABD 和△CDB 的周长相等 C.∠A +∠ABD =∠C +∠CBD D.AD ∥BC ,且AD =BC 4.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( )5A.6A.78A. SSS B. SAS C. AAS D. ASA9.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB 于F ,则( )A D AC B OD CB AABC E FA BC D FE O A. AF =2BF B.AF =BF C.AF >BF D.AF <BF第8题图 第9题图 第10题图 10.将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°二、填空题11. 如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).第12题 第13题12.如图,在△ABC 中,AB =AC ,BE 、CF 是中线,则由 可得△AFC ≌△AEB .13.如图,AB =CD ,AD =BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,若∠ADB =60°,EO =10,则∠DBC = ,FO = .14.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 边的距离为___.15.△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,则AC = .16.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.17.如图,AB ∥CD ,AD ∥BC ,OE =OF ,图中全等三角形共有______对.18.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.第17题 第18题DO CBA 第11题FED C BAAECBA ′ E ′DB19.如图,AD ,A ′D ′分别是锐角三角形ABC 和锐角三角形A ′B ′C ′中BC ,B ′C ′边上的高,且AB =A ′B ′,AD =A ′D ′.若使△ABC ≌△A ′B ′C ′,请你补充条件________.(填写一个你认为适当的条件即可)20. 如图,AB ∥CD ,AD ∥BC ,OE=OF ,图中全等三角形共有______对。
2022—2023学年青岛版数学八年级上册第1章《全等三角形》综合检测

第1章全等三角形综合检测(满分100分,限时60分钟)一、选择题(每小题3分,共36分)1.下列各组图形中,不是全等形的是( )A B C D2.(2021四川攀枝花中考)如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带去最省事.( )A.①B.②C.③D.①③3.(2019辽宁丹东中考)如图,点C在∠AOB的边OA上,用尺规作出了CP∥OB,作图痕迹中,是( )A.以点C为圆心,OD的长为半径的弧B.以点C为圆心,DM的长为半径的弧C.以点E为圆心,DM的长为半径的弧D.以点E为圆心,OD的长为半径的弧4.(2021山东莘县期中)如图是两个全等三角形,图中字母表示三角形的边长,则∠α的度数为( )A.50°B.58°C.60°D.72°5.(2022山东昌乐期中)如图,测河两岸A,B两点的距离时,先在AB的垂线BF上取C,D两点,使CD=BC,再过点D作出BF的垂线DE,当点A,C, E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,测得ED的长就是A,B两点的距离.判定△EDC≌△ABC的依据是( )A.ASAB.SSSC.AASD.SAS6.(2021山东巨野期中)如图所示,△ABD≌△CDB,下面四个选项中,不一定成立的是( )A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.AD+AB=CD+BDD.AD∥BC7.(2021山东阳谷期中)一个三角形由六个元素组成,即三条边和三个角,那么关于判定三角形全等的说法,正确的是( )A.六对元素必须相等,才可以判定三角形全等B.任意三对元素相等,即可判定三角形全等C.至少三对元素相等,且必有一组边相等,才可以判定三角形全等D.两个直角三角形全等,只需任意两对元素相等即可8.(2021山东寿光期中)根据下列已知条件,不能画出唯一的△ABC的是( )A.AB=5,BC=3,AC=6B.AB=10,BC=20,∠B=80°C.