2020最新人教版九年级数学下册全册测试卷(含答案)

合集下载

最新人教版九年级数学单元测试题全册含答案

最新人教版九年级数学单元测试题全册含答案

最新人教版九年级数学单元测试题全册含
答案
本文档包含了最新人教版九年级数学单元测试题全册以及相关的答案。

这些测试题可以帮助学生复和巩固数学知识,并检验他们在各个单元中的研究情况。

本文档的目的是为教师和学生提供一个方便的资源,以便他们能够更好地准备和应对数学单元测试。

通过解答这些测试题,学生可以了解自己对各个知识点的掌握程度,并及时进行补充研究。

测试题的答案部分会帮助学生核对自己的答案,并了解正确的解题方法。

这有助于他们纠正错误、提高解题能力,并在考试中取得更好的成绩。

本文档中的测试题均按照最新的人教版九年级数学教材编写,并尽量简洁明了。

题目类型多样,涵盖了各个数学知识点,包括代数、几何、概率等。

每个单元的测试题都相对独立,可根据需要选择和使用。

请注意,本文档中的内容均经过审核,并按照最新的教学要求编写。

然而,由于教材更新和不同教育机构之间的差异,建议在使用前先与教师核对,以确保测试题的适用性。

希望这份文档能对教师和学生在九年级数学研究中有所帮助。

祝大家学业进步,取得优异成绩!
*注意:本文档中的测试题和答案仅供参考,请勿用于非法用途。

作者和提供者不承担任何因使用本文档而产生的法律责任。

*。

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。

人教版九年级下册数学各单元测试卷及答案(全套)

人教版九年级下册数学各单元测试卷及答案(全套)

第二十六章综合测试一、选择题(30分) 1.已知反比例函数ky x=的图象经过点2,3(),那么下列四个点中,也在这个函数图象上的是( ) A .()6,1-B .()1,6C .()2,3-D .()3,2-2.已知矩形的面积为220 cm ,设该矩形的一边长为 cm y ,另一边的长为 cm x ,则y 与x 之间的函数图象大致是( )ABCD3.已知点(),P a m ,(),Q b n 都在反比例函数2y x=-的图象上,且0a b <<,则下列结论一定正确的是( ) A .0m n +<B .0m n +>C .m n <D .m n >4.如图,ABC △的三个顶点分别为(1,2)A ,(4,2)B ,(4,4)C .若反比例函数ky x=在第一象限内的图象与ABC △有交点,则k 的取值范围是( )A .14k ≤≤B .48k ≤≤C .216k ≤≤D .816k ≤≤5.在同一平面直角坐标系中,若正比例函数1y k x =的图象与反比例函数2k y x=的图象没有公共点,则( ) A .120k k +<B .120k k +>C .120k k <D .120k k >6.如果点()12,A y -,()21,B y -,()32,C y 都在反比例函数(0)ky k x=>的图象上,那么1y ,2y ,3y 的大小关系是( ) A .132y y y <<B .213y y y <<C .123y y y <<D .321y y y <<7.反比例函数3(0)y x x=-<的图象如图所示,则矩形OAPB 的面积是( ) A .3B .3-C .32D .32-8.如图,在同一平面直角坐标系中,一次函数1y kx b =+(k ,b 是常数,且0k ≠)与反比例函数2cy x=(c 是常数,且0c ≠)的图象相交于(3,2)A --,(2,3)B 两点,则不等式12y y >的解集是( ) A .32x -<<B .3x -<或2x >C .30x -<<或2x >D .02x <<9.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于点A 和点B .若点C 是x 轴上任意一点,连接AC ,BC ,则ABC △的面积为( ) A .3B .4C .5D .610.如图,点A ,B 在反比例函数()10y x x =>的图象上,点C ,D 在反比例函数()0ky k x=>的图象上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为1,2,OAC △与ABD △的面积之和为32,则k 的值为( ) A .4 B .3 C .2 D .32二、填空题(24分)11.在ABC △的三个顶点(2,3)A -,(4,5)B --,(3,2)C -中,可能在反比例函数(0)ky k x=>的图象上的点是_________.12.若一个反比例函数的图象经过点(,)A m m 和(2,1)B m -,则这个反比例函数的解析式为_________. 13.如图,已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点A ,过A 点作AB x ⊥轴,垂足为B ,若AOB △的面积为1,则k =_________.14.已知一次函数y ax b =+与反比例函数ky x=的图象相交于(4,2)A ,(2,)B m -两点,则一次函数的解析式为_________.15.若点(,2)A m -在反比例函数4y x=的图象上,则当函数值2y -≥时,自变量x 的取值范围是_______.16.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知OAB △的面积为2.则12k k -=_______. 17.如图,反比例函数ky x=的图象经过ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD 的面积为6,则k =_______.18.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN △的面积为10.若动点P 在x 轴上,则PM PN +的最小值是_______.三、解答题(8+8+10+10+10=46分)19.如图,在平面直角坐标系中有三点(1,2),(3,1),(2,1)--,其中有两点同时在反比例函数ky x=的图象上,将这两点分别记为A ,B ,另一点记为C . (1)求出k 的值.(2)求直线AB 对应的一次函数的解析式.(3)设点C 关于直线AB 的对称点为O ,P 是x 轴上的一个动点,直接写出PC PD +的最小值(不必说明理由).20.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点。

2020年新版人教版九年级数学下册期末试卷及答案【推荐】

2020年新版人教版九年级数学下册期末试卷及答案【推荐】

九年级数学下册期末测试卷(B卷)(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知513ba=,则a ba b-+的值是()A.23B.32C.94D.492.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A. B. C. D.3.如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且12AEEB=,若△AEF的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.184.在Rt△ABC中,∠C=90°,若sinA=35,则cosB的值是()A.45B.35C.34D.435.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=32,则t的值是()A .1B .1.5C .2D .3 6.反比例函数y=-x3的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( )A. x 1>x 2B. x 1=x 2C. x 1<x 2D. 不确定7.已知长方形的面积为20cm 2,设该长方形一边长为ycm ,另一边的长为xcm ,则y 与x 之间的函数图象大致是( )8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为( )。

A .5. 3米 B. 4.8米 C. 4.0米 D.2.7米9.如图,在矩形ABCD 中,E 、F 分别是DC 、BC 边上的点,且∠AEF=90°则下列结论正确的是( )。

