五年级数学上册各单元知识点归纳

合集下载

五年级数学上册各单元知识梳理

五年级数学上册各单元知识梳理

五年级数学上册各单元知识梳理第一单元《小数乘法》知识点一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)知识点一:1、计算小数加法先把小数点对齐,再把相同数位上的数相加2、计算小数乘法末尾对齐,按整数乘法法则进行计算。

知识点二:积中小数末尾有0的乘法。

先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。

如:3.60 “0”应划去知识点三:如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。

如0.02×2=0.04 知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。

思考:小数乘整数与整数乘整数有什么不同?1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。

小数乘小数知识点一:因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。

知识点二:小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。

)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。

知识点三:小数乘法的验算方法1、把因数的位置交换相乘2、用计算器来验算积的近似数知识点一:先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。

知识点二:如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。

如6.597 保留两位为6.60知识点一:小数乘法要按照从左到右的顺序计算知识点二:小数的乘加运算与整数的乘加运算顺序相同。

先乘法,后加法整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

四单元:可能性:用分数表示可能性的大小。

客观事件中,“不可能”出现的现象用数据表示为“可能性是0”,客观事件中,“一定能”出现的现象用数据表示为“可能性是1”,当可能性是相等的时候,用数据表述是“”。

人教版五年级数学(上册)各单元知识点梳理归纳(附期中期末卷及答案)有目录

人教版五年级数学(上册)各单元知识点梳理归纳(附期中期末卷及答案)有目录

人教版五年级数学(上册)各单元知识点梳理归纳附期中期末测试卷(含答案)目录第一单元《小数乘法》知识点归纳1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法。

5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

五年级上册数学1-3单元知识点

五年级上册数学1-3单元知识点

五年级上册数学1-3单元知识点一、小数乘法。

1. 小数乘整数。

- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

例如:2.5×3表示3个2.5相加的和是多少。

- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

如果积的末尾有0,要先点上小数点,再把0去掉。

例如:0.72×5 = 3.6,先算72×5 = 360,因数0.72有两位小数,所以从360右边起数出两位点上小数点得3.60,最后去掉末尾的0为3.6。

2. 小数乘小数。

- 意义:表示求一个数的几分之几是多少。

例如:2.5×0.4表示2.5的十分之四是多少。

- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

例如:1.2×0.8 = 0.96,先算12×8 = 96,因数1.2有一位小数,0.8有一位小数,共两位小数,从96右边起数出两位点上小数点得0.96。

3. 积的近似数。

- 求积的近似数的方法:先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”法求出近似数。

例如:0.8×0.9 = 0.72,如果保留一位小数,看百分位数字2,2<5舍去,结果约为0.7。

4. 整数乘法运算定律推广到小数。

- 乘法交换律:a× b=b× a,对于小数乘法同样适用,如0.25×0.4 = 0.4×0.25。

- 乘法结合律:(a× b)× c=a×(b× c),例如(0.25×0.4)×0.8 = 0.25×(0.4×0.8)。

- 乘法分配律:(a + b)× c=a× c + b× c,如(0.2+0.3)×0.4 = 0.2×0.4+0.3×0.4。

人教版五年级数学上册各单元知识点归纳总结

人教版五年级数学上册各单元知识点归纳总结

五年级数学上册各单元知识点归纳总结【第一单元小数乘法】1.小数乘整数①意义——求几个相同加数的和的简便运算。

注意:小数乘整数的意义与整数乘法的意义相同。

如:1.5×3表示求3个1.5的和的简便运算(或 1.5的3倍是多少)。

请你举例:②计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

请你举例:2.小数乘小数①意义——就是求这个数的几分之几是多少。

如:1.5×0.8表示求1.5的十分之八是多少(或求 1.5的0.8倍是多少)。

请你举例:②计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

③注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;小数的位数不够时,要用0占位。

所以在小数乘法中,因数一共有几位小数积不一定就有几位小数。

请你举例:3.小数乘法中的计算规律:①一个数(0除外)乘大于1的数,积比原来的数大;②一个数(0除外)乘小于1的数,积比原来的数小。

4.小数乘法中积与因数的变化规律①如果一个因数不变,另一个因数扩大或缩小,积也跟着因数扩大或缩小相同倍数。

②注意:如果两个因数都变化了,这种情况比较复杂,需要自己在练习本上举例。

请你举例:5. 求积近似数方法:四舍五入法(进一法和去尾法在解决问题时根据实际情况选择使用。

)注意:精确到个位是保留整数,精确到十分位是保留一位小数,精确到百分位是保留两位小数,精确到千分位是保留三位小数,,,计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角,保留整数是计算到个位。

