【Flow Simulation】流体分析培训(2016)

合集下载

solidworks flow simulation 操作方法

solidworks flow simulation 操作方法

solidworks flow simulation 操作方法【实用版3篇】目录(篇1)一、solidworks flow simulation 操作方法简述1.solidworks flow simulation 简介2.操作方法的主要步骤3.操作方法的优点和局限性二、具体操作步骤1.创建仿真模型2.设定仿真条件3.进行仿真计算4.分析仿真结果5.调整模型参数,重新进行仿真计算三、操作方法的优点和局限性1.优点2.局限性正文(篇1)solidworks flow simulation 是一款广泛应用于流体仿真分析的软件,它的操作方法主要分为以下几个步骤:1.创建仿真模型:首先,我们需要根据实际物理系统,在 solidworks 中建立仿真模型。

这个模型应该尽可能地准确,以便于进行后续的仿真计算。

2.设定仿真条件:接下来,我们需要设定仿真条件,包括流体的物理性质、流速、压力等参数。

这些参数将直接影响仿真的结果。

3.进行仿真计算:在设定好仿真条件后,我们可以开始进行仿真计算。

这个过程需要一定的时间和计算资源,需要耐心等待。

4.分析仿真结果:在仿真计算完成后,我们可以得到仿真结果,包括流体流动的速度、压力、温度等参数。

我们需要对这些参数进行分析,以了解实际物理系统的性能。

5.调整模型参数,重新进行仿真计算:如果分析仿真结果发现模型的参数需要调整,我们可以根据需要进行调整,然后重新进行仿真计算。

solidworks flow simulation 的优点在于它能够快速地进行流体仿真分析,并且能够得到较为准确的结果。

目录(篇2)1.solidworks flow simulation 操作方法介绍2.操作步骤详解3.操作技巧总结正文(篇2)一、solidworks flow simulation 操作方法介绍solidworks flow simulation 是一款专业的流体模拟软件,可应用于机械设计、汽车设计、航空航天等领域。

(完整版)solidworks流体分析1-进气管

(完整版)solidworks流体分析1-进气管
外部:
完全覆盖固体模型表面的流动 计算域必须比实际的几何模型大得多 不需要封盖 Analysis typically inverted meaning that the object is held stationary
and the liquid is blown over it. Examples: 汽车,导弹,,潜水艇,建筑物 ……
在装配体的零件之间存在无效接触(零件之间的线接触或点接触被定 义为无效接触)。
计算域
流动和热传递的计算是在计算域内进行的。 计算域边界平行于全局坐标系平面。 对于外部流动,计算域的边界平面将自动远离模型。 对于内部流动,如果考虑固体内热传导,计算域的
边界平面将自动包围整个模型;如果不考虑固体内 热传导,则计算域的边界平面仅包围模型的流体通 道。
2D模拟 对称平面
Lesson 1 Topics and steps
插入边界条件
Inlet; Volume flow rate normal to face = 0.05 m^3/s. Outlet boundary conditions ; Static Pressure, option default
▪ 例如,如果您指定了一个压力开口,则在此开口上定义质量流量 表面目标是比较合理的。.
▪ 允许您将某种条件类型(边界条件、风扇、热源或辐射表面)与 一个或多个目标关联起来,如果在该条件的对话框中选中了创建 关联的目标复选框,系统将自动创建关联的目标。.
定义目标
对于每个指定目标,您可以选择将目标用于收敛控制 (用于收敛控制选项),也可以选择不用于收敛控制。
勾上该选项后做热传导会出现什么情况?
Lesson 1: Creating Lids