A 、△ABF ∽△AEFB 、△ABF ∽△CEFC 、△CEF ∽△DAED 、△DAE ∽△BAF10.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ).A .1组B .2组C .3组D .4组二、填空题(每小题3分,共30分)11.若与成反比例,且图象经过点,则________.(用含的代数式表示)12.在Rt△ABC中,∠C=90°,AB=5,BC=3,则sin A= .13.如图,点在的边上,请你添加一个条件,使得∽,这个条件可以是______________.14.若,则=________.15.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y (元)与人数x(人)之间的函数关系式.16.已知四条线段a=0.5 m,b=25 cm,c=0.2 m,d=10 cm,则这四条线段________成比例线段.(填“是”或“不是”)17.如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A到控制点B的距离约为_________________。

人教版数学九年级下册第26章、第27章测试题及答案解析(各一套)

人教版数学九年级下册第26章、第27章测试题及答案解析(各一套)

人教版数学九年级下册第26章测试题一.选择题1. y=(m2﹣m)是反比例函数,则()A.m≠0 B.m≠0且m≠1 C.m=2 D.m=1或22.下面四个关系式中,y是x的反比例函数的是()A.y=B.yx=﹣C.y=5x+6 D.=3.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A. B.C. D.4.如图,边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴,BC∥y 轴,反比例函数y=与y=﹣的图象均与正方形ABCD的边相交,则图中阴影部分的面积之和是()A.2 B.4 C.6 D.85.反比例函数是y=的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限6.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.67.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则0>y>﹣28.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小9.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定10.如图,已知点P是双曲线y=(k≠0)上一点,过点P作PA⊥x轴于点A,且S△PAO=2,则该双曲线的解析式为()A.y=﹣B.y=﹣C.y=D.y=11.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>212.某工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y天,则y与x之间的函数表达式为()A.y=100x B.y=C.y=+100 D.y=100﹣x二.填空题13.已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式.14.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为.15.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b= (用含m的代数式表示);(2)若S△OAF +S四边形EFBC=4,则m的值是.16.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是.三.解答题17. 画出的图象.18.证明:任意一个反比例函数图象y=关于y=±x轴对称.19.如图,已知等边△ABO在平面直角坐标系中,点A(4,0),函数y=(x>0,k为常数)的图象经过AB的中点D,交OB于E.(1)求k的值;(2)若第一象限的双曲线y=与△BDE没有交点,请直接写出m的取值范围.20.平面直角坐标系中,点A在函数y1=(x>0)的图象上,y1的图象关于y 轴对称的图象的函数解析式为y2=,B在y2的图象上,设A的横坐标为a,B 的横坐标为b:(1)当AB∥x轴时,求△OAB的面积;(2)当△OAB是以AB为底边的等腰三角形,且AB与x轴不平行时,求ab的值.21.如图,在平面直径坐标系中,反比例函数y=(x>0)的图象上有一点A (m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为(用含m的式子表示);(2)求反比例函数的解析式.22.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的 1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?答案解析一.选择题1.函数y=(m2﹣m)是反比例函数,则()A.m≠0 B.m≠0且m≠1 C.m=2 D.m=1或2【考点】反比例函数.【分析】依据反比例函数的定义求解即可.【解答】解:由题意知:m2﹣3m+1=﹣1,整理得m2﹣3m+2=0,解得m1=1,m2=2.当m=l 时,m2﹣m=0,不合题意,应舍去.∴m的值为2.故选C.【点评】本题主要考查的是反比例函数的定义,依据反比例函数的定义列出关于m的方程是解题的关键.需要注意系数k≠0.2.下面四个关系式中,y是x的反比例函数的是()A.y=B.yx=﹣C.y=5x+6 D.=【考点】反比例函数.【分析】直接利用反比例函数的定义分析得出答案.【解答】解:A、y=,是y与x2成反比例函数关系,故此选项错误;B、yx=﹣,y是x的反比例函数,故此选项正确;C、y=5x+6是一次函数关系,故此选项错误;D、=,不符合反比例函数关系,故此选项错误.故选:B.【点评】此题主要考查了反比例函数的定义,正确把握相关定义是解题关键.3.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.【考点】反比例函数的图象特点.【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.4.如图,边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴,BC∥y 轴,反比例函数y=与y=﹣的图象均与正方形ABCD的边相交,则图中阴影部分的面积之和是()A.2 B.4 C.6 D.8【考点】反比例函数图象特点.【分析】根据反比例函数的对称性可得阴影部分的面积等于长是8,宽是2的长方形的面积,据此即可求解.【解答】解:阴影部分的面积是4×2=8.故选D.【点评】本题考查了反比例函数的图象的对称性,理解阴影部分的面积等于长是8,宽是2的长方形的面积是关键.5.反比例函数是y=的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【考点】反比例函数的性质.【分析】直接根据反比例函数的性质进行解答即可.【解答】解:∵反比例函数是y=中,k=2>0,∴此函数图象的两个分支分别位于一、三象限.故选B.【点评】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小是解答此题的关键.6.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.6【考点】反比例函数的性质.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y==6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.【点评】本题考查了反比例函数的性质,解题的关键是找出反比例函数y=在1<x<3中y的取值范围.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.7.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则0>y>﹣2【考点】反比例函数的性质.【分析】根据反比例函数的性质:当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行分析即可.【解答】解:A、图象必经过点(﹣1,2),说法正确,不合题意;B、k=﹣2<0,每个象限内,y随x的增大而增大,说法错误,符合题意;C、k=﹣2<0,图象在第二、四象限内,说法正确,不合题意;D、若x>1,则﹣2<y<0,说法正确,不符合题意;故选:B.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x 的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x 的增大而增大.注意:反比例函数的图象与坐标轴没有交点.