举例计算:知道近似数,怎样计算最大的原数和最小的原数?请你举例:6.小数四则混合运算的顺序跟整数是一样的。

7.整数的运算定律对于小数也适用。

运算定律和性质:①加法运算定律有2个:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)②乘法运算定律有3个:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c 【注意:(a-b)×c=a×c-b×c】③减法运算性质:a-b-c=a-(b+c) a-(b+c)=a-b-c④除法运算性质:a÷b÷c=a÷(b×c) a÷(b×c) =a÷b÷c请你举例:8.用分段计费的方法解决实际问题。

小学五年级数学上册各单元重点知识点

小学五年级数学上册各单元重点知识点

第一单元 小数除法小数除法混合运算:和整数除法混合运算顺序相同1、小数除以整数的计算方法:(1)按整数除法的方法去除;(2)商的小数点要和被除数的小数点对齐;(3)整数部分不够除,商0,点上小数点;(4)如果有余数,要添0再除。

2、除数是小数的计算方法:(1)用商不变定律;(2)按整数除法的方法去除;(3)商的小数点要和被除数的小数点对齐;(4)整数部分不够除,商0,点上小数点;(5)如果有余数,要添0再除。

3、被除数( 不变 ),除数( )1,商( )被除数。

除数( )1,商( )被除数。

除数( )1,商( )被除数。

4、计算应注意的问题:一看:审清题目。

二想:观察数字特征,选择合理的运算律。

三算:认真计算。

四查:查运算顺序;查数字;查每一步的计算。

5、解决问题:根据实际情况取值,算式上用原数,答上最值;五步骤:审,找,列,算,答。

一个数除以小数一个数除以小数被除数的小数位数比除数少小数除法 小数除以整数 整数部分够商1,整数部分不够商1,用0补限小循环小数(纯、混循环小数) 不循环小数(有限小数、无限小数)小数分类 限小四舍五入法(按要求) 进一法 去尾法解决问题 用连除的方法解决实际问题“进一法”和“去尾法”在实际问题中的应用 据实际情况 求商的近似值大于 小于 等于等于 大于 小于用简便方法计算: 5.6÷3.5 5.32×3.54÷5.325÷0.25 2.5÷0.2×0.4 8.4÷1.25÷0.81、做一套衣服用布2.4米,28米长的布最多能做多少套衣服?2、五(1)班有51人,秋游去划船,每条船只能坐4人,他们一共要租几条船?3、1、游艺会上有个节目是“吹气球“。

买一包气球有200个,用去29.6元。

平均每个气球多少元?(四舍五入保留两位小数)第二单元轴对称与平移第三单元倍数与因数(在自然数(0除外)范围内研究倍数和因数。

人教版五年级数学上册第1-3单元知识点

人教版五年级数学上册第1-3单元知识点

人教版五年级数学上册知识点汇总第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:(2×5=10,25×4=100,125×8=1000)@ 加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@ 减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:列是竖排,行是横排,列从左往右数,行从前往后(从下往上)由两个数组成,中间用逗号隔开,用括号括起来。

