反比例函数知识点数学ppt

合集下载

反比例函数的应用PPT课件

反比例函数的应用PPT课件

学习目标
1、能根据实际问题中的条件确定反比例函数 的解析式。 2、能综合利用反比例函数的知识分析和解决 一些简单的实际问题。 3、经历分析实际问题中变量之间的关系,建立 反比例函数模型,进而解决问题的过程。 4、认识数学与生活的密切联系,激发学习数学 的兴趣,增强数学应用意识。
面积中的反比例函数
(1)此蓄电池的电压是 36V , 这一函数的
表达式为
.
(2)当电流为18A时,用电器的电阻为 2Ω ; 当电流为10A时,用电器的电阻为 3.6Ω.
(3)如果以此蓄电池为电源的用电器电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?
答:可变电阻应不小于3.6Ω.
课堂检测,细心的你一定行!
(3)当空气中每立方米的含药量低于1.6mg时,学 生方可进教室,那么从消毒开始, 经过多长时间学生 才能回到教室?
1y 3 x
4
y(mg)
A 6
2y 48
x
O8
x(min)
深层思考,综合应用
1、为了预防“传染病”,某学校订教室采用药熏消 毒法进行消毒, 已知在药物燃烧时段内,室内每立方米 空气中的含药量y(mg)与时间x(min)成正比例.药物燃 后,y与x成反比例,如图所示。 (4)当空气中每立方米的含药量不低于3mg且持 续时间不低于10分钟时,才能有效杀灭空气中病 菌,那么此次消毒是否有效?为什么?
1.一个矩形的面积为20cm2 ,相邻两边的
长分别为xcm和ycm,则y与x之间的函数
关系式为
.
行程中的反比例函数
2.A、B两地间的高速公路长为300km,
一辆汽车行完全程所需的时间t(h)与
行驶的平均速度v(km/h)之间的函数关

反比例函数-ppt课件

反比例函数-ppt课件

读 范围.
27.1 反比例函数
归纳总结


由于反比例函数表达式中只有一个待定系数 k,因此求

单 反比例函数的表达式只需一组对应值或一个条件即可.


27.1 反比例函数
对点典例剖析


典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4

单 .


(1)求 y 与 x 之间的函数表达式;


题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.


27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型

例 2 某公司将特色农副产品运往邻市市场进行销售,

型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶

破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=


时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=


清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与



读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+


.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与

六年级数学下册《反比例》PPT课件人教版

六年级数学下册《反比例》PPT课件人教版

题目1
一个直角三角形,两 多少厘米?
题目2
题目3
一个长方形的周长是20厘米,长是a厘米, 宽是b厘米。求a和b的关系式,并求出当 a=5厘米时,b是多少厘米?
一个圆柱体和一个圆锥体的底面积相等、 体积也相等。已知圆锥的高是18厘米,求 圆柱的高是多少厘米。
疑问3
反比例在生活中有哪些应用?

反比例关系在现实生活中有着广泛的应用。例如,汽车行 驶时,如果速度一定,那么行驶的距离和所需的时间成反 比;一定体积的气体,如果压力一定,那么气体的温度和 体积成反比。
下节课预告
• 下节课我们将学习《圆柱与圆锥》,圆柱和圆锥是常见的几何 图形,它们在生活和数学中有着广泛的应用。通过学习圆柱和 圆锥的特性、面积和体积的计算方法,我们将更好地理解这两 种几何图形在现实世界中的作用。请大家做好预习工作。
杠杆原理
在杠杆两端挂上不同质量的物体,一端质量大,一端质量小,当杠杆平衡时,两端的距离相等,质量与距离成反 比关系。
数学问题中的反比例解析
面积固定时,长与宽的关系
当一个矩形的面积固定时,长与宽的乘积为定值,即长增大时,宽必须减小,反之亦然,这体现了反 比例关系。
速度固定时,距离与时间的关系
当一个物体的速度固定时,距离与时间的乘积为定值,即距离增大时,时间必须增大,反之亦然,这 体现了反比例关系。
02 反比例的图像表示
反比例图像的绘制
确定x和y的取值范围
在绘制反比例图像前,需要确定x和y的取值 范围,以便在坐标系中正确表示。
标出原点
在坐标系的中心位置标出原点。
绘制坐标轴
根据需要选择适当的坐标轴比例,并绘制坐 标轴线。
绘制双曲线
根据反比例函数的性质,在第一象限和第三 象限内绘制双曲线。