学习使用SolidWorksFlowSimulation进行流体分析

学习使用SolidWorksFlowSimulation进行流体分析

学习使用SolidWorksFlowSimulation进行流体分析Chapter 1: Introduction to SolidWorks Flow SimulationSolidWorks Flow Simulation is a powerful computational fluid dynamics (CFD) tool that allows engineers and designers to analyze the behavior of fluid flow and heat transfer within their designs. It is an integrated feature of SolidWorks, a popular 3D CAD software widely used in various industries.The purpose of this chapter is to provide a brief overview of SolidWorks Flow Simulation, its capabilities, and its benefits for engineers and designers.1.1 What is SolidWorks Flow Simulation?SolidWorks Flow Simulation is a CFD software package that enables engineers to simulate and analyze fluid flow, heat transfer, and related phenomena. It uses mathematical equations and numerical methods to solve complex fluid dynamics problems.1.2 Why Use SolidWorks Flow Simulation?There are several reasons why engineers and designers choose to use SolidWorks Flow Simulation:- Improved Design Efficiency: By simulating fluid flow and heat transfer early in the design process, engineers can identify and resolvepotential issues before physical prototypes are built. This saves time and reduces costs.- Accurate Results: SolidWorks Flow Simulation uses validated numerical algorithms to provide accurate results. It considers factors such as turbulence, flow rates, pressure drops, and thermal effects.- Visualization: SolidWorks Flow Simulation provides interactive 3D visualizations of fluid flow patterns, velocity vectors, temperature distributions, and other parameters. This helps engineers better understand the behavior of their designs.- Optimization: SolidWorks Flow Simulation offers optimization capabilities, allowing engineers to automatically find the best design parameters for their fluid systems. This can lead to improved performance and efficiency.1.3 Applications of SolidWorks Flow SimulationSolidWorks Flow Simulation has a wide range of applications in various industries, including:- Automotive: Analyzing airflow around vehicles, optimizing cooling systems, and improving aerodynamics.- Aerospace: Evaluating aircraft wing designs, studying fluid flow in jet engines, and optimizing heat transfer in spacecraft.- HVAC: Simulating air conditioning systems, optimizing ventilation design, and analyzing thermal comfort.- Electronics: Studying the cooling of electronic components, evaluating heat sink designs, and analyzing airflow in computer servers.Chapter 2: Getting Started with SolidWorks Flow SimulationChapter 2 provides a step-by-step guide on how to get started with SolidWorks Flow Simulation. It covers the basic workflow, setup, and analysis of a typical fluid flow problem.2.1 Creating a StudyThe first step in using SolidWorks Flow Simulation is to create a new study. This involves defining the fluid domain, selecting the appropriate fluid type, and specifying the boundary conditions.2.2 Meshing the GeometryAfter creating a study, the next step is to generate a mesh for the geometry. Meshing is the process of dividing the fluid domain into a network of small cells or elements. A finer mesh provides higher accuracy but requires more computational resources.2.3 Defining Boundary ConditionsBoundary conditions define the inputs and outputs of the fluid flow problem. This includes specifying the inlet velocity or pressure, outlet conditions, wall properties, and any additional constraints or assumptions.2.4 Solving the Flow ProblemOnce the geometry is meshed and the boundary conditions are set, SolidWorks Flow Simulation can solve the flow problem. This involves solving the Navier-Stokes equations, which describe the conservation of mass, momentum, and energy.2.5 Analyzing the ResultsAfter the flow problem is solved, engineers can analyze the results using various post-processing tools. This includes visualizing flow patterns, velocity profiles, pressure distributions, temperature gradients, and other relevant parameters.Chapter 3: Advanced Features and TechniquesChapter 3 explores some of the advanced features and techniques available in SolidWorks Flow Simulation. These features allow engineers to handle more complex fluid flow problems and obtain more detailed insights.3.1 Turbulence ModelingTurbulence modeling is crucial in accurately simulating turbulent flow, which is common in many real-world scenarios. SolidWorks Flow Simulation provides various turbulence models, such as the k-epsilon model and Reynolds stress model, to capture turbulence effects.3.2 Multiphase FlowMultiphase flow refers to the simultaneous flow of multiple fluid phases, such as gas-liquid, liquid-solid, or gas-liquid-solid. SolidWorksFlow Simulation offers tools to model and analyze multiphase flow phenomena, such as cavitation, droplet dynamics, and particle transport.3.3 Heat Transfer AnalysisSolidWorks Flow Simulation includes comprehensive heat transfer analysis capabilities. Engineers can analyze conduction, convection, and radiation heat transfer within their designs. This is particularly useful in evaluating thermal management solutions and optimizing heat dissipation.3.4 Fluid-Structure Interaction (FSI)Fluid-structure interaction occurs when the fluid flow affects the structural behavior of a design, and vice versa. SolidWorks Flow Simulation allows engineers to perform FSI analysis, enabling them to study the interaction between fluid forces and structural responses.Chapter 4: Case Studies and Real-Life ExamplesChapter 4 presents several case studies and real-life examples that demonstrate the practical applications of SolidWorks Flow Simulation. These examples cover a diverse range of industries and showcase the capabilities and benefits of the software.4.1 Automotive Cooling System OptimizationThis case study focuses on optimizing the cooling system of a car engine. By simulating the airflow around the radiator, fan, and othercomponents, engineers can identify design improvements that enhance cooling efficiency and reduce engine overheating.4.2 HVAC System Design OptimizationIn this example, SolidWorks Flow Simulation is used to optimize the design of an HVAC system in a commercial building. By analyzing air distribution, temperature gradients, and ventilation effectiveness, engineers can improve occupant comfort and energy efficiency.4.3 Electronics Cooling AnalysisThis case study demonstrates the thermal analysis of an electronic circuit board. SolidWorks Flow Simulation helps engineers evaluate heat sink designs, optimize airflow through the components, and ensure proper cooling of sensitive electronic devices.Chapter 5: ConclusionIn conclusion, SolidWorks Flow Simulation is a valuable tool for engineers and designers involved in fluid flow and heat transfer analysis. It provides a comprehensive set of features and capabilities that enable users to simulate, analyze, and optimize their designs.By integrating SolidWorks Flow Simulation into the design process, engineers can gain valuable insights, improve design efficiency, and make informed decisions that lead to better performing and more reliable products.Whether in automotive, aerospace, HVAC, or electronics industries, SolidWorks Flow Simulation offers a powerful solution for fluid analysis, contributing to safer, more efficient, and more innovative designs.。