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,则S=AC•CQ=(m﹣1)n=mn﹣n.四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).=AC•CQ=4﹣n,∴S四边形ACQE∵当m>1时,n随m的增大而减小,=4﹣n随m的增大而增大.∴S四边形ACQE故选B.【点评】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.9.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数的性质.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.10.如图,已知点P是双曲线y=(k≠0)上一点,过点P作PA⊥x轴于点A,且S△PAO=2,则该双曲线的解析式为()A.y=﹣B.y=﹣C.y=D.y=【考点】确定反比例函数表达式;反比例函数系数k的几何意义.【分析】先判断出k的符号,再由反比例函数系数k的几何意义即可得出结论.【解答】解:∵反比例函数的图象在二四象限,∴k<0.=2,∵PA⊥x轴于点A,且S△PAO∴k=﹣4,∴反比例函数的解析式为y=﹣.故选A.【点评】本题考查的是用待定系数法求反比例函数的解析式,熟知反比例函数系数k的几何意义是解答此题的关键.11.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【考点】反比例函数与一次函数的综合应用.【分析】由正、反比例函数的对称性结合点B的横坐标,即可得出点A的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论.【解答】解:∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.故选B.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数的性质以及正比例函数的性质,解题的关键是求出点A的横坐标.本题属于基础题,难度不大,根据正、反比例的对称性求出点A的横坐标,再根据两函数的上下位置关系结合交点坐标即可求出不等式的解集.12.某工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y天,则y与x之间的函数表达式为()A.y=100x B.y=C.y=+100 D.y=100﹣x【考点】反比例函数在实际问题中的应用.【分析】利用工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y 天,即xy=100,即可得出答案.【解答】解:根据题意可得:y=.故选:B.【点评】此题主要考查了根据实际问题列反比例函数解析式,正确运用xy=100得出是解题关键.二.填空题13.已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式y=﹣.【考点】反比例函数的性质.【专题】开放型.【分析】由反比例函数的图象在每一个象限内y随x的增大而增大,结合反比例函数的性质即可得出k<0,随便写出一个小于0的k值即可得出结论.【解答】解:∵反比例函数y=的图象在每一个象限内y随x的增大而增大,∴k<0.故答案为:y=﹣.【点评】本题考查了反比例函数的性质,解题的关键是找出k<0.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质得出k的取值范围是关键.14.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为﹣8.【考点】反比例函数图象的特点.【专题】数形结合.【分析】根据∠AOB=90°,先过点A作AC⊥x轴,过点B作BD⊥x轴,构造相似三角形,再利用相似三角形的对应边成比例,列出比例式进行计算,求得点B的坐标,进而得出k的值.【解答】解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴,∵点A的坐标为(2,1),∴AC=1,OC=2,∴AO==,∴,即BD=4,DO=2,∴B(﹣2,4),∵反比例函数y=的图象经过点B,∴k的值为﹣2×4=﹣8.故答案为:﹣8【点评】本题主要考查了反比例函数图象上点的坐标特征以及相似三角形,注意:反比例函数图象上的点(x ,y )的横、纵坐标的积是定值k ,即xy=k ,这是解决问题的关键.15.如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的图象交于A ,B 两点,与x 轴、y 轴分别交于C ,D 两点,连结OA ,OB ,过A 作AE ⊥x 轴于点E ,交OB 于点F ,设点A 的横坐标为m .(1)b= m + (用含m 的代数式表示);(2)若S △OAF +S 四边形EFBC =4,则m 的值是 .【考点】反比例函数与一次函数的综合应用.【分析】(1)根据待定系数法点A 的纵坐标相等列出等式即可解决问题.(2)作AM ⊥OD 于M ,BN ⊥OC 于N .记△AOF 面积为S ,则△OEF 面积为2﹣S ,四边形EFBC 面积为4﹣S ,△OBC 和△OAD 面积都是6﹣2S ,△ADM 面积为4﹣2S=2(2﹣s ),所以S △ADM =2S △OEF ,推出EF=AM=NB ,得B (2m ,)代入直线解析式即可解决问题.【解答】解:(1)∵点A 在反比例函数y=(x >0)的图象上,且点A 的横坐标为m ,∴点A 的纵坐标为,即点A 的坐标为(m ,).令一次函数y=﹣x +b 中x=m ,则y=﹣m +b ,∴﹣m +b=即b=m +.故答案为:m +.(2)作AM ⊥OD 于M ,BN ⊥OC 于N .∵反比例函数y=,一次函数y=﹣x +b 都是关于直线y=x 对称,∴AD=BC ,OD=OC ,DM=AM=BN=CN ,记△AOF 面积为S ,则△OEF 面积为2﹣S ,四边形EFBC 面积为4﹣S ,△OBC 和△OAD 面积都是6﹣2S ,△ADM 面积为4﹣2S=2(2﹣s ),∴S △ADM =2S △OEF ,由对称性可知AD=BC ,OD=OC ,∠ODC=∠OCD=45°,△AOM ≌△BON , ∴AM=NB=DM=NC ,∴EF=AM=NB ,∴点B 坐标(2m ,)代入直线y=﹣x +m +, ∴=﹣2m=m +,整理得到m 2=2,∵m >0,∴m=. 故答案为.【点评】本题考查反比例函数与一次函数图象的交点、对称等知识,解题的关键是利用对称性得到很多相等的线段,学会设参数解决问题,属于中考填空题中的压轴题.16.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是R≥3.6.【考点】反比例函数在物理学中的应用.【分析】根据图象中的点的坐标先求反比例函数关系式,再由电流不能超过10A列不等式,求出结论,并结合图象.【解答】解:设反比例函数关系式为:I=,把(9,4)代入得:k=4×9=36,∴反比例函数关系式为:I=,当I≤10时,则≤10,R≥3.6,故答案为:R≥3.6.【点评】本题是反比例函数的应用,会利用待定系数法求反比例函数的关系式,并正确认识图象,运用数形结合的思想,与不等式或等式相结合,解决实际问题.三.解答题17.画出的图象.【考点】反比例函数图象的画法.【分析】从正数,负数中各选几个值作为x的值,进而得到y的值,描点,连线即可.【解答】解:列表得:x﹣4﹣2﹣11 24y0.512﹣2﹣1﹣0.5描点,连线得:【点评】本题主要考查反比例函数图象;注意自变量的取值为不为0的任意实数,反比例函数的图象为双曲线.18.证明:任意一个反比例函数图象y=关于y=±x轴对称.【考点】反比例函数图象的特点.【专题】证明题.【分析】利用反比例函数图象上任意一点关于y=±x轴对称点还在反比例函数y=图象上进行证明.【解答】证明:设P(a,b)为反比例函数图象y=上任意一点,则ab=k,点P关于直线y=x的对称点为(b,a),由于b•a=ab=k,所以点(b,a)在反比例函数y=的图象上,即反比例函数图象y=关于y=x轴对称;点P关于直线y=﹣x的对称点为(﹣b,﹣a),由于﹣b•(﹣a)=ab=k,所以点(﹣b,﹣a)在反比例函数y=的图象上,即反比例函数图象y=关于y=﹣x 轴对称,即任意一个反比例函数图象y=关于y=±x轴对称.【点评】本题考查了反比例函数图象的对称性:反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=﹣x;②一、三象限的角平分线y=x;对称中心是坐标原点.19.如图,已知等边△ABO在平面直角坐标系中,点A(4,0),函数y=(x>0,k为常数)的图象经过AB的中点D,交OB于E.(1)求k的值;(2)若第一象限的双曲线y=与△BDE没有交点,请直接写出m的取值范围.【考点】反比例函数的性质.【分析】(1)过点B作BM⊥OA于点M,由等边三角形的性质结合点A的坐标找出点B的坐标,再利用中点坐标公式即可求出点D的坐标,最后利用待定系数法即可得出结论;(2)设过点B的反比例函数的解析式为y=,由点B的坐标利用待定系数法求出n的值,根据反比例函数的性质即可得出m的取值范围.【解答】解:(1)过点B作BM⊥OA于点M,如图所示.