反比例函数应用ppt课件ppt

反比例函数应用ppt课件ppt

经济中的应用
供需关系
在经济学中,反比例函数被用来描述供需关系,即当价格上涨时,需求量会相应 减少。
投资回报
在投资中,投资回报与投资风险之间存在反比例关系,即投资风险越高,投资回 报越低。
04
CATALOGUE
反比例函数与其他函数的关联
与线性函数的关联
总结词
反比例函数与线性函数具有密切关联,它们在某些条件下可以互相转化。
在物理学、工程学、经济学等各个领域,反 比例函数都有广泛的应用,如电阻、电容、 电感的关系,液体混合物的浓度,投资回报 与风险等问题的解决都离不开反比例函数。
对未来研究和应用的展望
随着科学技术的不断发展,反比例函 数的应用前景将更加广泛,如在物理 学中的量子力学、天体运动等领域, 反比例函数可能会发挥更加重要的作 用。
反比例函数应用 ppt课件
目录
• 反比例函数概述 • 反比例函数的基本性质 • 反比例函数的应用场景 • 反比例函数与其他函数的关联 • 反比例函数的应用案例分析 • 总结与展望
01
CATALOGUE
反比例函数概述
反比例函数的定义
定义
形如 y=k/x(k为常数,k≠0) 的函 数称为反比例函数。
详细描述
反比例函数y=f(x)=1/x的形式与指数函数y=a^x的形式在结构上具有相似性,两者都涉及到自变量和 因变量的变换。此外,当a为1时,指数函数退化为一个常数函数,与反比例函数在x=0处相交。
与对数函数的关联
总结词
反比例函数与对数函数之间存在一定的 关联,它们在形式上具有相似性。
VS
详细描述
反比例函数y=f(x)=1/x的形式与对数函数 y=log_a(x)的形式在结构上具有相似性, 两者都涉及到自变量和因变量的变换。此 外,当a为1时,对数函数退化为一个常 数函数,与反比例函数在x=0处相交。

反比例函数图像和性质ppt课件

反比例函数图像和性质ppt课件

反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。

关于反比例函数的ppt课件

关于反比例函数的ppt课件

05
反比例函数的学习方 法
理解概念和定义
总结词:掌握基础
详细描述:首先需要理解反比例函数的基本概念和定义,包括反比例函数的表达 式、自变量和因变量的关系等。
学习图像和性质
总结词:深入理解
详细描述:通过学习反比例函数的图像和性质,可以更好地理解函数的特性,包括函数的单调性、奇 偶性等。
掌握应用和比较
图像特性
正比例函数图像是一条通过原点 的直线,而反比例函数的图像则 位于第一象限和第三象限,且在 x轴和y轴上分别存在一个无穷远
点。
增减性
正比例函数随着x的增大而增大 或减小,而反比例函数在x增大 时y减小,在x减小时y增大。
与一次函数的比较
01
定义
一次函数的一般形式为y=kx+b,其中k和b为常数且k≠0;反比例函数
题目2
已知反比例函数$y = frac{k}{x}$的图 象经过第一、三象限,且与直线$y = mx + b$相交于两点,求证:这两点 的横坐标互为相反数。
题目1
已知点$(m,n)$和$(p,q)$在反比例函 数$y = frac{k}{x}$的图象上,且$m times n = p times q$,求证:$k = 0$。
双曲余切函数
01
02
03
定义
双曲余切函数是双曲函数 的一种,定义为 (e^x + e^-x) / (e^x - e^-x)。
性质
双曲余切函数在实数范围 内是连续且可导的,具有 类似于余切函数的周期性 和奇偶性。
应用
双曲余切函数在解决某些 数学问题、优化算法和工 程计算中有应用。
双曲反正切函数
定义
关于反比例函数的 ppt课件

