正交矩阵和酉矩阵对比
欧氏空间与酉空间

(对比):酉空间的两个向量ξ 与η 称为正交的,如果 (η,ξ ) =0 我们约定零向量与任意向量
正交.
6:在欧氏空间中,如果 ξ 与η1η2 ^ηn 中的每一向量都正交,那么 ξ 与η1η2 ^ηn 的任意线性组
合都正交.
7,对于欧氏空间的两个向量α , β 有 α + β ≤ α + β ,当且仅当α , β 正交是等号成立. 更 一 般 地 , ( 采 用 数 学 归 纳 法 证 明 ) 对 于 欧 氏 空 间 中 两 两 正 交 的 向 量 α1,α2 , ^,αn 有 α1 + α2 + ^ + αn = α1 2 + α2 2 + ^ + αn 2 8.几个重要的不等式推论:设 V 是欧氏空间. ∀η,ξ,ζ ∈V .则
且仅当 ξ ,η 线性相关时等号成立。
4:夹角的定义:设ξ 和η 是欧氏空间的两个非零的向量.ξ 与η 的夹角θ 由一下的公式定
义: cosθ = (ξ ,η ) , 0 ≤ θ ≤ π .说明:酉空间夹角没有定义
ηξ
5:正交的定义:欧氏空间的两个向量 ξ 与η 称为正交的,如果 (η,ξ ) =0 我们约定零向量与
(对比:)酉空间 V 中两两正交的非零的向量是线性无关的
6:(正交化方法,定理 8.2.4)设 V 是一个欧氏空间,{α1,α2 , ^,αn} 是 V 的一个线性无关的 向量组,那么可以求出 V 的一个正交组 {β1, β2 , ^, βn} ,使得 βk 是 α1,α2 , ^,αn 的线性组
3
若
U
T
U
=U
T
U=I
(说明:) UT =U-1
对比:设U
矩阵的酉变换和正交矩阵

矩阵的酉变换和正交矩阵矩阵是数学中的一个重要概念,它可以描述对象之间的关系,包含大量的信息。
而矩阵的变换则是矩阵的另一种重要表现形式。
在矩阵变换中,酉变换和正交矩阵是两个相对重要的概念。
一、什么是酉变换和正交矩阵?1. 酉变换酉变换是指在复向量空间中的变换,保持向量的内积不变,并且满足力方程U*U^H=I,其中U^H为U的共轭转置,I为单位矩阵。
酉变换可以理解为复数的旋转和反射。
2. 正交矩阵正交矩阵是指在实向量空间中的变换,保持向量的内积不变,并且满足力方程A^TA=AA^T=I,其中A^T为A的转置,I为单位矩阵。
正交矩阵可以理解为向量的旋转和反射。
二、酉变换和正交矩阵的性质1. 酉变换的性质(1)酉变换保持向量的长度和夹角不变。
(2)酉变换的逆也是一个酉变换。
(3)酉变换是一个线性变换。
(4)酉变换的特征值的模长都为1。
2. 正交矩阵的性质(1)正交矩阵的行和列都是单位向量。
(2)正交矩阵的逆等于它的转置。
(3)正交矩阵保持向量的长度和夹角不变。
(4)正交矩阵的行列式的值为1或-1。
三、酉变换和正交矩阵的应用1. 酉变换的应用(1)在量子力学中,酉变换是描述粒子状态演化的一种重要方法。
(2)在数字信号处理中,酉变换可以用于将时域信号转换为频域信号。
(3)在图形图像处理中,酉变换可以用于图像的压缩和减噪。
2. 正交矩阵的应用(1)在计算机图形学中,正交矩阵可以用于描述物体的旋转、平移和缩放。
(2)在最小二乘法中,正交矩阵可以用于描述线性回归的问题。
(3)在通信中,正交矩阵可以用于多输入多输出天线系统的优化。
四、酉变换和正交矩阵的联系和差异酉变换和正交矩阵都是保持向量内积不变的变换。
它们在数学上很相似,但是其定义域和值域不同,酉变换是复向量空间到复向量空间的变换,而正交矩阵是实向量空间到实向量空间的变换。
此外,酉变换的特征值的模长都为1,而正交矩阵的特征值只有1和-1。
五、总结酉变换和正交矩阵作为数学中的两种变换,都具有重要的应用价值。
酉矩阵与HERMITE矩阵性质总结

酉矩阵与Hermite矩阵的浅谈韦龙201131402摘要科学在发展,社会在进步,人们对于数学的理解越来越深刻,数学应用于日常生活生产越来越广泛。
在数学的很多分支和工程实际应用中, 都涉及到一些特殊的矩阵的性质及构造. 本文讨论两类特殊的矩阵——酉矩阵和Hermite 矩阵. 酉矩阵和Hermite矩阵作为两类特殊的矩阵, 有很多良好的性质, 在矩阵理论中具有举足轻重的作用。
本文通过对正交矩阵和酉矩阵关系的概述、酉矩阵的性质和酉矩阵的构造来初步认识酉矩阵,为以后的深入学习奠定基础。
本文主要从Hermite矩阵的性质,判定定理,正定性和Hermite 矩阵不等式四个方面讨论Hermite矩阵。
关键词: 酉矩阵;Hermite矩阵;正交矩阵;特征值。