∵点A(4,0),∴OA=4,又∵△ABO为等边三角形,∴OM=OA=2,BM=OA=6.∴点B的坐标为(2,6).∵点D为线段AB的中点,∴点D的坐标为(,)=(3,3).∵点D为函数y=(x>0,k为常数)的图象上一点,∴有3=,解得:k=9.(2)设过点B的反比例函数的解析式为y=,∵点B的坐标为(2,6),∴有6=,解得:n=12.若要第一象限的双曲线y=与△BDE没有交点,只需m<k或m>n即可,∴m<9或m>12.答:若第一象限的双曲线y=与△BDE没有交点,m的取值范围为m<9或m>12.【点评】本题考查了反比例函数的性质、中点坐标公式、等边三角形的性质以及待定系数法求反比例函数的解析式,解题的关键是:(1)求出点D的坐标;(2)求出过点B的反比例函数的系数.本题属于基础题,难度不大,解决该题型题目时,利用等边三角形的性质结合中点坐标公式求出反比例函数图象上一点的坐标,再利用待定系数法求出反比例函数的系数即可.20.平面直角坐标系中,点A在函数y1=(x>0)的图象上,y1的图象关于y 轴对称的图象的函数解析式为y2=,B在y2的图象上,设A的横坐标为a,B 的横坐标为b:(1)当AB∥x轴时,求△OAB的面积;(2)当△OAB是以AB为底边的等腰三角形,且AB与x轴不平行时,求ab的值.【考点】反比例函数系数k的几何意义.【分析】(1)AB交y轴于C,由于AB∥x轴,根据题意知道两个函数图象关于y轴对称,则点A、B关于y轴对称,由此求得可以得到a=﹣b,则易求点O到直线AB的距离,所以根据三角形的面积公式进行解答即可;(2)根据函数图象上点的坐标特征得A、B坐标分别为:(a,),(b,﹣),根据两点间的距离公式得到OA2=a2+()2,OB2=b2+(﹣)2,则利用等腰三角形的两腰相等的性质易得a2+()2=b2+(﹣)2,即(a2﹣b2)(1﹣)=0.由此可以求得ab的值.【解答】解:(1)如图1,设A(a,),B(b,﹣),当AB∥x轴时,=﹣,∴a=﹣b,∴S=×(a﹣b)×=×2a×=2;△OAB(2)如图2,设A(a,),B(b,﹣),∵△OAB是以AB为底边的等腰三角形,OA=OB,由OA2=a2+()2,OB2=b2+(﹣)2,∴a2+()2=b2+(﹣)2,整理得:( a2﹣b2)(1﹣)=0.∵AB与x轴不平行,∴|a|≠|b|,∴1﹣=0,∴ab=±2.∵a>0,b<0,∴ab<0.∴ab=﹣2.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、图形与坐标的性质,三角形的面积公式.注意:根据两个反比例函数的解析式可以得到这两个函数图象关于y轴对称,可以省去不少的计算过程.21.如图,在平面直径坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为m+2(用含m的式子表示);(2)求反比例函数的解析式.【考点】确定反比例函数表达式.【分析】(1)由点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,可求得点C的坐标,又由过点C作y轴的平行线交反比例函数的图象于点D,CD=,即可表示出点D的横坐标;(2)由点D的坐标为:(m+2,),点A(m,4),即可得方程4m=(m+2),继而求得答案.【解答】解:(1)∵A(m,4),AB⊥x轴于点B,∴B的坐标为(m,0),∵将点B向右平移2个单位长度得到点C,∴点C的坐标为:(m+2,0),∵CD∥y轴,∴点D的横坐标为:m+2;故答案为:m+2;(2)∵CD∥y轴,CD=,∴点D的坐标为:(m+2,),∵A,D在反比例函数y=(x>0)的图象上,∴4m=(m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y=.【点评】此题考查了待定系数法求反比例函数的解析式以及平移的性质.注意准确表示出点D的坐标是关键.22.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的 1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?【考点】反比例函数在实际问题中的应用.【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y=,把(3,4)代入求出m的值即可;(2)令y==1,得出x=12<15,即可得出结论.【解答】解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L.【点评】本题考查了扬州市的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.人教版数学九年级下册第27章测试题一、选择题1.已知xy=mn,则把它改写成比例式后,错误的是()A.=B.=C.=D.=2.已知,那么的值是()A.3 B.4 C.5 D.63.下列两个图形一定相似的是()A.两个矩形B.两个等腰三角形C.两个五边形D.两个正方形4.如果两个相似多边形面积的比是4:9,那么这两个相似多边形对应边的比是()A.4:9 B.2:3 C.16:81 D.9:45.如图,四边形ABCD是平行四边形,E是BC的延长线上一点,AE与CD相交于F,与△CEF相似的三角形有()个.A.1 B.2 C.3 D.46.如图,D为△ABC边BC上一点,要使△ABD∽△CBA,应该具备下列条件中的()A.=B.=C.=D.=7.如图,在△ABC中,若DE∥BC,,DE=3cm,则BC的长为()A.3cm B.6cm C.9cm D.12cm8.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C. D.9.如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD放大为原来的2倍后得到线段AB,则端点B的坐标为()A.(6,6)B.(6,8)C.(8,6)D.(8,2)10.关于对位似图形的表述,下列命题正确的有()①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意一组对应点P,P′与位似中心O的距离满足OP=k•OP′.A.①②③④B.②③④C.②③D.②④11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A.B.C.D.二、填空题12.如图,△OAC和△BAD都是等腰直角三角形,反比例函数在第四象限经过点B,若OA2﹣AB2=8,则k的值为.13.已知线段AB=1,C是线段AB的黄金分割点,且AC<CB,则AC的长度为.14.)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=.15.一块矩形绸布的宽AB=a m,长AD=1m,按照图中所示的方式将它裁成相同的n面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即,那么a的值应当是.16.如图,小亮在晚上由路灯A走向路灯B,当他走到点C时,发现身后他影子的顶部刚好接触到路灯A的底部,当他向前再步行12m到达点D时,发现身前他影子的顶部刚好接触到路灯B的底部.已知小亮的身高是1.5m,两个路灯的高度都是9m.当小亮走到路灯B时,他在路灯A下的影长是m.三、解答题17.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.(1)证明:△ACD∽△CBD;(2)已知AD=2,BD=4,求CD的长.18.如图,AD是△ABC的高,点E,F在边BC上,点H在边AB上,点G在边AC上,AD=80cm,BC=120cm.(1)若四边形EFGH是正方形,求正方形的面积.(2)若四边形EFGH是长方形,长方形的面积为y,设EF=x,则y= .(含x 的代数式),当x=时,y最大,最大面积是.19.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=6,AB=7,BC=8,点P是AB上一个动点.(1)当AP=3时,△DAP与△CBP相似吗?请说明理由.(2)求PD+PC的最小值.20.如图,在Rt△ABC中,∠ABC=90°,点D为BC边上的点,BE⊥AD于点E,延长BE交AC于点F.(1)证明:BE2=AE•DE;(2)若=1,=;并说明理由.答案解析一、选择题1.已知xy=mn,则把它改写成比例式后,错误的是()A .=B .=C .=D .=【考点】比例的性质.【分析】熟练掌握比例的性质是解题的关键.【解答】解:A、两边同时乘以最简公分母ny得xy=mn,与原式相等;B、两边同时乘以最简公分母mx得xy=mn,与原式相等;C、两边同时乘以最简公分母mn得xn=my,与原式不相等;D、两边同时乘以最简公分母my得xy=mn,与原式相等;故选C.【点评】解答此题应把每一个选项乘以最简公分母后与原式相比较看是否相同.2.已知,那么的值是()A.3 B.4 C.5 D.6【考点】比例的性质.【分析】根据和比性质:=⇒=,可得答案.【解答】解:由=2,得==3.故选:A.【点评】本题考查了比例的性质,利用和比性质是解题关键.3.下列两个图形一定相似的是()A.两个矩形B.两个等腰三角形。