∠A=50°,∠B=60°,AB=4D.∠A=50°,∠B=60°,∠C=70°9.(2021陕西陇县期末)如图,AB⊥CD,且AB=CD,CE⊥AD于E,BF⊥AD于F.若CE=6,BF=3,EF=2,则AD的长为( )A.7B.6C.5D.410.(2022贵州黔西南州期末)如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥OB于点C,BD、AC都经过点E,则图中全等的三角形共有( )A.3对B.4对C.5对D.6对11.(2022山东单县期中)如图,已知线段AC、BD相交于点O,从下列条件:①点O是线段AC的中点;②点O是线段BD的中点;③AB=DC;④AB ∥DC中选两个仍不能说明△ABO≌△CDO的是( )A.①②B.①③C.③④D.①④12.(2022山东潍坊潍城期末)如图,已知锐角∠AOB,根据以下要求作图:(1)在射线OA上取点C和点E,以点O为圆心,OC,OE的长为半径画弧,分别交射线OB于点D,F;(2)连接CF,DE交于点P.则各项结论错误的是( )A.CE=DFB.点P在∠AOB的平分线上C.PE=PFD.若∠AOB=60°,则∠CPD=120°二、填空题(每小题3分,共15分)13.(2021山东阳谷期中)当三角形的三条边的长度确定后,它的形状和大小就被确定了,三角形的这种特性称为三角形的.14.(2020湖南怀化中考)如图,在△ABC和△ADC中,AB=AD,BC=DC, ∠B=130°,则∠D= °.15.已知∠α>∠β,作∠AOB=∠α,再以∠AOB的边OB为一边作∠BOC=∠β,则∠AOC= .(用∠α,∠β表示)16.(2022山东肥城期末)如图,在正方形网格中,∠1+∠2+∠3= .17.(2022独家原创)如图,在△ABC中,∠ACB=90°,AC=BC,∠BAC的平分线AD交BC于点D,过点B作BE⊥AD交AD的延长线于E,AC、BE的延长线相交于点F.若AD=6,则BE的长为.三、解答题(共49分)18.(2021湖南衡阳中考)(6分)如图,点A、B、D、E在同一条直线上, AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.19.(2022山东临清期中)(8分)如图,D是△ABC的边AC上一点,点E 在AC的延长线上,EC=AD,过点E作EF∥AB,且使EF=AB,连接DF.DF与BC相等吗?为什么?20.(2021河北正定期中)(8分)如图,已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠ABC=∠α.(用尺规作图,保留作图痕迹,不写作法)请你根据所学的知识,说明尺规作图作出∠ABC=∠α,用到的是三角形全等判定方法中的,作出的△ABC是唯一的,依据是三角形全等判定方法中的.21.(2021山东阳谷期中)(8分)如图,△ABC≌△DEF,AM、DN分别是△ABC、△DEF的对应边上的高.求证:AM=DN.22.(2022山东聊城东昌府期中)(8分)已知△ABC中,AB=AC,∠BAC=90°,分别过B、C向过点A的直线作垂线,垂足分别为点E、F.(1)如图1,当过A的直线与斜边BC不相交时,求证:①△ABE≌△CAF;②EF=BE+CF;(2)如图2,当过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,试求EF的长.图1 图223.(2022山东高密期中)(11分)如图1所示,BD、CE是△ABC的高,点P在BD的延长线上,AC=BP,点Q在CE上,QC=AB.(1)判断:∠1 ∠2(用“>”“<”或“=”填空);(2)探究:AP与AQ之间的关系;(3)若把(1)中的△ABC改为钝角三角形,AC>AB,∠A是钝角,其他条件不变,试探究AP与AQ之间的关系,请画出图形并直接写出结论.图1 备用图答案全解全析一、选择题1.D直接利用全等形的定义即可得出答案.D选项中的两个图形大小不相等,故不全等.故选D.2.C由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以最省事的做法是带③去.3.C根据“作一个角等于已知角”的步骤可得答案.4.A如图,根据三角形的内角和定理可得∠β=180°-58°-72°=50°.