The study of Unitary matrix and Hermite matrixWei Long 201131402AbstractWith the development of science and society, people get a deeper understanding of math , and the use of math becomes more and more widely. In many branches of mathematics and engineering applications, are related to some special nature and structure matrix. This paper discusses a special kind of matrix - unitary matrix and Hermite matrix. The two kinds of matrix as two specials kind of matrix, there are many good properties. In the matrix theory plays an important role in the study of this topic could be more perfect matrix theory. In this paper , we use the knowledge of the unitary matrix and Orthogonal matrix ,the nature of the unitary matrix, the construction of the unitary matrix to get a first impression of the unitary matrix, and make a basement to farther study. And we study the Hermite matrix by the knowledge of the nature of Hermite matrix,determined theorem ,positive definite matrix and the Hermite matrix inequality.Key words: unitary matrix ;Hermite matrix ;Orthogonalmatrix; Characteristic value第一章 酉矩阵第一节 酉矩阵的概念及等价条件1.1.1 正交矩阵和酉矩阵定义1.1.1 满足E A A AA ==**的n 阶实矩阵A 称为正交矩阵.在矩阵理论中, 经常利用矩阵来描述变换. 在实空间中正交变换保持度量不变, 而正交变换中对应的变换矩阵就是正交矩阵, 所以对正交矩阵的研究就显得格外重要. 同样道理, 想要得到复空间中保持度量不变的线性变换, 就应该对正交变换进行推广, 将其推广到复数域上, 那对应的正交矩阵相应的也推广到复数域就是酉矩阵.1.1.2 酉矩阵的等价条件先给出酉矩阵的以下定义.定义1.1.2 若n 阶复方阵U 满足H U U E =则称U 为酉矩阵. 定义1.1.3 若n 阶复方阵U 满足H UU E =则称U 为酉矩阵. 定义1.1.4 若n 阶复方阵U 满足1H U U -=则称U 为酉矩阵. 注:H U 表示矩阵U 的共轭转置,即H U =-U '.定义1.1.5 若n 阶复方阵U 的n 个行(列)向量是两两正交的单位向量, 则称U 为酉矩阵.易知定义1.1.2—定义1.1.5是相互等价的. 从定义1.1.2或定义1.1.3或定义1.1.4知, 酉矩阵是可逆矩阵.根据定义1.1.5可得, n 阶酉矩阵U 的n 个行(列) 向量构成n C 的标准正交基.引理1.1.1[3] 酉矩阵的行列式的模为1引理1.1.2[4] 对任意的n 阶矩阵A 有E A AA =*.引理1.1.3[5] 对任意的n 阶矩阵A 和n 阶可逆矩阵P , 有)()(1A Tr PAP Tr =-引理1.1.4[6] 对任意的n m ⨯阶矩阵A 和m n ⨯阶矩阵B , 有)()(BA Tr AB Tr = 引理1.1.5[6] n 阶矩阵A 为酉矩阵的充分必要条件是:'=A A I 或者'AA E = 定理1.1.1 阵)(ij a A =为酉矩阵的充分必要条件是.,,2,1,n j a AA A ij ='=这里A 表示行列A 的模, 表示ij a 的共轭复数.