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。

7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。

8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。

9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。

10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。

三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。

12. 已知函数y = 2x 3,求当x = 1时,函数的值。

13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。

四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。

五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。

2020春人教版数学九年级下册期末复习综合测试及答案

2020春人教版数学九年级下册期末复习综合测试及答案

期末复习综合测试(时间:120分钟 满分:120分)班级: 姓名: 得分:一、选择题(共8小题,每小题4分,满分32分)1.如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是( )ABCD2.在△ABC 中,∠C=90°,tan A=13,那么sin A 的值是( ) A.12B.√1010C.√33D.√323.关于反比例函数y=2的图象,下列说法正确的是( ) A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x 轴成轴对称D.当x<0时,y 随x 的增大而减小4.已知将等腰Rt △ABC 绕点A 逆时针旋转15°得到△AB ′C ′,若AC=1,则图中阴影部分面积为( ) A.√3B.3√3C.√33 D.√36第4题图 第5题图5.在△ABC 中,AD 是高,E 是AD 的中点,连接CE,并延长交AB 于点P,过点A 作AQ ∥BC,交CP 的延长线于点Q,BD∶CD=1∶2.那么AP 等于( ) A.53 B.43 C.32 D.236.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为(-4,0),顶点B 在第二象限,∠BAO=60°,BC 交y 轴于点D,DB∶DC=3∶1.若函数y=kx (k>0,x>0)的图象经过点C,则k 的值为( )A.√33 B.√32 C.2√33D.√37.如图,△ABC 中,D 、E 是BC 边上的点,BD∶DE∶EC=3∶2∶1,M 在AC 边上,CM∶MA=1∶2,BM 交AD,AE 于H,G,则BH∶HG∶GM 等于( ) A.3∶2∶1 B.5∶3∶1 C.25∶12∶5 D.51∶24∶10第7题图 第8题图8.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC,垂足为点F,分析下列三个结论:①△AEF ∽△CAB;②CF=2AF;③tan∠CAD=√2.正确的有( ) A.3个 B.2个 C.1个 D.0个二、填空题(共6小题,每小题3分,满分18分)9.计算:2cos 30°+tan 45°-tan 60°+(√2-1)0= .10.如图所示,第四象限的角平分线OM 与某反比例函数的图象交于点A,已知OA=3√2,则该反比例函数的解析式为 .第10题图 第11题图11.如图,在△ABC 中,点D,E 分别在AB,AC 上,DE ∥BC,若S △ADE =2,S △CDE =3,则S △ADE ∶S △ABC = . 12.如图,已知直线y=x+m 与双曲线y=3x交于点P(1,n),与x 轴、y 轴交于B 、A 两点,则AB PB= .第12题图 第13题图13.一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为8√3,则 a 的值为 .14.如图,在A处看建筑物CD的顶端D的仰角为α,且tan α=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为米.三、解答题(共9小题,满分70分)15.(6分)如图,在锐角三角形ABC中,AB=10,AC=2√13,sin B=3.求tan C.16.(7分)如图,已知AP2=AQ·AB,且∠ABP=∠C,试证明△QPB∽△PBC.17.(7分)如图,直线y=mx+1(m≠0)与双曲线y=k(k≠0)交于A,B两点,与x轴,y轴交于点D,E,tan∠ADO=1,过x点A作AC⊥x轴于点C,若点O是CD的中点,连接OA.(1)求该双曲线的解析式.(2)求cos∠OAC的值.(k≠0)的图象交于点B(a,4).18.(6分)一次函数y=-2x-2与反比例函数y=kx(1)求反比例函数的解析式.(2)将一次函数y=-2x-2的图象向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),直线l与反比例函数y2=6x 的图象相交,求使y1<y2成立的x的取值范围.19.(7分)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B,C两点间的距离.(结果精确到0.1 m)(参考数据:√2≈1.414,√3≈1.732)20.(8分)如图,已知矩形ABCD的两条对角线相交于点O,过点A作AG⊥BD分别交BD,BC于点G,E.(1)求证:BE2=EG·EA.(2)连接CG,若BE=CE,求证:∠ECG=∠EAC.21.