因为两个三角形全等,所以∠α=∠β=50°,故选A.5.A根据题意得AB⊥BC,DE⊥CD,∴∠ABC=∠EDC=90°,∵BC=CD,∠ACB=∠ECD,∴根据“ASA”可判定△EDC≌△ABC.6.C∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,周长相等,AB=CD,AD=BC,∠ADB= ∠CBD,∴AD+AB=CD+BC,AD∥BC,选项C不一定成立.7.C根据全等三角形的判定方法“SAS”“ASA”“AAS”“SSS”可知,至少三对元素相等,且必有一组边相等,才能判定三角形全等.8.D选项A,已知三边,且满足任意两边之和大于第三边,所以能作出三角形,且能画出唯一的△ABC;选项B,已知两边及其夹角,满足SAS,所以能画出唯一的△ABC;选项C,AB是∠A,∠B的夹边,满足ASA,所以能画出唯一的△ABC;选项D,三个角分别相等的三角形有无数个,所以不能画出唯一的△ABC.故选D.9.A∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠A+∠D=90°,∠C+∠D=90°,∠CED=∠AFB=90°,∴∠A=∠C.在△ABF和△CDE中,∴△ABF≌△CDE(AAS),∴AF=CE=6,BF=DE=3,∴AD=AF-EF+DE=6-2+3=7.故选A.10.B△OED≌△OEC(AAS),△AED≌△BEC(ASA),△OAE≌△OBE(SAS),△OAC≌△OBD(SAS).11.B选项A,∵点O是线段AC的中点,点O是线段BD的中点, ∴OA=OC,OB=OD,∵∠AOB=∠COD,∴△ABO≌△CDO(SAS);选项B,∵点O是线段AC的中点,AB=DC,∴OA=OC,已知∠AOB=∠COD,由SSA不能判定△ABO≌△CDO;选项C,∵AB∥DC,∴∠B=∠D,∠A=∠C,∵AB=DC,∴△ABO≌△CDO(ASA);选项D,∵点O是线段AC的中点,∴OA=OC,∵AB∥DC,∴∠B=∠D,∠A=∠C,∴△ABO≌△CDO(AAS).12.D由作图,得OE=OF,OC=OD,所以OE-OC=OF-OD,即CE=DF,选项A正确;在△EOD与△FOC中,所以△EOD≌△FOC(SAS),所以∠OED=∠OFC,ED=FC,在△ECP与△FDP中,所以△ECP≌△FDP(AAS),所以PE=PF,所以ED-PE=FC-PF,即PD=PC,连接OP,在△OCP与△ODP,所以△OCP≌△ODP(SSS),所以∠COP=∠DOP,所以点P在∠AOB的平分线上,选项B、C正确;若∠AOB=60°,没有条件判定OC⊥CF,OD⊥DE,所以无法判定∠CPD=120°,选项D错误.二、填空题13.稳定性解析因为三角形具有稳定性,所以三角形的三条边的长度确定后,它的形状和大小就被确定了.14. 130解析在△ADC和△ABC中,所以△ADC≌△ABC(SSS),所以∠D=∠B=130°.15.∠α+∠β或∠α-∠β解析当OC在∠AOB内部时,∠AOC=∠α-∠β;当OC在∠AOB外部时,∠AOC=∠α+∠β.所以∠AOC=∠α+∠β或∠α-∠β.16.135°解析如图,在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∴∠4=∠3,∵∠1+∠4=90°,∴∠3+∠1=90°,∵∠2=45°,∴∠1+∠2+∠3=135°.17.3解析∵BE⊥AD,∴∠AEB=90°,∵∠ACB=90°,∴∠AEB=∠ACB,∵∠ADC=∠BDE,∴∠CAD=∠CBF,在△ACD和△BCF中,∴△ACD≌△BCF(ASA),∴BF=AD.∵AD平分∠BAF,∴∠BAE=∠FAE,在△BAE和△FAE中,∴△BAE≌△FAE(ASA),∴BE=EF,∴BE=BF=AD=3.三、解答题18.证明∵AC∥DF,∴∠CAB=∠FDE.∵BC∥EF,∴∠CBA=∠FED.在△ABC和△DEF中,∴△ABC≌△DEF(ASA).19.解析DF=BC,理由如下:∵EF∥AB,∴∠E=∠A,∵EC=AD,∴EC+CD=AD+CD,即ED=AC.在△EFD和△ABC中,∴△EFD≌△ABC(SAS),∴DF=BC.20.解析如图,△ABC即为所求.尺规作图作出∠ABC=∠α,用到的是三角形全等判定方法中的“SSS”,作出的△ABC是唯一的,依据是三角形全等判定方法中的“SAS”.21.证明方法一:因为△ABC≌△DEF,所以AB=DE,∠B=∠E,因为AM、DN分别是△ABC、△DEF的对应边上的高,所以AM⊥BC,DN⊥EF,所以∠AMB=∠DNE=90°.在△ABM和△DEN中,所以△ABM≌△DEN(AAS),所以AM=DN.方法二:因为△ABC≌△DEF,所以BC=EF,S△ABC=S△DEF,所以BC·AM=EF·DN,所以AM=DN.22.解析(1)证明:①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90°,∴∠EAB+∠EBA=90°.∵∠BAC=90°,∴∠EAB+∠FAC=90°,∴∠EBA=∠FAC.