定理1.1.2 二阶矩阵A 为酉矩阵的充分必要条件是A 为下列三种形式之一 :(i) ⎥⎦⎤⎢⎣⎡++2211sin cos 00sin cos ββi a i a(ii) ⎥⎦⎤⎢⎣⎡++0sin cos sin cos 02211ββββi i (iii) ⎥⎥⎦⎤⎢⎢⎣⎡++-+-+)sin (cos )sin (cos 1)sin (cos 1)sin (cos 4433222211θθθθθθθθi r i r i r i r这里123401,2r k θθθθππ<<+--=+且,k 为整数.定理1.1.3 n 阶矩阵A 为酉矩阵的充要条件是: 对任意n 阶矩阵B, 有:)()(B Tr A AB Tr ='第二节 酉矩阵的性质1.2.1 运算性质1.2.1 酉矩阵的转置与伴随矩阵定理1.2.1 设U 为酉矩阵,则-1U U U ',和都是酉矩阵.证明 因为HH U U =U U =U U =E =E '''()()()所以U 是酉矩阵.因为HH H U U =U U =UU =E =E '''''()()()()()所以U '是酉矩阵.因为-1H -1H HH H U U =U U =UU =E ()()()()所以-1U 是酉矩阵.定理1.2.2 设U 为酉矩阵, 则U 的伴随矩阵*U 也是酉矩阵. 证明 因为,*-1U =detUgU2*H *-1H -1H -1(U )U =detU U detUU =detU UU =E ()()(),所以*U 为酉矩阵.定理1.2.3 设1U 和2U 是酉矩阵,则12U U , 21U U 也是酉矩阵.证明 因为1212()()H U U U U1212H H U U U U = 22H U EU E =所以12U U 是酉矩阵, 同理可证,21U U 也是酉矩阵. 推论1.2.1 设U 是酉矩阵,则k U (k 为正整数)是酉矩阵.推论1.2.2 设1U ,2U 是酉矩阵,则12U U ,21U U ;21'U U ,12'U U ;112U U -,112U U -;1121U U U -,1212U U U -也是酉矩阵.推论1.2.3 设1U ,2U 是酉矩阵,则*12U U ,*21U U 也是酉矩阵.推论1.2.4 设1U ,2U 是酉矩阵,则k 12U U ,k 21U U ,k m 12U U (k , m 为正整数)也是酉矩阵.定理1.2.4 设1U ,2U 是酉矩阵,若1212U U +E 是反Hermite 矩阵, 则12U U +也是酉矩阵, 因此1111212---U +U =U +U ()证明 因为12121221HH H U +U U +U =E +U U +U U +E ()()()12211122H H =E +U U +E +U U +E ()()E =因此,当1212U U +E 是是反Hermite 矩阵时, 1212HU +U U +U =E ()(),记12U +U 也是酉矩阵,从而-112U +U ()1212HH H =U +U =U +U ()-1-112=U +U注: 定理2.4表明, 酉矩阵的和未必是酉矩阵.1.2.2 酉矩阵的行列式定理1.2.5 设U 是酉矩阵,则其行列式的模等于1,即det 1U =,其中det U 表示U 的行列式.证明 由E H U U =得)(1U U det detE H ==detU detU H= gdetU U det = gdetU detU =2detU =从而1detU =.定理1.2.6 设1U , 2U 是酉矩阵,则12U 00U ⎡⎤⎢⎥⎣⎦1111U U -U U ⎡⎤⎢⎥⎣⎦也是酉矩阵.证明 因为HH 11H 22U 0U 0=0U 0U ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦-1-111-122U 0U 0=0U 0U ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦所以12U 00U ⎡⎤⎢⎥⎣⎦是酉矩阵. 因为H11111111U U U U -U U -U U ⎤⎤⎛⎫⎛⎫⎥⎥ ⎪ ⎪⎝⎭⎝⎭⎦⎦12HH H 1111HH H1111U -U 2U U 0U U 02U U ⎡⎤⎡⎤==⎥⎢⎥⎦⎣⎦ H 11H11E0U U 0==0E 0U U ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦1111U U -U U ⎡⎤⎥⎦是酉矩阵. 定理1.2.7 设U 是酉矩阵, 则对U 的任一行(列)乘以模为1的数或任两行(列)互换, 所得矩阵仍为酉矩阵.