(8分)如图,小明和他的父亲晚饭后到广场去散步,休息时小明站在广场中路灯杆MZ的左侧点B处,小明的父亲站在灯杆MZ的右侧点F处,小明在路灯下的影子为线段BC,(1)作出路灯Q的位置及小明的父亲在路灯下的影子FG.(2)已知小明到路灯杆的距离为3米,影长为1米,小明的父亲到路灯杆的距离为4.3米.若小明的身高为1.5米,小明父亲身高为1.7米,则此时小明父亲的影长为多少米?22.(9分)如图,一艘船上午9时在A处望见灯塔E在北偏东60°方向上,此船沿正东方向以每小时30海里的速度航行,11时到达B处,在B处测得灯塔E在北偏东15°方向上.(1)求∠AEB的度数.(2)已知灯塔E周围40海里内有暗礁,问:此船继续向正东方向航行,有无触礁危险?(参考数据:√2≈1.414,√3≈1.732)的图象交于A(1,4),B(4,n)两点. 23.(12分)如图,一次函数y=kx+b与反比例函数y=mx(1)求反比例函数和一次函数的解析式.(2)直接写出当x>0时,kx+b<m x的解集.(3)点P 是x 轴上的一动点,试确定点P 并求出它的坐标,使PA+PB 最小.期末复习综合测试1.A2.B3.D4.D5.D6.D7.D8.B9.2 10.y=-9x11.4∶25 12.2313.2√3314.715.解:如图,过点A 作AD ⊥BC 于D, 在Rt △ABD 中,AB=10, sin B=AD AB =35,∴AD 10=35,∴AD=6.在Rt △ACD 中,由勾股定理得, CD 2=AC 2-AD 2=(2√13)2-62=16, ∴CD=4,∴tan C=AD CD =64=32. 16.证明:∵AP 2=AQ ·AB,∴AP AQ =ABAP.∵∠A=∠A,∴△APQ ∽△ABP. ∴∠APB=∠AQP.∴∠CPB=∠BQP. ∵∠ABP=∠C,∴△QPB ∽△PBC.17.解:(1)在y=mx+1中令x=0,解得y=1, 则E 的坐标是(0,1),则OE=1. ∵tan∠ADO=OEOD =1,∴OD=OE=1. ∵O 是CD 的中点,∴OC=OD=1,CD=2. ∵tan∠ADC=AC CD =1,∴AC=2,∴点A 的坐标是(1,2). 把(1,2)代入y=kx 得k=2,则双曲线的解析式是y=2x .(2)在Rt △AOC 中,OA=√AC 2+OC 2=√22+12=√5, 则cos ∠OAC=ACOA =√5=2√55.18.解:(1)∵一次函数y=-2x-2的图象过点B(a,4), ∴4=-2a-2,解得:a=-3, ∴点B 的坐标为(-3,4).将B 代入反比例函数y=kx 中,可得k=-12,∴反比例函数的解析式为y=-12x .(2)一次函数y=-2x-2的图象向上平移10个单位后得到直线l:y 1=-2x+8,联立直线l 和反比例函数解析式成方程组:{y =-2x +8y =6x,解得:{x 1=1y 1=6,{x 2=3y 2=2,∴直线l 与反比例函数y 2=6x 的图象的交点坐标为(1,6)和(3,2). 画出函数图象,如图所示:观察函数图象可知:当0<x<1或x>3时,反比例函数图象在直线l 的上方,∴使y 1<y 2成立的x 的取值范围为0<x<1或x>3.19.解:如图,过点D 作DF ⊥AB 于F,过点C 作CH ⊥DF 于H. 则DE=BF=CH=10 m, 在Rt △ADF 中, ∵AF=80-10=70(m), ∠ADF=45°, ∴DF=AF=70 m. 在Rt △CDE 中,∵DE=10 m,∠DCE=30°, ∴CE=DE tan30°=√33=10√3(m),∴BC=BE -CE=70-10√3≈70-17.32≈52.7(m), 答:障碍物B,C 两点间的距离约为52.7 m. 20.证明:(1)∵四边形ABCD 是矩形,∴∠ABC=90°. ∵AE⊥BD,∴∠ABC=∠BGE=90°. ∵∠BEG=∠AEB, ∴△ABE ∽△BGE. ∴AE BE =BEEG .∴BE 2=EG ·EA. (2)由(1)证得BE 2=EG ·EA, ∵BE=CE,∴CE 2=EG ·EA.∴CE EG =AECE.∵∠CEG=∠AEC, ∴△CEG ∽△AEC. ∴∠ECG=∠EAC.21.解:(1) 路灯Q 的位置及小明的父亲在路灯下的影子FG 如图所示. (2)如图,根据已知得出: AB ∥QZ ∥EF, ∴△ABC ∽△QZC,11△EFG ∽△QZG;∴CB CZ =AB QZ ,FG ZG =EF QZ . 由已知得,CB=1,BZ=3,ZF=4.3,AB=1.5,EF=1.7,设QZ=x,FG=y,则有{14=1.5x ,y y+4.3=1.7x ,解得,{x =6,y =1.7. 所以此时小明父亲的影长为1.7 m.22.解:(1)∠AEB=180°-30°-90°-15°=45°.(2)作BM ⊥AE,EH ⊥AB,垂足分别为M,H,∵AB=2×30=60,∠MAB=30°,∴BM=30,AM=AB·cos ∠MAB=60×cos 30°=30√3.∵∠MBE=90°-∠AEB=90°-45°=45°=∠AEB,∴EM=BM=30,∴AE=30√3+30,∴EH=12AE=15√3+15≈40.98>40,∴此船继续向正东方向航行,无触礁危险.23.解:(1)把A(1,4)代入y=m x ,得m=4,∴反比例函数的解析式为y=4x ; 把B(4,n)代入y=4x ,得n=1,∴B(4,1),把A(1,4),(4,1)代入y=kx+b,得{k +b =44k +b =1,解得{k =-1b =5, ∴一次函数的解析式为y=-x+5.(2)根据图象得当0<x<1或x>4,一次函数y=-x+5的图象在反比例函数y=4x 的下方; ∴当x>0时,kx+b<m x 的解集为0<x<1或x>4.12 (3)如图,作B 关于x 轴的对称点B′,连接AB′,交x 轴于P, 此时PA+PB=AB′最小,∵B(4,1),∴B′(4,-1),设直线AB′的解析式为y=px+q,∴{p +q =44p +q =-1,解得{p =-53q =173,∴直线AB′的解析式为y=-53x+173,令y=0,得-53x+173=0,解得x=175,∴点P 的坐标为175,0.。