在△ABE和△CAF中,∴△ABE≌△CAF(AAS).②∵△ABE≌△CAF,∴EA=FC,EB=FA,∴EF=AF+AE=BE+CF.(2)同(1)可证△ABE≌△CAF(AAS),∴AE=CF=3,BE=AF=10,∴EF=AF-AE=10-3=7.23.解析(1)=.提示:设CE、BD交于点F,∵BD、CE是△ABC的高,∴∠BEF=∠CDF=90°,∵∠BFE=∠CFD,∠1=90°-∠CFD,∠2=90°-∠BFE, ∴∠1=∠2.(2)结论:AP=AQ,AP⊥AQ.证明:在△QAC和△APB中,∴△QAC≌△APB(SAS),∴AQ=AP,∠QAC=∠P,∵∠DAP+∠P=90°,∴∠DAP+∠QAC=90°,即∠QAP=90°,∴AQ⊥AP.(3)AP=AQ,AP⊥AQ,图形如图所示.提示:∵BD、CE是△ABC的高,∴BD⊥AC,CE⊥AB,∴∠1+∠CAE=90°,∠2+∠DAB=90°, ∵∠CAE=∠DAB,∴∠1=∠2.在△QAC和△APB中,∴△QAC≌△APB(SAS),∴AQ=AP,∠QAC=∠P,∵∠PDA=90°,∴∠P+∠PAD=90°,∴∠QAC+∠PAD=90°,∴∠QAP=90°,∴AQ⊥AP.故AP=AQ,AP⊥AQ.。
全等三角形考试题及答案

全等三角形考试题及答案一、选择题1. 两个三角形全等的条件是:A. 两个角相等B. 三条边相等C. 两边夹一角相等D. 两角夹一边相等答案:D2. 已知△ABC≌△DEF,其中AB=DE,AC=DF,∠A=∠D,那么BC与EF 的关系是:A. BC=EFB. BC>EFC. BC<EFD. 不能确定答案:A二、填空题1. 如果两个三角形的对应边成比例,且对应角相等,则这两个三角形______。
答案:相似2. 在△ABC中,∠A=∠B=50°,则∠C=______。
答案:80°三、解答题1. 已知△ABC≌△DEF,且AB=5cm,BC=7cm,求DE的长度。
答案:DE=5cm2. 已知△ABC≌△DEF,且∠A=∠D=60°,∠B=∠E=50°,求∠C和∠F 的度数。
答案:∠C=∠F=70°四、证明题1. 已知△ABC≌△DEF,且∠A=∠D=90°,AB=DE,AC=DF,证明:BC=EF。
答案:根据直角三角形全等的判定定理HL,因为∠A=∠D,AB=DE,AC=DF,所以△ABC≌△DEF,因此BC=EF。
2. 已知△ABC≌△DEF,且∠A=∠D,∠B=∠E,证明:∠C=∠F。
答案:根据全等三角形对应角相等的性质,因为△ABC≌△DEF,所以∠C=∠F。
五、应用题1. 一块三角形的木板ABC需要与另一块三角形的木板DEF进行拼接,已知AB=DE,BC=EF,∠A=∠D,∠B=∠E,判断两块木板是否可以拼接。
答案:可以拼接,因为根据SAS判定定理,△ABC≌△DEF。
2. 已知一个等腰三角形ABC,其中AB=AC,∠A=50°,求∠B和∠C的度数。
答案:因为AB=AC,所以∠B=∠C,又因为三角形内角和为180°,所以∠B=∠C=(180°-50°)/2=65°。
初中数学全等三角形判定综合练习(附答案)

初中数学全等三角形判定综合练习一、单选题1.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A. CB CD =B. BAC DAC ∠=∠C. BCA DCA ∠=∠D. 90B D ∠=∠=︒2.如图,已知ABC DCB ∠=∠,添加下列所给的条件不能证明ABC DCB △≌△的是( )A. A D ∠=∠B. AB DC =C. ACB DBC ∠=∠D. AC BD =3.如图,点,D E 分别在线段,AB AC 上,CD 与BE 相交于O 点,已知AB AC =,现添加以下的哪个条件仍不能判定ABE ACD ≅△△( )A.B C ∠=∠B.AD AE =C. BD CE =D.BE CD =4.某同学把一块三角形的玻璃打碎成了三块(如图所示),现在要到玻璃店去配一块与原来完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.带①②③去5.如图,BF EC B E =∠=∠请问添加下面哪个条件不能判断ABC DEF ≅△△( )A.A D ∠=∠B.AB ED =C.//DF ACD.AC DF =6.如图,点B E C F 、、、在同一条直线上,//AB DE ,AB DE =,要用SAS 证明ABC DEF ≅△△,可以添加的条件是( )A .A D ∠=∠B .//AC DF C .BE CF =D .AC DF =7.下列各图中a b c ,,为三角形的边长,则甲、乙、丙三个三角形和左侧ABC △全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙8.