证明 设,1i j n U u u u u =(,,,,,)其中,1i j nu u u u ,,,,,是U 的两两正交单位向量. 显然,1i j n u u u u λ,,,,, (1λ=)以及,1i j nu u u u ,,,,,也都是U 的两两正交的单位向量. 由定义1.1.5知结论成立.1.2.3 酉矩阵的特征值与对角化定理1.2.8 设U 是酉矩阵, 则U 的特征值的模为1, 即分布在复平面的单位圆上. 证明 设Ux =x,x 0λ≠, 则由,H H H H U U E x U x λ==可得H x H H H x x x U U x xλλ==于是0H x x λλ=(1-)而0H x x ≠, 故1λλ=即1λ=定理1.2.9 设U 为酉矩阵, λ是U 的特征值, 则1λ是H U 的特征值, 而1λ是U 的特征值.证明 设λ是U 的特征值, 则由定理1.2.1知0λ≠于是-1H U =U 的特征值, 而又可知λ是U 的特征值, 但U 与H U =U '的特征值全部相同,因此λ是H U 的特征值, 所以1λ是H -1U =U ()的特征值.定理1.2.10 设U 是酉矩阵, 则属于U 的不同特征值的特征向量正交.证明 设ξ是U 的属于特征值λ的特征向量, η是U 的属于特征值μ的特征向量, 由,,H U U U U =E ξλξημη==可得=()()=()()=H H H H H H U U U U ξηξηξηλξμηλμξη=所以(1)0H λμξη-=而λη≠从而21λλλλμ==≠故0H ξη=, 即ξ与η正交.定理1.2.11 设U 是酉矩阵, 且为Hermite 矩阵, 则U 必为对合矩阵()2U =E , 从而U 的特征值等于1或-1. 证明 由E UU U U H H==),(得2U =E又因Hermite 矩阵的特征值为实数, 所以根据定理1.2.8得,U 的特征值等于-1或1.引理2.1设是n A M (R)∈, 则A 为正交矩阵的充要条件是存在酉矩阵U , 使=(,,)H U AU diag λλ, 其中()i i =1,n λ,的模为1.引理1.2.2 [9] 设n A M (R)∈,则A 为正交矩阵的充要条件是A 有n 个两两正交的单位特征向量n A C ∈, 且特征值的模为1.定理1.2.12 任一个n 阶酉矩阵U 一定正交相似于分块对角矩阵1111cos sin cos sin ,,,1,1,,1,1sin cos sin cos kk k k D diag θθθθθθθθ⎡⎤⎡⎤⎡⎤=--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,,其中0K ≥,cos sin j j j i λθθ=+, cos -sin j j j i λθθ=,cos -sin ;1,.j j j i j k λθθ==,是U 的所有不同的复特征值.证明 U 的所有特征值全为1±, 由引理1.2.1和引理1.2.2知U 一定正交相似于对角矩阵diag(1,,1-1,,-1),若U 有复特征值111cos +isin λθθ=则111cos -isin λθθ=也是U 的特征值. 因此可设有k 2复特征值.j j j cos +isin λθθ=, j j j cos -isin λθθ=,1,.j j j cos -isin j =,k λθθ=设j a 是属于j λ的单位特征向量, 则j a 属于λ的单位特征向量. 根据酉矩阵属于不同特征值的向量两两正交. 于是12k 12k ,,,,,,λλλλλλ互不相同, ,12k 12ka ,a ,a ,a ,a ,,a 两两正交, 令1),),12.j j j j j a +a r a -a j =,k β==易知j β与j r 为相互正交的实向量. 设2k+12k 2n a ,a ,,a +为U 的属于特征值1±的相互正交的单位实特征向量, 则1122k k 2k+12k 2n =(,r ,,r ,,,r ,a ,a ,,a )U βββ+为一个酉矩阵. 因为1(+)j j U a a β+)j j j j j j cos isin a cos isin )a θθθθ+-jjj j j a +a a a cos sin cos r sin θθβθθ-==-j ()a )rj j j j j j j j j j j j U a -a cos +isin cos -isin a sin +r cos θθθθβθθ= 所以AU =UA , 即A 正交相似于D .