人教版小学五年级数学上册知识点归纳

人教版小学五年级数学上册知识点归纳

人教版小学五年级数学上册知识点归纳第一单元《小数乘法》一.小数乘整数1.计算小数加法先把小数点对齐,再把相同数位上的数相加2.计算小数乘法末尾对齐,按整数乘法法则进行计算.3.积中小数末尾有0的乘法. 先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0.如:3.60 “0”应划去 .如果乘得的积的小数位数不够要在前面用0补足,再点上小数点.如0.02×2=0.044.计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐.二.小数乘小数1.因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数.2.小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.)乘得的积的小数位数不够要在积的前面用0补足,在点小数点.3.规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数.一个数(0除外)乘小于1的数(0除外),积小于这个数.一个数(0除外)乘1,积等于这个数.4.小数乘法的验算方法(1).把因数的位置交换相乘. (2).用计算器来验算三.积的近似数1.先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示.2. 如果求得的近似数所求数位的数字是9而后一位数字又大于等于5需要进1,这是就要依次进一用0占位.如6.597 保留两位为6.60.四.连乘.乘加.乘减1.小数乘法要按照从左到右的顺序计算2.小数的乘加运算与整数的乘加运算顺序相同,先乘除,后加减.五.简便运算整数乘法的交换律.结合律和分配律,同样适用于小数乘法.常见乘法计算(敏感数字):25×4=100 125×8=1000第二单元位置1.行和列的意义:竖排叫做列,横排叫做行.2.数对可以表示物体的位置,也可以确定物体的位置.3.数对表示位置的方法:先表示列,再表示行.用括号把代表列和行的数字或字母括起来,再用逗号隔开.例如:(7,9)表示第七列第九行.4.两个数对,前一个数相同,说明它们所表示物体位置在同一列上.如:(2,4)和(2,7)都在第2列上.5.两个数对,后一个数相同,说明它们所表示物体位置在同一行上.如:(3,6)和(1,6)都在第6行上.6.物体向左.右平移,行数不变,列数减去或加上平移的格数.物体向下.上平移,列数不变,行数减去或加上平移的格数.第三单元《小数除法》1.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算.2.小数除法的计算方法:(可以先写商的小数点,再写商)(1)除数是整数的小数除法:按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,如果被除数的整数部分比除数小,不够商1,要在商的个位上写0,然后点上小数点,再继续除;如果除到被除数的末尾仍有余数时,就在余数的后面添0再继续除.(2)除数是小数的除法:先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算.3.商不变的性质:两数相除,被除数与除数同时扩大或缩小相同的倍数(0除外),商不变.4.商的变化规律:两数相除,除数不变,被除数扩大或缩小几倍,商也随着扩大或缩小几倍.两数相除,被除数不变,除数扩大或缩小几倍,商也随着缩小或扩大几倍.5.除法中比较大小时的规律:一个数(0除外)除以大于1的数,商小于被除数一个数(0除外)除以1,商等于被除数一个数(0除外)除以小于1的数(0除外),商大于被除数6.取近似数的方法:取近似数的方法有三种:①四舍五入法②进一法③去尾法一般情况下,按要求取近似数时用四舍五入法,进一法.去尾法在解决实际问题的时候选择应用.取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数.没有要求时,除不尽的一般保留两位小数.7.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.依次不断重复出现的数字,叫做这个循环小数的的循环节.8.循环小数的表示方法:(1)一种是用省略号表示,要写出两个完整的循环节,后面标上省略号.如:0.3636… 1.587587….(2)另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点.如:0.3。

五年级数学上册总复习知识点归纳

五年级数学上册总复习知识点归纳

第一章小数乘法1,当一个数乘比1小的数,积比这个数小。

当一个数乘比1大的数,积比这个数大。

例: 2.4× 0.5 < 2.4 0.97× 8.2 < 8.22.4× 1.02 > 2.4 0.97× 0.84 < 0.972,两数相乘,一个因数不变,另一个因数扩大到原来的多少倍,积也扩大到原来的多少倍。

一个因数不变,另一个因数缩小到原来的几分几,积也缩小到原来的几分之几。

3,两数相乘,一个因数扩大到原来的m倍,另一个因数扩大到原来的n倍,积扩大到原来的m乘以n倍。

4,小数乘法计算法则:一算:小数乘小数,先按整数乘法算出积;二看:看因数中一共有几位小数,就从积的右边起数出几位,点上小数点;三点:当乘得的积的小数位数不够时,要在前面用0补足,再点上小数点,如果积的小数末尾有0,就根据小数的基本性质把0去掉!5、小数点的位移规律:把一个小数扩大10倍、100倍、1000倍、……只要把小数点向右移动一位、两位、三位……位数不够时,要用“0”补足。

把一个小数缩小为原来的1/10、1/100、1/1000、……只要把小数点向左移动一位、两位、三位……位数不够时,要用“0”补足。

6、根据因数判断积的小数位数:两个因数一共有几位小数,积就是几位小数。

7、整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

乘法的交换律:a×b=b×a乘法的结合律:( a×b)×c= a×(b×c)乘法的分配律:(a+b)×c=a×c+b×c8、积的近似数:保留a位小数,就看第a+1位,再用四舍五入的方法取值。

①保留整数:表示精确到个位,看十分位上的数;②保留一位小数:表示精确到十分位,看百分位上的数;③保留两位小数:表示精确到百分位,看千分位上的数;生活中人民币最小单位常常是“分”,因此以元为单位一般保留两位小数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023小学备考资料——欢迎下载
人教版小学五年级数学上册期末复习知识点归纳
第一单元小数乘法
1、小数乘法的计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