Solidworks flow simulation中文教程

Solidworks flow simulation中文教程

目录第一阶段:球阀设计打开模型……………………………………………………………………………1-1创建b 项目…………………………………………………………………1-2边界条件……………………………………………………………………………1-5定义工程目标…………………………………………………………………………1-7求解……………………………………………………………………………………1- 8监测求解过程…………………………………………………………………………1-8调整模型透明度………………………………………………………………………1-10切面云图……………………………………………………………………………1-10表面云图………………………………………………………………………………1-11等值图………………………………………………………………………………1-12流动迹线图…………………………………………………………………………1-13 XY 图………………………………………………………………………………1-15表面参数………………………………………………………………………………1-16分析球形部分中一个设计变化……………………………………………………… 1-16复制项目……………………………………………………………………………1-19分析b 应用中的一个设计变化……………………………………………1-19第一阶段:耦合热交换打开模型………………………………………………………………………………2-1 准备模型……………………………………………………………………………2-2 创建b 项目………………………………………………………………… 2-3 定义风扇………………………………………………………………………………2-6 定义边界条件…………………………………………………………………………2-8 定义热源………………………………………………………………………………2-9 创建新材料…………………………………………………………………………2-10 定义固体材料…………………………………………………………………………2-10 定义工程目标…………………………………………………………………………2-11 定义体积目标…………………………………………………………………… 2-11 定义表面目标…………………………………………………………………… 2-13定义全局目标…………………………………………………………………… 2-14改变几何求解精度…………………………………………………………………2-15 求解…………………………………………………………………………………2-16 观察目标………………………………………………………………………………2-16 流动迹线图…………………………………………………………………………2-17 切面云图……………………………………………………………………………2-19 表面云图……………………………………………………………………………2-22第一阶段:多孔介质打开模型………………………………………………………………………………3-2 创建b 项目…………………………………………………………………3-2 定义边界条件…………………………………………………………………………3-4 创建一个等向性的多孔介质………………………………………………………3-5 定义多孔介质-等向性………………………………………………………3-7 定义表面目标………………………………………………………………………… 3-7 定义方程目标………………………………………………………………………3-8 求解……………………………………………………………………………………3-9 观察目标……………………………………………………………………………… 3-10 流动迹线图…………………………………………………………………………… 3-10 复制项目……………………………………………………………………………… 3-11 创建一个单向性的多孔介质………………………………………………………… 3-12 定义多孔介质-单向性……………………………………………………………… 3-12 比较等向性和单向性多孔介质……………………………………………………… 3-13确定水力损失模型描述……………………………………………………………………………4-2 创建项目……………………………………………………………………………… 4-3 定义边界条件………………………………………………………………………… 4-7 定义表面目标………………………………………………………………………… 4-8 运行计算……………………………………………………………………………… 4-9 监测计算……………………………………………………………………………… 4-10 复制项目……………………………………………………………………………… 4-10 创建切面云图………………………………………………………………………… 4-11创建全局目标………………………………………………………………………… 4-15 计算器使用…………………………………………………………………………… 4-16 改变几何参数………………………………………………………………………… 4-18圆柱体阻力系数创建项目…………………………………………………………………………… 5-2 定义2D 流动平面………………………………………………………………… 5-6 定义全局目标……………………………………………………………………… 5-7 定义方程目标……………………………………………………………………… 5-7 复制项目并且创建一个新例子…………………………………………………… 5-8 改变项目设置………………………………………………………………………5-9 改变方程目标………………………………………………………………………5-10 创建模板…………………………………………………………………………… 5-10 以模板方式创建一个项目………………………………………………………… 5-11 求解一系列项目…………………………………………………………………… 5-12 获取结果…………………………………………………………………………… 5-12 热交换系数打开模型…………………………………………………………………………… 6-2 创建项目…………………………………………………………………………… 6-3 对称边界条件……………………………………………………………………… 6-5 定义流体子区域…………………………………………………………………… 6-6 定义边界条件……………………………………………………………………… 6-7 定义固体材料……………………………………………………………………… 6-10 定义体积目标……………………………………………………………………… 6-11 运行求解…………………………………………………………………………… 6-11 观察目标…………………………………………………………………………… 