如图,点D E ,分别在线段AB AC ,上,CD 与BE 相交于O 点,已知AB AC =,现添加以下的哪个条件仍不能判定ABE ACD ≅△△?( )A.B C ∠=∠B.AD AE =C. BD CE =D.BE CD =9.如图所示的是用直尺和圆规作一个角等于已知角 的示意图,则说明'''A O B AOB ∠=∠的依据 是( )A.S.A.SB.S.S.S.C.A.A.S.D.A.S.A.10.如图,AOB ∠是一个任意角,在边OA OB ,上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与M N ,重合,过角尺顶点C 的射线OC 便是AOB ∠的平分线这种方法所用的三角形全等的判定方法是( )A.S.A.S.B.S.S.S.C.A.S.A.D.A.A.S.11.如图,AB AD =,BC CD =,点E 在AC 上,则全等三角形共有( )A.1对B.2对C.3对D.4对12.如图,在ABC △和DEF △中,,B E C F ,,在同一直线上,AB DE =,AC DF =,要使ABC DEF ≅△△,还需要添加的一个条件是( )A.EC CF =B.BE CF =C.B DEF ∠=∠D.//AC DF13.如图,ABC △中,AB AC =,EB EC =,则由“S.S.S.”可以判定( )A.ABD ACD ≅△△B.ABE ACE ≅△△C.BDE CDE ≅△△D.以上答案都不对14.如图,点E 在ABC △的外部,点D 在边BC 上,DE 交AC 于点F .若12∠=∠,E C ∠=∠,AE AC =,则( )A.ABC AFE ≅△△B.AFE ADC ≅△△C.AFE DFC ≅△△D.ABC ADE ≅△△15.下列条件能判 断两个三角形全等的是( )A.有两边对应相等B.有两角对应相等C.有一边一角对应相等D.能够完全重合16.如图,全等的两个三角形是( )A.③④B.②③C.①②D.①④17.如图,点,,,B E C F 在同一条直线上,//,AB DE AB DE = ,要用“边角边”证明ABC DEF ≅△△,可以添加的条件是( ).A.A D ∠=∠B.//AC DFC.BE CF =D.AC DF =18.如图,点P 是AB 上任一点,ABC ABD ∠=∠,从下列各条件中补充一个条件,不一定能推出APC APD ≅△△.的是( )A.BC BD =B.ACB ADB ∠=∠C.AC AD =D. CAB DAB ∠=∠二、证明题19.如图:点C D 、在AB 上,且//AC BD AE FB AE BF ==,,.求证://DE CF .20.如图,已知CA CB =,AD BD =,M N ,分别是CB CA ,的中点,求证:DN DM =.21.如图,已知AB AE =,12∠=∠,B E ∠=∠.求证:BC ED =.22.如图,90A D ∠=∠=︒,AC DB =,AC DB ,相交于点O .求证:OB OC =.23.如图(1)在ABC △中,90ACB AC BC ∠=︒=,,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9. 如图 D、E 分别是边 AC、BC 上的点,若△ADB≌△EDB≌△EDC,则∠C 的度数为(
)
A、15°
Hale Waihona Puke B、20° C、25° D、30°
10.如图所示,在△ABC 中,CD、BE 分别是 AB、AC 边上的高,并
且 CD、BE 交于,点 P,若∠A=500 ,则 ∠BPC 等于( )
1
A、90° B、130° C、270°
3.一个多边形内角和是 10800,则这个多边形的边数为
()
A、 6
B、 7
C、 8
D、 9
4.等腰三角形的底边 BC=8 cm,且|AC-BC|=2 cm,则腰长 AC 为( )
A.10 cm 或 6 cm
B.10 cm
C.6 cm
D.8 cm 或 6 cm
5.下列命题中正确的是(
)①全等三角形对应边相等; ②三个角对应相等的两个三角
为
B
A
1
2 3
A
4
C
D
B
D
C
第 11 题图
第 12 题图
12.已知,如图△ABC 中,AB=5,AC=3,则中线 AD 的取值范围是_________.
三、解答题(共 34 分)
1.读句画图:
⑴ 画钝角△ABC(900<∠A<1800),且 AB>AC
⑵ BC 上的中线 AD
⑶画 AC 上的高 BE
D
E
B
C
7.如图,已知 AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?请任选一对 给予证明.