反比例函数的图像和性质ppt课件

反比例函数的图像和性质ppt课件
增大而增大.
探究新知
k
一般地,反比例函数 y 的图象是双曲线,它具有以下性质:
x
(1)当k>0时,图象的两个分支分别在第一、三象限内,在
每一象限内,y的值随x值的增大而减小;
(2)当k<0时,图象的两个分支分别在第二、四象限内,在
每一象限内,y的值随x值的增大而增大.
k 的正负决定反比例函数所在的象限和增减性
大而减小.
探究新知
k
当k=-2,-4,-6时,反比例函数 y
的图象(如图),它们有哪
x
些共同特征?
y
6
2
y=
x
6
4
y=
4
x
2
–6
–4
–2 O
–2
y
y
y=
4
6
x
2
4
6
–6
–4
–2 O
–2
4
2
2
ቤተ መጻሕፍቲ ባይዱ
x
6
x
2
4
6
–6
–4
–2 O
–2
–4
–4
–4
–6
–6
–6
追问(1):函数图象分别位于哪几个象限内?
函数的图象都位于二、四象限.
随堂练习
1.(1)已知点(-6,y1), (-4,y2)在反比例函数 =
试比较 y1, y2的大小
(2)已知点(6,y3), (4,y4)在反比例函数 =
比较 y3, y4的大小
函数 =
−6
的图像上,试

y
(3)已知点(-4,y5), (6,y6)在反比例
−6
的图像上,试比较

《反比例函数》PPT课件 (共19张PPT)

《反比例函数》PPT课件 (共19张PPT)

问题1:若每天背10个单词,那么所掌握的 单词总y(个)与时间x(天)之间的 关系函数式为 。
问题2:小明原来掌握了150个单词,以后每 天背10个单词,那么他所掌握单词总 量y(个)与时间x(天)之间的关系式为
问题3: 九年级英语全册约有单词1200个,小 明同学计划用x(天)全部掌握,那么平 均每天需要记忆的单词量y(个)与时 间x(天)之间的关系式为 。 问题4: 一个面积为6400㎡的长方形,那么花坛
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m2-2=-1
m+1≠0
{m=±1

m≠-1
17.1.2 反比例函数的 图象和性质
1、什么是反比例函数?
一般地,形如 y k 的函数(k是常数,k≠0) 叫做反比例函数.
x
2、反比例函数的定义中还需要注意什么?
◆自变量x的次数为 -1 ◆自变量x的取值范围 x≠0 ◆若函数y=(m-2)xm2-5是反比例函数,则m= -2,
如图xB< xA 但yB< yA
y
6
6
5
y x
4
· 3
A
y
· C 6
6
5
y
x
4
3
2
2
xB
1
x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
A
· -2
B
-3
-4 -5
1
-6 -5 -4 -3 -2 -1 0 1 2
函数关系式
v
1463
,
y
1000
,
st1.16486310,
4
y
1000
t
x
vn
x
v 1463 , y 1000 , s 1.68 104
t
x
n
具有什么共同特征?
具有
的形
式,其中k≠0,k为常数
t 1463 y 1000
v
x
1.68 ×104
s= n
一般地,如果变量 y 和 x 之间函数
2.
1. 在下列函数中,y是x的反比例函数的是( C )
(A)y
=
8
X+5
(B)y =
3 x
+7
(C)xy = 5
(D)y =
2 x2
2.已知函数 y = xm -7 是正比例函数,则 m=_8__ ;
已知函数 y = 3xm -7 是反比例函数,则 m = _6__ 。
关系式xy+4=0中y是x的反比例函数吗?若是, 比例系数k等于多少?若不是,请说明理由。
y 12
x