6-12显示流动迹线图…………………………………………………………………… 6-14 计算表面参数……………………………………………………………………… 6-16 计算热交换系数…………………………………………………………………… 6-18 定义参数显示范围…………………………………………………………………6-18网格优化问题描述…………………………………………………………………………… 7-2 模型定义…………………………………………………………………………… 7-3 定义项目……………………………………………………………………………7-3 边界条件……………………………………………………………………………7-3 手动设置最小网格间隙尺寸……………………………………………………… 7-7 关闭自动网格定义…………………………………………………………………7-9 生成网格如下所示,约75000网格单元使用Local Intial Mesh 选项…………………………………………………7-10 定义控制平面………………………………………………………………………7-12 再创建一个局部初始网格…………………………………………………………7-14EFD Zooming的应用问题描述……………………………………………………………………………8-1 两种使用b 进行求解问题的方式…………………………………………8-3 EFD Zooming 方法步骤……………………………………………………………8-3 EFD Zooming 第一阶段………………………………………………………8-4 EFD Zooming 项目第一阶段…………………………………………………8-4 EFD Zooming 第二阶段………………………………………………………8-8 EFD Zooming 项目第二阶段…………………………………………………8-8 改变散热器……………………………………………………………………8-14 复制项目到存在的模型定义…………………………………………………8-14局部初始化网格方法………………………………………………………………8-15 使用局部初始化网格方法的b 项目(Sink No1) …………………… 8-15 使用局部初始化网格方法的b 项目(Sink No2) …………………… 8-18 结果………………………………………………………………………………… 8-18纺织机械问题描述…………………………………………………………………………… 9-1 模型定义…………………………………………………………………………… 9-2 定义项目…………………………………………………………………………… 9-3 边界条件…………………………………………………………………………… 9-3 定义旋转壁面……………………………………………………………………… 9-4 初始条件-旋转…………………………………………………………………… 9-5 定义目标…………………………………………………………………………… 9-6 结果-光滑表面…………………………………………………………………… 9-7 显示粒子流和流动迹线……………………………………………………………9-8 模拟粗糙旋转壁面………………………………………………………………… 9-10 改变壁面粗糙度…………………………………………………………………… 9-10 结果-粗糙壁面…………………………………………………………………… 9-11圆形通道中的非牛顿流体流动问题描述………………………………………………………………………………10-1 模型定义………………………………………………………………………………10-2 定义非牛顿流体……………………………………………………………………… 10-2 定义项目………………………………………………………………………………10-2 边界条件………………………………………………………………………………10-3 定义目标…………………………………………………………………………10-3 与流体水进行比较…………………………………………………………………… 10-4 改变项目设置……………………………………………………………………10-4具有反射镜和屏幕的加热球问题描述…………………………………………………………………………… 11-1 模型结构…………………………………………………………………………… 11-2 案例 1 ………………………………………………………………………………11-3 定义项目……………………………………………………………………… 11-3 定义计算域……………………………………………………………………11-3 调整自动网格设置……………………………………………………………11-4 定义辐射表面…………………………………………………………………11-4 定义物体对于热辐射的可穿透性…………………………………………… 11-5 热源和目标定义………………………………………………………………11-5 案例 2 ……………………………………………………………………………… 11-6 改变辐射表面状况……………………………………………………………11-6 定义全局目标…………………………………………………………………11-6 定义固体的初始条件…………………………………………………………11-6结果………………………………………………………………………………… 11-7旋转叶轮问题描述………………………………………………………………………………12-1 模型定义………………………………………………………………………………12-2 定义项目………………………………………………………………………………12-2 边界条件………………………………………………………………………………12-3 定义静止壁面……………………………………………………………………12-4 叶轮效率………………………………………………………………………………12-4 定义项目目标…………………………………………………………………………12-5 结果……………………………………………………………………………………12-7CPU 冷却器问题描述………………………………………………………………………………13-1 模型定义………………………………………………………………………………13-2 定义项目………………………………………………………………………………13-2 定义计算域……………………………………………………………………………13-2 旋转区域………………………………………………………………………………13-3 定义静止壁面…………………………………………………………………………13-5 固体材料………………………………………………………………………………13-6 热源……………………………………………………………………………………13-6 初始网格设置…………………………………………………………………………13-7结果……………………………………………………………………………………13-11特性列表下面罗列了出现在教程中的b 相应的物理和界面特性。