定理表明, 如果酉矩阵的特征根都是虚根, 则它在负数域上一定可对角化.1.2.4. 酉矩阵的其它性质定理1.2.13 设U 为上(下) 三角的酉矩阵, 则U 必为对角矩阵, 且主对角线上元素的模等于1.证明 不妨设U 为上三角的酉矩阵, 则其逆-1U (上三角)等于其共轭转置H U (下三角),所以U 只能是对角矩阵, 又H U U =E , 故可得U 的主对角线上元素的模等于1.定理1.2.14 设U =P+iQ 是酉矩阵, 其中P ,Q 为实矩阵, 则P Q '为实对称矩阵,且P P+Q Q=E ''.证明 由H H U U =(P+iQ)(P+iQ)=E可得P P+Q Q+i(P Q -Q P)=E ''''从而P P+Q Q=E ''及P Q =Q P ''即P Q '为实对称矩阵.酉矩阵与正交矩阵均有许多良好的性质, 它们在线性代数理论、优化理论、计算方法等方面都占有重要的地位.最近,研究了两个偶数阶正交矩阵之和是正交矩阵的充要条件问题, 并指出当A ,B 是奇数阶正交矩阵时, A+B 不可能是正交矩阵. 然而, 对酉矩阵来说, 结果有所不同. 下面我们将证明, 对给定的n 阶酉阵A , 一定存在n 阶酉阵B , 使A+B 是酉阵, 并给出酉阵B 的表达式.用n U 表示全体n 阶酉阵; n n C ⨯表示全体n 阶复矩阵.引理1.2.1复方阵A 酉相似于对角阵的充要条件是A 为复正规阵.证明 必要性显然. 充分性由schur 分解定理知, 任意复方阵A 必可酉相似于上三角阵, 即存在n 阶酉阵U , 使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n n C C C C C AU U λλλ 2232112121*(1-2-1)由条件**=AA A A 得AU U U A U U UA AU U *****⋅=⋅ (1-2-2) 把(1-2-1)及其共轭转置式代入等式(1-2-2)直接计算可得C 01<ij i j n=≤≤,从而A 酉相似于对角阵. 由于酉阵是复正规阵, 因此根据引理1知, 任一酉阵均酉相似于对角阵, 且对角线上元素的模长都为1.定理1.2.15已知n A M ∈有特征值12n ,,,λλλ那么存在一个酉矩阵U ,使得()H ij U AU =T =t其中,0ij j ij t t i >j λ==,,T 是上三角矩阵. 如果()n A M R ∈且A 的所有特征值都是实数, 那么, 可选择U 为实正交矩阵.设1()(1)(1)()n=A=a ,A =a ,定理成立. 假设n =k 定理也成立, 当n=k +1时. (+1)(+1)()ij k k A a ⨯=成立. 设1λ为A 的特征值, 1q 为它的单位特征向量, 由施密特正交化过程, 存在1321,,,,+k q q q q 使132,,,+k q q q 两两正交且构成k+1C 的标准正交基. 令112k 1=(,,,)U q q q +这是一个U 阵使⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=++++++11211112221211211111k H k H k H k k HHHk H H H H Aq q Aq q Aq q Aq q Aq q Aq q Aq q Aq q Aq q AU U由于1111,1H H 1j j Aq q ,q q q q j λθ===≠所以11*=0H 1U AU A λ⎡⎤⎢⎥⎣⎦由于1A 为k 阶矩阵, 由归纳假设, 存在k 阶U 矩阵2U , 使H 212U AU =T ,为上三角矩阵,令12100U =U U ⎛⎫⎪⎝⎭显然, U 为由阵 且11210*10001HH 2U AU U A U λ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦11*1001H22U A U λ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦ 12*0H212U U AU λ⎡⎤=⎢⎥⎣⎦ 121*0U T λ⎡⎤=⎢⎥⎣⎦是上三角阵, 由归纳原理可知定理成立, 对于实阵与是正交阵的证明第三节 酉矩阵的构造1.3.1 二阶酉矩阵的构造由定理1.1.2可知二阶矩阵A 为酉矩阵的充分必要条件是A 为下列三种形式之一 :(i)⎥⎦⎤⎢⎣⎡++2211sin cos 00sin cos ββi a i a(ii)⎥⎦⎤⎢⎣⎡++0sin cos sin cos 02211ββββi i (iii)⎥⎥⎦⎤⎢⎢⎣⎡++-+-+)sin (cos )sin (cos 1)sin (cos 1)sin (cos 4433222211θθθθθθθθi r i r i r i r这里123401,2r k θθθθππ<<+--=+且, k 为整数.