(7)人教版九年级数学下册测试题 附答案

(7)人教版九年级数学下册测试题 附答案

(7)人教版九年级数学下册测试题附答案本文为一篇关于人教版九年级数学下册测试题的讨论及附带答案的文章。

一、简介人教版九年级数学下册测试题是一项用于测试学生对九年级数学知识的掌握程度和能力的考试。

本测试题包括多个不同难度和题型的题目,旨在全面评估学生对数学概念、计算技巧和问题解决能力的掌握情况。

下面将为您详细介绍该测试题,以及对其中的某些题目附上答案供您参考。

二、测试内容人教版九年级数学下册测试题包括很多不同的题型,如选择题、填空题、解答题等。

其中的题目涉及数学的各个方面,包括代数、几何、概率等内容。

这些题目旨在通过不同的形式和难度,考察学生对数学知识的理解和运用能力。

三、部分题目及答案解析下面我们将提供一些测试题中的题目及其答案解析,供您参考。

1. 选择题:题目:如图所示,正方形ABCD的边长为8cm,P为AE边上一点,PC的长度为6cm,则射线PC与射线BF的交点为:A. EB. FC. GD. H答案:B。

根据图中所示,将题目中给定的线段长度填入相应位置(CP=6cm),根据正方形的性质,知道BF = CP = 6cm,所以射线PC 与射线BF交于F点。

2. 填空题:题目:已知等差数列的首项为3,公差为5,当项数为8时,等差数列的和为_____。

答案:76。

根据等差数列的求和公式:Sn = (n/2) * (a1 + an),其中n为项数,a1为首项,an为第n项。

带入题目所给的数据,得到S8 = (8/2) * (3 + a8),由于a8与n的关系为 a8 = a1 + 5 * (n-1),代入可得S8 = (8/2) * (3 + 3 + 5 * (8-1)) = 76。

3. 解答题:题目:计算方程(2x - 1)^2 = 9 的解。

答案:解方程(2x - 1)^2 = 9,需要先将方程进行展开:4x^2 - 4x + 1 = 9,然后整理得到4x^2 - 4x - 8 = 0。

该方程为二次方程,可使用求根公式x = (-b ± √(b^2 - 4ac)) / 2a,其中a = 4,b = -4,c = -8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数测试题一、填空题(每空2分,共32分)1.二次函数y=2x 2的顶点坐标是 ,对称轴是 .2.函数y=(x -2)2+1开口 ,顶点坐标为 ,当 时,y 随x 的增大而减小.3.若点(1,0),(3,0)是抛物线y=ax 2+bx+c 上的两点,则这条抛物线的对称轴是 . 4.一个关于x 的二次函数,当x=-2时,有最小值-5,则这个二次函数图象开口一定 . 5.二次函数y=3x 2-4x+1与x 轴交点坐标 ,当 时,y>0.6.已知二次函数y=x 2-mx+m -1,当m= 时,图象经过原点;当m= 时,图象顶点在y 轴上.7.正方形边长是2cm ,如果边长增加xcm ,面积就增大ycm 2,那么y 与x 的函数关系式是________________. 8.函数y=2(x -3)2的图象,可以由抛物线y=2x 2向 平移 个单位得到. 9.当m= 时,二次函数y=x 2-2x -m 有最小值5.10.若抛物线y=x 2-mx+m -2与x 轴的两个交点在原点两侧,则m 的取值范围是 . 二、选择题(每小题3分,共30分)11.二次函数y=(x -3)(x+2)的图象的对称轴是( )A.x=3B.x=-3C. 12x =-D. 12x = 12.二次函数y=ax 2+bx+c 中,若a>0,b<0,c<0,则这个二次函数的顶点必在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 13.若抛物线y=0.5x 2+3x+m 与x 轴没有交点,则m 的取值范围是( )A.m≤4.5B.m≥4.5C.m>4.5D.以上都不对 14.二次函数y=ax 2+bx+c 的图如图所示,则下列结论不正确的是( )A.a<0,b>0B.b 2-4ac<0 C.a -b+c<0 D.a -b+c>015.函数是二次函数m x m ym+-=-22)2(,则它的图象( )A.开口向上,对称轴为y 轴B.开口向下,顶点在x 轴上方C.开口向上,与x 轴无交点D.开口向下,与x 轴无交点 16.一学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是35321212++-=x x y ,则铅球落地水平距离为( ) A.53m B.3m C.10m D.12m 17.抛物线y=ax 2+bx+c 与y 轴交于A 点,与x 轴的正半轴交于B 、C 两点,且BC=2,S ΔABC =4,则c 的值( )A.-5B.4或-4C.4D.-4(第14题)18.二次函数y=ax2+bx+c的图象如图所示,则此函数解析式为()A.y=-x2+2x+3B.y=x2-2x-3C.y=-x2-2x+3D.y= -x2-2x-319.函数y=ax2+bx+c和y=ax+b在同一坐标系中大致图象是()(第18题)20.若把抛物线y=x2+bx+c向左平移2个单位,再向上平移3个单位,得到抛物线y=x2,则()A.b=-2,c=3B.b=2,c=-3C.b=-4,c=1D.b=4,c=7三、计算题(共38分)21.已知抛物线y=ax2+bx+c与x轴交点的横坐标分别为-1,2,且抛物线经过点(3,8),求这条抛物线的解析式。

(9分)22.已知二次函数y=ax2+bx+c的图象的对称轴是直线x=2,且图象过点(1,2),与一次函数y=x+m的图象交于(0,-1)。

(1)求两个函数解析式;(2)求两个函数图象的另一个交点。

(9分)23.四边形EFGH内接于边长为a的正方形ABCD,且AE=BF=CG=DH,设AE=x,四边形EFGH的面积为y。

(1)写出y与x之间的函数关系式和x的取值范围;(2)点E在什么位置时,正方形EFGH的面积有最小值?并求出最小值。

(10分)24.已知抛物线经过直线y=3x-3与x轴,y轴的交点,且经过(2,5)点。

求:(1)抛物线的解析式;(2)抛物线的顶点坐标及对称轴;(3)当自变量x在什么范围变化时,y随x的增大而减小。

(10分)四、提高题:(10分)25.已知抛物线y=-x2+2(m+1)x+m+3与x轴有两个交点A,B与y轴交于点C,其中点A在x 轴的负半轴上,点B 在x 轴的正半轴上,且OA:OB=3:1。

(1)求m 的值;(2)若P 是抛物线上的点,且满足S ΔPAB =2S ΔABC ,求P 点坐标。

26.二次函数215642yx x =-+的图象与x 轴从左到右两个交点依次为A 、B ,与y 轴交于点C 。

(1)求A 、B 、C 三点的坐标;(2)如果P(x ,y)是抛物线AC 之间的动点,O 为坐标原点,试求△POA 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)是否存在这样的点P ,使得PO=PA ,若存在,求出点P 的坐标;若不存在,说明理由。