SOLIDWORKS Flow Simulation 用户手册说明书

SOLIDWORKS Flow Simulation 用户手册说明书

SOLIDWORKS SOLIDWORKS Flow SimulationDassault Systèmes SolidWorks Corporation175 Wyman StreetWaltham, MA 02451 U.S.A.© 1995-2021, Dassault Systemes SolidWorks Corporation, a Dassault Systèmes SE company, 175 Wyman Street, Waltham, Mass. 02451 USA. All Rights Reserved.The information and the software discussed in this document are subject to change without notice and are not commitments by Dassault Systemes SolidWorks Corporation (DS SolidWorks).No material may be reproduced or transmitted in any form or by any means, electronically or manually, for any purpose without the express written permission of DS SolidWorks.The software discussed in this document is furnished under a license and may be used or copied only in accordance with the terms of the license. All warranties given by DS SolidWorks as to the software and documentation are set forth in the license agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of any terms, including warranties, in the license agreement.For a full list of the patents, trademarks, and third-party software contained in this release, please go to the Legal Notices in the SOLIDWORKS documentation.Restricted RightsThis clause applies to all acquisitions of Dassault Systèmes Offerings by or for the United States federal government, or by any prime contractor or subcontractor (at any tier) under any contract, grant, cooperative agreement or other activity with the federal government. The software, documentation and any other technical data provided hereunder is commercial in nature and developed solely at private expense. The Software is delivered as "Commercial Computer Software" as defined in DFARS 252.227-7014 (June 1995) or as a "Commercial Item" as defined in FAR 2.101(a) and as such is provided with only such rights as are provided in Dassault Systèmes standard commercial end user license agreement. Technical data is provided with limited rights only as provided in DFAR 252.227-7015 (Nov. 1995) or FAR 52.227-14 (June 1987), whichever is applicable. The terms and conditions of the Dassault Systèmes standard commercial end user license agreement shall pertain to the United States government's use and disclosure of this software, and shall supersede any conflicting contractual terms and conditions. If the DS standard commercial license fails to meet the United States government's needs or is inconsistent in any respect with United States Federal law, the United States government agrees to return this software, unused, to DS. The following additional statement applies only to acquisitions governed by DFARS Subpart 227.4 (October 1988): "Restricted Rights - use, duplication and disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252-227-7013 (Oct. 1988)."In the event that you receive a request from any agency of the U.S. Government to provide Software with rights beyond those set forth above, you will notify DS SolidWorks of the scope of the request and DS SolidWorks will have five (5) business days to, in its sole discretion, accept or reject such request. Contractor/ Manufacturer: Dassault Systemes SolidWorks Corporation, 175 Wyman Street, Waltham, Massachusetts 02451 USA.Document Number: PMT2243-ENGContents IntroductionAbout This Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Course Design Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Using this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Lessons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2About the Training Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3User Interface Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Conventions Used in this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Use of Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4More SOLIDWORKS Training Resources. . . . . . . . . . . . . . . . . . . . . . 4Local User Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Lesson 1:Creating a SOLIDWORKS Flow Simulation ProjectObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Case Study: Manifold Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Stages in the Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Model Preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Internal Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7External Flow Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Manifold Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Lids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Lid Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Manual Lid Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9iContents SOLIDWORKS SimulationiiAdding a Lid to a Part File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Adding a Lid to an Assembly File . . . . . . . . . . . . . . . . . . . . . . . . 10 Checking the Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Internal Fluid Volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Invalid Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Project Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Exclude Cavities Without Flow Conditions. . . . . . . . . . . . . . . . . 21 Adiabatic Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Roughness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Computational Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Load Results Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Monitoring the Solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Goal Plot Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Warning Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Post-processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Scaling the Limits of the Legend . . . . . . . . . . . . . . . . . . . . . . . . . 38 Changing Legend Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Orientation of the Legend, Logarithmic Scale . . . . . . . . . . . . . . . 38 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Exercise 1: Air Conditioning Ducting . . . . . . . . . . . . . . . . . . . . . . . . 52Lesson 2:MeshingObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Case Study: Chemistry Hood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Project Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Computational Mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Basic Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Initial Mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Geometry Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Minimum Gap Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Minimum Wall Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Result Resolution/Level of Initial Mesh. . . . . . . . . . . . . . . . . . . . . . . 68Manual Global Mesh Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Control Planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Exercise 2: Square Ducting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Exercise 3: Thin Walled Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Exercise 4: Heat Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Exercise 5: Meshing Valve Assembly . . . . . . . . . . . . . . . . . . . . . . . 102Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102SOLIDWORKS Simulation Contents Lesson 3:Thermal AnalysisObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Case Study: Electronics Enclosure. . . . . . . . . . . . . . . . . . . . . . . . . . 104Project Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Fans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Fan Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Perforated Plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Free Area Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Exercise 6: Materials with Orthotropic Thermal Conductivity . . . . 120Exercise 7: Electric Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Lesson 4:External Transient AnalysisObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133Case Study: Flow Around a Cylinder. . . . . . . . . . . . . . . . . . . . . . . . 134Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Stages in the Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Reynolds Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135External Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Transient Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Turbulence Intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Solution Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . 138Two Dimensional Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138Computational Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Calculation Control Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Finishing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Saving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Drag Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Unsteady Vortex Shedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144Time Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149Exercise 8: Electronics Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150iiiContents SOLIDWORKS Simulation Lesson 5:Conjugate Heat TransferObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161Case Study: Heated Cold Plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Project Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Stages in the Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Conjugate Heat Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Real Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Goals Plot in the Solver Window. . . . . . . . . . . . . . . . . . . . . . . . 166Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168Exercise 9: Heat Exchanger with Multiple Fluids . . . . . . . . . . . . . . 169 Lesson 6:EFD ZoomingObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173Case Study: Electronics Enclosure. . . . . . . . . . . . . . . . . . . . . . . . . . 174Project Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174EFD Zooming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174EFD Zooming - Computational Domain . . . . . . . . . . . . . . . . . . 177Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Lesson 7:Porous MediaObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185Case Study: Catalytic Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186Stages in the Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186Associated Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Porosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Permeability Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Matrix and Fluid Heat Exchange . . . . . . . . . . . . . . . . . . . . . . . . 189Specific area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Dummy Bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192Design Modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201Exercise 10: Channel Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Lesson 8:Rotating Reference FramesObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209Rotating Reference Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Part 1: Averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Case Study: Table Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211Stages in the Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 ivSOLIDWORKS Simulation ContentsNoise Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217Broadband Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217Part 2: Sliding Mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218Case Study: Blower Fan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218Tangential Faces of Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220Time Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223Part 3: Axial Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228Exercise 11: Ceiling Fan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229Computational Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 Lesson 9:Parametric StudyObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231Case Study: Piston Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232Stages in the Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232Parametric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233Steady State Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233Parametric Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235Part 1: Goal Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236Input Variable Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237Target Value Dependence Types . . . . . . . . . . . . . . . . . . . . . . . . 238Output Variable Initial Values . . . . . . . . . . . . . . . . . . . . . . . . . . 239Running Optimization Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 239Part 2: Design Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243Part 3: Multi parameter Optimization. . . . . . . . . . . . . . . . . . . . . . . . 246Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250Exercise 12: Variable Geometry Dependent Solution . . . . . . . . . . . 251Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Lesson 10:Free SurfaceObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253Case Study: Water Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254Free Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254Volume of Fluid (VOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261Exercise 13: Water Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262Theoretical Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268Exercise 14: Dam-Break Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276vContents SOLIDWORKS Simulation Lesson 11:CavitationObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277Case Study: Cone Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278Cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Lesson 12:Relative HumidityObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283Relative Humidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284Case Study: Cook House . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 Lesson 13:Particle TrajectoryObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291Case Study: Hurricane Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . 292Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292Particle Trajectories - Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 292Particle Study - Physical Settings. . . . . . . . . . . . . . . . . . . . . . . . 297Particle Study - Wall Condition . . . . . . . . . . . . . . . . . . . . . . . . . 298Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299Exercise 15: Uniform Flow Stream. . . . . . . . . . . . . . . . . . . . . . . . . 300 Lesson 14:Supersonic FlowObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305Supersonic Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306Case Study: Conical Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306Drag Coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307Shock Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 Lesson 15:FEA Load TransferObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313Case Study: Billboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 vi。