8.如图 23,△ABC 中,D 是 BC 的中点,过 D 点的直线 GF 交 AC 于 F,交 AC 的 平行线 BG 于 G 点,DE⊥DF,交 AB 于点 E,连结 EG、EF
⑴求证:BG=CF ⑵请你判断 BE+CF 与 EF 的大小关系,并说明理由。
3.如图,已知 AC=BD,要使△ABC≌△DCB,只需增加的一个条件是____________.
第 2 题图
4. 如 图 所 示 , ∠E=∠F=90°,∠B=∠C,AE=AF,给 出 下 列 结 论 : ①∠1=∠2; ②BE=CF;
③△ACN≌△ABM;④CD=DN.其中正确结论的序号是__________________.
形全等;③三边对应相等的两三角形全等;④有两边对应相等的两
B
三角形全等。
A、4 个 (B)3 个 (C)2 个
(D)1 个
D
6.如右图,D、E 分别是 AB,AC 上一点,若∠B=∠C,则在
下列条件中,无法判定△ABE≌△ACD 是 (
)
A、AD=AE (B)AB=AC (C)BE=CD (D)∠AEB=∠ADC
《三角形与全等三角形》综合测试题一
一、选择题
1.下列长度的三条线段中,能组成三角形的是 ( )
A、3cm,5cm ,8cm
B、8cm,8cm,18cm
C、0.1cm,0.1cm,0.1cm
D、3cm,40cm,8cm
2.已知△ABC≌△DEF,∠A=70°,∠E=30°,则∠F 的度数为( )
(A) 80° (B) 70° (C) 30° (D) 100°
第 11 题图
等于( )
1
A、90°-∠A B、90°- ∠A C、180°-∠A
2
1
D、45°- ∠A
2
二、填空
1.四条线段的长分别为 5cm、6cm、8cm、13cm,以其中任意三条线段为边可以
第 12 题图
构成___个三角形.
2.如图:∠A+∠B+∠C+∠D+∠E+∠F 等于________.
三角形的个数 所有火柴的根数
1
2
3
4
5
3
5
7
9
…
n
…
2
第 10 题图
9.要使五边形木架(用 5 根木条钉成)不变形,至少要再钉
根木条。
10.如图,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC 的度数是_____.
11.如图,正方形 ABCD 中,截去∠B、∠D 后,∠1、∠2、∠3、∠4 的和
5.如图,将一幅三角板叠放在一起使直角顶点重合于 O,则∠AOC+∠DOB 的度数为______. 6.如果一个正多边形的内角和是 900°,则这个正多边形的对角线有 条.
7.如图,已知 AC⊥BC 于 C , DE⊥AC 于 E , AD⊥AB 于 A , BC=AE.若 AB=5 , 则 AD=___________. 8.填表:用长度相等的火柴棒拼成如图所示的图形
D、315°
11. 已知:如图,O 为 AB 中点,BD⊥CD ,AC⊥CD,OE⊥CD,则下列结第 10 题图
论不一定成立的是( )
A. CE=ED
B. OC=OD
C. ∠ACO=∠ODB
1
D. OE= CD
2
12.如图,已知在△ABC 中,AB=AC,D 为 BC 上一点,BF=CD,CE=BD,那么∠EDF
A
E
C
第 6 题图
7.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )
A、甲和乙 (B)乙和丙 (C)只有乙 (D)只有丙
第 9 题图
8. 在平面直角坐标系中,点 A(-3,0),B(5,0),C(0,4)所组成的三角形 ABC 的面积是
()
A、32; B、4; C、16; D、8
⑷画角平分线 CF
2. 在△ABC 中,∠A=(∠B+∠C)、∠B-∠C=20°,求∠A、∠B、∠C 的度数。
3.如图 4,AB∥CD,∠BAE=∠DCE=45°,求∠E。
A
B
E
C
D
图4
4.如图,在△ABC 中,AD 为∠BAC 的平分线,DE⊥AB 于 E,DF⊥AC 于 F,△ABC
面积是 28 cm2 ,AB=20cm,AC=8cm,求 DE 的长。
4
A
E
B
D
F C3
5. 如图,E 是△ABC 中 AB 边延长线上一点,∠CBE 的平分线交 AC 延长线于点ED,若∠ CAB=40°,∠CBD=68°,求∠CDB 的度数.
B
A
C
D
A
6.如图,在△ABC 中,∠A=60º,∠B=70º,∠ACB 的平分线交 AB 于 D,DE∥BC 交 AC
于 E,求∠BDC、∠EDC.