y 12 3 x
4
情寄“待定系数法求函数的解析式
1
2
-4
(1).写出这个反比例函数的表达式; 解:∵ y是x的反比例函数, y k .
x
得k 2. y 2 .
x
(2).根据函数表达式完成上表.
当m=1 时,关于x的函数 y=(m+1)xm2-2是反比例函数?
{ 分析:
y
1、列表: 2、描点: 3、连线:
6
◆请你另外取一个正整数k的值,
· 作出其反比例函数图象
5 4 3
y= 2 x
2
· ◆通过对k取不同的正值,作出了 · · 反比例函数的图象,你发现了反比
1O·
· 例函数的图象是什么?分别在哪个 -4 -3 -2 -1-10 1 2 3 4
x
· 象限内? · [注意哟]:图象不会与x轴、y轴相交
x
1O·
-4 -3 -2 -1 -01 1 2
-2
-2
-3
-3
-4
-4
-5
y k 的 图 象 关 于 原 点 对 称 -5
-6
x
-6
y 3 x
34 x
y k 、y k 的图象关于坐标轴对称
x
x
观察y 6 和y 6 的图象
x
x
发现函数值y怎样随着自变量x的变化而变化?
1、在每一个象限内 2、在整个自变量的取值范围内
y
6
5
6
4
y
3
x
2
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2 -3
-4 -5
-6
怎样画出当k 0时y k 的图象?如k 2、 3
①列表、描点、连线 ②对称性 x
y
y
6
6
5
y2 x
4 3
2
y 2 x
5
y3 x
4 3 2
1O·
-4 -3 -2 -1 -01 1 2 3 4
3、请回忆:正比例函数的图象和性质
解析式
y=kx (k≠0)
图象名称
直 线 (过原点)
K>0
图象位于:一、三象限 增减性:y随x的增大而增大
性质
图象位于:二、四象限 K<0 增减性: y随x的增大而减小
◆反比例函数 y 2 的图象
x
x … -4 -2 -1 -0.5 0.5 1 2 4 …
y … -0.5 -1 -2 -4 4 2 1 0.5 …
x
-2
y 4 x
-3 -4 -5
-6
再认真观察 y 6 的图象 x
x … -6 -5 -4 -3 -2 -1 1 2
y
=
6 x

-1 -1.2 -1.5 -2 -3
-6
63
34 5 6… 2 1.5 1.2 1 …
◆图象由两条曲线组 成,叫做双曲线,
◆只要k取正值,图 象都位于第一、三象 限内
◆K的值还可以取 其他一些什么值? 说说看
y = 3x-1
y = 2x
y
=
3 2x
反比例函数
y = 3x
y=
1 x
y
=
1 3x
5yy5y50.y40.y40y.4xyxxyxxy2x.y2 2. x x xx x x2 2 2
33xyxy77yy
5 xx22
yy1515xx
一次函数
y
6x
y3xy5 y7y
x
0.45 xx2
yy
1xxxy 52
xy+4=0可以改写成y 4
x
所以y是x的反比例函数
比例系数k等于-4
已知y是x的反比例函数,当x=2时,y=6.
(1)写出y与x的函数关系式:
(2)求当x=4时y的值.
1解:设y k 因为当 x=2 时y=6,所以有
x
k 12 6 k 2
∵y与x的函数关系式为
y 12
⑵ 把 x=4 代入
关系可以表示成y k(k是常数,且k≠ 0)
x
的形式,则称 y 是 x 的反比例函数.
反比例函数中自变量 x的取值范围是什么?
等价形式:(k ≠0)

y k y=kx-1
xy=k
x
y与x成反比例
记住这三 种形式
知道
例1 下列关系式中的y是x的反比例函数 吗?如果是,比例系数k是多少?
((((((((((((((((((((((1115342153153424253534242)))))))))))))))))))y))))))yyyxyyyyxyyyxyyyyyxyyyyxyyyyy14x2x14x1142xx2x11124x142x1x22xx12x11x1xx2x21x1xxx
-2
-3 -4
图象会和坐标 轴相交吗?
-5
·-6
下面是k取1、2、3、4的反比例函数图像
◆图象不是直线,是两支曲线,分别在一、三象限内
y
6 5 4
y 2 x
3
2
1O·
-4 -3 -2 -1 -01 1 2 3 4
x
-2
-3
-4
-5
-6
y
6
5 4
y 3 x
3
2
1O·
-4 -3 -2 -1 -01 1 2 3 4
y是x的反比例函数,比例系数k=4。
可 反以比改例写函数成,y 比(例12)系所(1x数)以ky=是 x1的
2
不具备 y k的形式,所以y不是x的反比
例函数。 x
可以改写成
y
1
,x所以y是x的反比例
函数,比例系数k=1。
不具备 y k的形式,所以y不是x的反比例
函数。
x
下列函数中哪些是反比例函数?哪些是一次函数?
相关文档
最新文档