基于Solidworks Flow Simulation在球阀流体分析中的应用

基于Solidworks Flow Simulation在球阀流体分析中的应用

基于Solidworks Flow Simulation在球阀流体分析中的应用摘要:本文采用SolidWorks Flow Simulation软件对一款球阀的流场进行模拟和分析。

通过对球阀不同工况下的流场特性进行分析,得出了球阀的特性曲线和压降曲线,以及流量、压力、速度、温度等参数的分布情况。

同时,本文探讨了SolidWorks Flow Simulation软件在阀门流场模拟中的优势,包括灵活性、精度和可视化等方面。

结果表明,通过SolidWorks Flow Simulation软件对阀门流场进行模拟和分析,可以帮助设计人员深入了解阀门的流体力学性能,并进行性能优化。

关键词:SolidWorks Flow Simulation;阀门;流场模拟;球阀;优势当今,球阀作为一种流体控制设备,在工业、化工、航空航天等领域得到了广泛的应用。

为了满足不同的工作要求,设计人员需要对球阀的流体力学性能进行分析和优化。

SolidWorks Flow Simulation软件作为一种常用的流体动力学模拟工具,可以对球阀的流场进行模拟和分析,从而为球阀的设计和优化提供有力的支持。

1.球阀的流场模型建立在建立球阀的流场模型之前,需要进行几何建模和网格划分。

球阀的几何模型采用三维实体建模的方式进行建模,包括球体、阀座、阀杆、阀体等几何实体。

使用SolidWorks Flow Simulation软件对球阀进行网格划分,得到了网格密集度适当的流场模型。

1.数值模拟条件的设定当进行球阀的流场模拟时,需要先对数值模拟条件进行设定。

下面详细介绍球阀流场模拟的数值模拟条件设定。

2.1流体介质在进行流场模拟时,需要首先确定流体介质,通常情况下可以根据实际工程需要进行选择。

本文中选择了流体介质为水,因为水在工业流体控制中是一种广泛使用的介质,具有较好的流动性和物理性质,方便进行模拟计算。

2.2入口速度入口速度是指流体在球阀入口处的速度大小,通常可以通过实验或者理论计算进行确定。

solidworks flow simulation 要点

solidworks flow simulation 要点

solidworks flow simulation 要点SolidWorks Flow Simulation是一种基于计算流体力学(CFD)的仿真工具,用于分析和优化流体流动、传热和流体力学问题。