乘得的积小数位数不够时,就在积的前面用0来补足,再点小数点。

2、计算结果中,小数部分末尾的0要去掉,把小数化简。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大。

一个数(0除外)乘小于1的数,积比原来的数小。

一个数(0除外)乘1,积等于原来的数。

4、求近似数的方法有三种:⑴四舍五入法;⑵进一法;⑶去尾法。

5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

乘法交换律、乘法结合律、乘法分配律对于小数乘
法同样适用。

7、运算定律和性质
加法:加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c) 减法:减法性质:a-b-c=a-(b+c)
a-(b-c)=a-b+c 乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c或
(a-b)×c=a×c-b×c 除法:除法性质:a÷b÷c=a÷(b×c)
第二单元位置
1、用数对表示位置时,一般列数在前面,行数在后面。

第三单元小数除法
1、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。

商的小数点要和被除数的小数点对齐。

整数部分不够除,商0,点上小数点。

如果有余数,要添0再除。

2、小数除以小数的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“小数除以整数的计算方法”进行计算。

3、如果被除数的位数不够,在被除数的末尾用0补足。

4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

求商的近似数时,近似数的末尾的0不能去掉。

5、除法中的变化规律:
(1)商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

(2)除数不变:被除数扩大,商随着扩大。

(3)被除数不变:除数缩小,商扩大。

6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

7、一个循环小数的小数部分,依次不断重复出现的数字,叫做循环节。

8、小数部分的位数是有限的小数,叫做有限小数。

小数部分的位数是无限的小数,叫做无限小数。

第五单元简易方程
1、在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。

加号、减号、除号以及数与数之间的乘号不能省略。

2、a2读作a的平方,表示2个a相乘或a×a。

2a表示2个a相加或a+a或2×a
3、含有未知数的等式叫做方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、等式的性质:(1)等式两边加上或减去同一个数,左右两边仍然相等。

(2)等式两边乘一个数,或除以同一个不为0的数,左右两边仍然相等。

5、10个数量关系式:
加法:和=加数+加数 一个加数=和-另一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商 6、所有的方程都是等式,但等式不一定都是方程。

7、方程的解是一个数,解方程是一个计算过程。

8、方程的检验过程:
第六单元 多边形的面积
1、公式: (1)长方形: 周长=(长+宽)×2 字母公式:C=(a+b)×2 长=周长÷2-宽 字母公式:a=C ÷2-b 宽=周长÷2-长 字母公式:b=C ÷2-a 面积=长×宽 字母公式:S=ab (2)正方形: 周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 2 (3)平行四边形: 面积=底×高 字母公式:S=ah 底=面积÷高 字母公式:a=S÷h 高=面积÷底 字母公式:h=S ÷a
(4) 三角形:
面积=底×高÷2 字母公式:S=ah ÷2
底=面积×2÷高 字母公式:a=S ×2÷h 高=面积×2÷底 字母公式:h=S ×2÷a
(5) 梯形:
面积=(上底+下底)×高÷2 字母公式:S=(a+b )
h ÷2
高=面积×2÷(上底+下底) 字母公式:h=2S÷
(a+b )
上底+下底=面积×2÷高 字母公式:a+b=2S÷h
上底=面积×2÷高-下底 字母公式:
a=2S÷h -b
下底=面积×2÷高-上底 字母公式:b=2S÷h -a
2、平行四边形面积公式推导:
平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积。

因为长方形面积=长×宽,所以平行四边形面积=底×高。

3、三角形面积公式推导:
两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍。

因为平行四边形面积=底×高,所以三角形面积=底×高÷2
4、梯形面积公式推导:
两个完全一样的梯形可以拼成一个平行四边形, 平行四边形的底相当于梯形的上下底之
方程左边=…… =…… =方程右边 所以,X=…是方程的解。

和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍。

因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
5、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。

6、长方形框架拉成平行四边形,周长不变,高和面积变小。

7、组合图形:转化成已学的简单图形,通过加、减进行计算。

第七单元数学广角——植树问题
1、两端都栽:植树棵数=总长÷间距+1
2、两端不栽:植树棵数=总长÷间距-1
3、一端不栽:植树棵数=总长÷间距
本文由作者精心整理,校对难免有瑕疵之处,欢迎批评指正,如有需要,请关注下载。

相关文档
最新文档