27.如图,在直角坐标平面中,O 为坐标原点,二次函数2y x bx c =++的图象与y 轴的负半轴相交于点C ,点C 的坐标为(0,-3),且BO =CO. (1)求出B 点坐标和这个二次函数的解析式; (2)求△ABC 的面积。

(3)设这个二次函数的图象的顶点为M ,求AM 的长.相似三角形测试题一、选择题:1、下列命题中正确的是( )一个锐角对应相等的两个直角三角形相似 ④一个角对应相等的两个等腰三角形相似 A 、①③ B 、①④ C 、①②④ D 、①③④2、如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( ) A AC AE AB AD = B FB EA CF CE = C BD AD BC DE = D CB CF AB EF =3、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O , 下列条件中不能使ΔABE 和ΔACD 相似的是 ( )A. ∠B=∠CB. ∠ADC=∠AEBC. BE=CD ,AB=ACD. AD ∶AC=AE ∶AB4、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点, 连结AE 交CD 于F ,则图中共有相似三角形 ( ) A 1对 B 2对 C 3对 D 4对5、在矩形ABCD 中,E 、F 分别是CD 、BC 上的点, 若∠AEF=90°,则一定有 ( ) A ΔADE ∽ΔAEF B ΔECF ∽ΔAEF C ΔADE ∽ΔECFD ΔAEF ∽ΔABF6、如图1,ADE ∆∽ABC ∆,若4,2==BD AD ,则ADE ∆与ABC ∆的 相似比是( )A .1:2 B .1:3 C .2:3 D .3:27、一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则其它两边的和是( )A .19 B .17 C .24 D .218、在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C. 12.5km D.1.25km9、在相同时刻,物高与影长成正比。

如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为( ) A 20米 B 18米 C 16米 D 15米10、.如图3,小正方形的边长均为1,则图中三角形(阴影部分)与ABC ∆相似的是( )二、填空题:A1、已知43=y x ,则._____=-yy x 2、两个相似三角形的面积之比为4:9,则这两个三角形周长之比为 。

3、如图,在△ABC 中,D 为AB 边上的一点,要使△ABC ~△AED 成立,还需要添加一个条件为 。

4、下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有等腰直角三角形都相似;④所有的直角三角形都相似.其中正确的是 (把你认为正确的说法的序号都填上).5、等腰三角形 ⊿ABC 和⊿DEF 相似,其相似比为3:4,则它们底边上对应高线的比为______6、如图,为了测量水塘边A 、B 两点之间的距离,在可以看到的A 、B 的点E 处,取AE 、BE 延长线上的C 、D 两点,使得CD∥AB,若测得CD =5m ,AD =15m ,ED=3m,则A 、B 两点间的距离为___________。

第6题 第8题 7、如图5,若△ABC ∽△DEF ,则∠D 的度数为______________.8、如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图. 已知桌面直径为1.2米,桌面离地面1米. 若灯泡离地面3米,则地面上阴影部分的面积为__________(结果保留π)三、解答题:1、如图,ΔABC 与ΔADB 中,∠ABC=∠ADB=90°,∠C=∠ABD ,AC=5cm ,AB=4cm ,求AD 的长.2、已知:如图,ΔABC 中,∠ABC=2∠C,BD 平分∠ABC. 求证:AB ·BC=AC ·CD. ABDC E30°FEDCBA图 53、如图,零件的外径为16cm ,要求它的壁厚x ,需要先求出内径AB ,现用一个交叉钳(AD 与BC 相等)去量,若测得OA:OD=OB:OC=3:1,CD =5cm ,你能求零件的壁厚x 吗?4、如图,△ABC 是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?5、为了测量路灯(OS )的高度,把一根长1.5米的竹竿(AB )竖直立在水平地面上,测得竹竿的影子(BC )长为1米,然后拿竹竿向远离路灯方向走了4米(BB ‘),再把竹竿竖立在地面上, 测得竹竿的影长(B ‘C ‘)为1.8米,求路灯离地面的高度.6、如图,已知⊙O 的弦CD 垂直于直径AB ,点E 在CD 上,且EC = EB .(1)求证:△CEB ∽△CBD ; (2)若CE = 3,CB=5 ,求DE 的长.ABCDEPQMNh S A CB B 'OC 'A '第二十八章锐角三角函数数单元检测A 卷一.选择题(每小题4分,共20分)1.如图1,在△ABC 中,∠C =90°,BC= 4, AB= 5 则 sinA = (( A)43 (B) 34(C ) 35 (D) 45图12.计算sin 45°的结果等于( ).(A) 2 ( B ) 1(C)22(D)21 3.在90,=∠∆C ABC Rt 中,若将各边长度都扩大为原来的2倍,则∠A 的余弦值( ). (A) 不变 (B) 缩小2倍 (C) 扩大4倍 (D) 扩大2倍4.如下图,平行四边形ABCD,AE ⊥BC 于E,对角线AC ⊥CD 于C,∠B=60°,AE=3. 则AB=( ) . A D (A) 6 (B)32 (C)5 (D)33B EC 5.在7,35,90,==∠=∠∆AB B C ABC Rt中,则BC 的长为 ( ).(A )35sin 7(B )35cos 7(C )35cos 7(D ).35tan 7二.填空题(每小题4分,共20分)6.如图2,求出以下Rt △ABC 中∠A 的三角函数值:sinA= ; cosA= ; tanA= .7.用计算器求下式的值.(精确到0.0001)Sin23゜5′≈ .8.已知 tan α=0.7010,利用计算器求锐角α≈ .(精确到1').9.如图3在正方形网格中,ABC △的位置如图所示,则cos B ∠ = .10.课外活动小组测量学校旗杆的高度.如图4,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的投影BC 长为24米,则旗杆AB 的高度是 米. (结果保留根号)三.解答题(共60分) 11.计算:(每题5分,共10分)(1)(5分) cos30° + sin60° (2)(5分) 242(2cos 45sin 60)4︒-︒+. 解:原式= 解:原式=12.(10分)在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a=3,b=3;解这个三角形.13.(12分)如图为了测量一棵大树的高度AB,在离树25米的C 处,用高1.4米的测角仪CD 测得树的顶端B 的仰角α=21°,求树AB 的高.(精确到0.1米) BD α EC A 图3AB C30°图414.(14分)如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB的楼顶A点测得楼CD 的楼顶C的仰角为45°,楼底D的俯角为30°.求楼CD的高(结果保留根号).15.(14分)梯形ABCD是拦水坝的横断面图,(图中i=DE与水平宽度CE的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD的面积。

相关文档
最新文档