以下是使用SolidWorks Flow Simulation的要点:1. 几何建模:使用SolidWorks CAD软件创建几何模型,并确保几何模型准确、完整、封闭且无错误。

Flow Simulation可以直接使用SolidWorks模型,无需转换或重新建模。

2. 材料定义:为模型定义适当的材料属性,包括密度、粘度、热导率等。

这些属性将影响流体的行为和传热性能。

3. 网格生成:生成高质量的网格以离散化流体域。

Flow Simulation提供多种网格类型和生成选项,以满足不同的需求。

确保网格细化在关键区域(例如边界层和流动分离区域)处更加密集,以获得准确的结果。

4. 边界条件:定义流体域的边界条件,包括流速、压力、温度等。

这些边界条件将模拟实际流体流动和传热的情况。

5. 物理模型:选择适当的物理模型,如不可压缩流动、可压缩流动、传热、湍流等。

根据实际情况选择合适的模型,以获得准确的结果。

6. 设置求解器:选择适当的求解器设置,包括迭代次数、收敛准则等。

这些设置将影响求解的速度和准确性。

7. 运行仿真:运行Flow Simulation进行流体流动和传热仿真。

根据模型的复杂性和计算机性能,仿真可能需要一段时间。

8. 结果分析:分析仿真结果,包括流速、压力、温度、剪切力、湍流特性等。

Flow Simulation提供丰富的结果图表和动画,以帮助用户理解流体行为和优化设计。

9. 优化设计:根据仿真结果进行设计优化,例如调整几何形状、改变边界条件或材料属性等。

Flow Simulation可以通过反复仿真和优化循环来帮助用户改进设计。

10. 结果验证:验证仿真结果的准确性,可以与实验数据进行比较。

如果结果与实际数据相符,说明仿真模型和设置是合理的。

solidworks flow simulation 操作方法

solidworks flow simulation 操作方法

solidworks flow simulation 操作方法(最新版4篇)目录(篇1)一、solidworks flow simulation 操作方法简述1.solidworks flow simulation 简介2.操作方法的基本流程3.操作方法的详细步骤二、使用solidworks flow simulation 的注意事项1.软件版本要求2.硬件配置要求3.使用技巧和注意事项正文(篇1)solidworks flow simulation 是一款用于流体模拟的软件,它可以帮助工程师和设计师更好地理解产品在各种环境下的性能。

以下是使用solidworks flow simulation 的操作方法及注意事项:一、solidworks flow simulation 操作方法简述1.打开solidworks软件,选择“flowsimulation”模块。

2.创建新的模拟:在界面左侧的工具栏中选择“新建”,然后按照提示设置模拟的基本参数。

3.导入模型:将需要模拟的模型导入到软件中。

4.添加流体:在界面左侧的工具栏中选择“流体”,然后选择需要模拟的流体类型和材料。

5.定义边界条件:在界面左侧的工具栏中选择“边界条件”,然后设置流体在模型中的流动边界条件,如压力、速度等。

6.运行模拟:点击“运行”按钮,开始模拟。

7.分析结果:在模拟结束后,软件会自动生成模拟结果,包括速度、压力、流量等数据。

工程师可以根据结果进行优化设计。

二、使用solidworks flow simulation 的注意事项1.软件版本要求:solidworks flow simulation 需要在solidworks 2016或更高版本中使用。

2.硬件配置要求:软件对电脑硬件要求较高,建议使用配置较高的电脑运行。

3.使用技巧和注意事项:在使用软件时,需要注意模型的导入和边界条件的设置,以及结果的准确性和可靠性。

目录(篇2)一、solidworks flow simulation 操作方法概述1.solidworks flow simulation 是一款用于模拟流体流动的软件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lesson 1 分析流程
课程要点:
1. 熟悉操作界面和流程 2. 了解相关流体力学知识 3. 内流场和外流场的区别
流体分析步骤: 1. 准备用于分析的模型; 2. 使用向导功能设定流体仿真; 3. 加载边界条件; 4. 明确计算目标; 5. 运行分析; 6. 后处理结果。
分析实例:歧管 问题描述:空气以0.05m^3/s的流量进入歧管入口,并从六个出口流出, 分析管路内的流体分布以及沿管路红色箭头方向的压力分布。 流体材料: 空气
本人培训内容的宗旨是:有限元工程应用第一,软件平台选择第二,同时提倡 学习者掌握扎实的力学基础。
培训的主要方向是企业工程师如何掌握有效的有限元分析技术,以及企业如何 真正有效使用有限元分析技术快速提升产品性能,提倡工程师将有限元分析脱离课 本,以工程实用技术作为支撑。
Solidworks Flow Simulation课程安排
液体:无形状,有一定的体积;不易压缩,存在自由(液)面。 气体:既无形状,也无体积,易于压缩。
研究任务:
研究流体所遵循的宏观运动规律; 流体和周围物体之间的相互作用。 例如:网球、汽车风阻、水泵、风扇等
研究方法
理论分析:根据实际问题建立理论模型、涉及微分体积法、速度势法、保角变换法 。 实验研究方法:根据实际问题利用相似理论建立实验模型,选择流动介质,设备包 括风洞、水槽、水洞、激波管、测试管系等。尽管通过实验的结果一般上来说是比 较可靠的,但是会受到模型尺寸以及边界条件等限制。 数值计算方法 :根据理论分析的方法建立数学模型,选择合适的计算方法,包括有 限差分法、有限元法、特征线法、边界元法等,利用商业软件和自编程序计算,得 出结果,用实验方法加以验证,可以解决理论分析解决不了的复杂流动的问题,和 实验相比所需的费用和时间也比较少。
计算机性能提高 计算力学 工程应用
加权残数法 ……
理论研究
数值方法
成本都是企业和工程师必须考虑的一个主要因素,很多人对分析的认识存在极 大的误区,认为仿真分析的成本就是电脑硬件成本和工程师的成本,其实仿真分析 的成本包含以下几个方面(中国企业的实际情况暂时不考虑软件的成本):
1. 电脑硬件成本; 2. 工程师的工资和培训成本; 3. 工作计算的时间成本; 4. 实验场地和设备的硬件成本; 5. 实验人员的工资和培训成本。
出口:Static Pressure
入口:0.05 m^3/s
封盖创建 向导
网格
内流场和外流场
内流Internal:流体被物理几何体封闭,由内部体积为典型分析构成。 例如:流管, 阀, 发动机…
外流External:物理几何体浸没在流体中求解域必须远大于实际几何体。 分析典型倒置意义,对象被固定住并且流体在上面吹它。 例如:翅膀, 导弹, 潜水艇…
计算流体动力学概述
计算流体动力学:Computational Fluid Dynamics /CFD
通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系 统所做的分析。 CFD的基本思想: 把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限 个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点 上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。

在这个分支图中的难点:

1. 如何结合企业目前的实验状况

制定一套可行性分析方案;
仿
2. 如何建立起软件计算和实验/理

论计算数据的桥梁,形成结果

的分析对比;

3. 如何通过实验数据和仿真数据
为企业研发产生新的价值。
固体力学 流体力学
热力学 动力学
……
计算力学发展
有限单元法
有限差分法 边界元法
课程
内容
前言
流体分析基础
第 01 课
分析流程
第 02 课
网格控制
第 03 课
电子散热
第 04 课
外EFD缩放
第 07 课
多孔介质
第 08 课
旋转参考系
第 09 课
参数研究
课程要点:
1. 流体动力学分析基础 2. 名词解释
引言
流体力学: 宏观力学。是一种研究宏观运动规律的学科。 研究对象:流体(Fluid)。包括液体和气体。
层流和湍流
层流Laminar :流动是有规则的,有层次的,稳定的; 湍流Turbulent : 流动是无规则脉动的,有强烈的掺混性和涡旋性。
雷诺实验 (O.Reynolds,1883 )
层流区
过渡区
紊流区
德雷顿(H.Dryden,1934) 热线测速仪
内流场封闭检查
在流体与固体网格界定时,有两个主要因素需要重视: 1. 在内部分析中,不能存在与外界连通的开口; 2. 点接触与线接触都被视为无效接触,在内部和外部分析中均需避
Volume Goal:一个用户指定空间内的计算域的物理 参数计算,无论是在液体或固体(如固体传热考虑) Equation Goal:是一个目标明确的方程(基本数学 函数)与指定的目标变量。例如:压降,温差等
目标设置
计算求解
结果云图
Lesson 2 网格控制
课程要点:
1. 自动网格控制 2. 手动网格控制 3. 局部网格控制
Flow Simulation 培训
张晔,硕士毕业,研究生期间跟随导师研究电子封装产品的数值仿真和实验验 证,研究计算力学相关内容,目前是一名自由人,对数值仿真有浓厚的兴趣,帮助 有需要的企业整合实验仿真研发体系,优化产品结构,培训企业工程师的有限元工 程应用技巧。目前接触的企业多数是江浙沪为主的南方企业,兼任一家钢结构公司 的分析技术顾问,一家赛车研发团队的仿真和实验负责人以及几家Solidworks一级代 理商的外援工作。
分析实例:喷嘴 问题描述:空气以5e-6m^3/s的流量从喷嘴喷入,并从顶部出口将气体 排出,通过网格控制,分析内部流体分布。 流体材料: 空气
免。
边界条件
总压=静压+动压 静压:流体静止状态下形成的压强,可通过设备直接测量。 动压:流体的动能,一般不能被直接测量。
定义目标
Global Goal:一个在整个计算域的物理参数计算。 Point Goals:一个用户对模型的指定点物理参数计算。 Surface Goal:一个用户对模型的指定面物理参数计 算。
相关文档
最新文档