通过上式可以构造二阶的酉矩阵.1.3.2通过运算性质构造酉矩阵由酉矩阵的运算性质知:(1) 若U 为酉矩阵, 则1,,,T U U U U λ-(其中λ的为单位根)都是酉矩阵.(2) 酉矩阵, 则12,U U 11212,U U U U -等也都是酉矩阵.(3) 酉矩阵, 且1212U U E +是反Hermite 矩阵, 则12U U +也是酉矩阵.通过这些运算性质可以构造出新的酉矩阵.1.3.3 利用施密特正交化构造酉矩阵矩阵的正规性是检验矩阵是否可对角化的一个简单方法,任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来,所有可在经过一个酉变换后变为对角矩阵都是正规矩阵.在高等代数中,我们知道实对称矩阵一定正交相似于对角矩阵,并且讨论过,对已知实对称矩阵A , 求正交矩阵T 使得AT T 1-为对角矩阵的一般歩骤,类似的我们可以讨论,当A 是正规矩阵时,求酉矩阵U ,使得AU U H 为对角矩阵,具体步骤如下:(1) 根n λλλ,, (21)(2) 求每一个相异特征值i λ的特征向量ii V λ;(3) chur 正交单位化的方法,求ii V λ的标准正交基in i i εεε,,,21 ; (4) 命),,(22111211sn n n U εεεεεε =则酉矩阵U 满足12Hn U AU λλλ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦若A 是正规矩阵,则A 能酉相似于对角矩阵,即存在酉矩阵U 使得Bdiag AU U n H ==)(21λλλ则H A UBU =于是()n H n H H H n H A UBU UBU UBU UBU UB U ===而对角矩阵B 的n 次幂是由各对角元素的n 次幂组成,所以通过A 的相似对角矩阵求n A .第二章 Hermite 矩阵为了论述方便,我们给出以下几个定义: 1.定义 矩阵A=[ija ]∈Mn(C)称为Hermite 矩阵,是指A=A*,其中A*=TA =[jia ]。
1-3 常见特殊矩阵讲解学习

设A∈SRn×n,如果对任意x∈Rn有xTAx≥(≤)0,则 称A为半正(负)定 (semi positive/negative definite) 矩阵,记做A≥(≤)0。
分块(block)对角矩阵:A=diag(A11,A22,…,Akk); 分块(block)上(下)三角矩阵; 分块上(下)三角矩阵的特征值是各对角块矩阵特征 值的并集,其逆矩阵仍然是分块上(下)三角矩阵。
2. 初等变换矩阵
第一类:A1=diag(1,…,1,a,1,…,1); 第二类:A2=I+beiejT; 第三类:A3=[e1,…,ei-1,ej,ei+1,…,ej-1,ei,ej+1,…,en]; 左行右列
对称半正定矩阵的特征值都大于等于0。
下列条件都等价:
1. A是半正定矩阵; 2. A的所有顺序主子式都大于等于0; 3. 存在矩阵C,使得A=CCT; 4. A对称,且所有特征值都非负。
设A是复Hermite矩阵,如果对任意x∈Cn都有 x*Ax>(<,≥,≤)0,则称A为正定(负定,半正定,半 负定)矩阵。
6. V=Rn,A>0, <x,y>=xTAy;a
在欧式空间中,称非负实数 x, x 为x的长度 (模、范数),记为||x||。
1. ||kx||=|k| ||x||; 2. ||x+y||=||x||+||y||; 3. ||<x,y>||≤||x|| ||y||。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
2011年合工大工程硕士《矩阵理论》考试范围与重要习题

2011年合工大工程硕士《矩阵理论》考试范围与重要习题1、两个子空间的直和例:设1V 和2V 分别是齐次方程组12...0n x x x +++=和12...n x x x ===的解空间,证明12V V V =⊕。
证明:因方程组12...0n x x x +++=和12...n x x x ===,只有零解,故{}120V V = ,从而21V V +=21V V ⊕,且21V V ⊕是V 的子空间,即21V V ⊕≤V 。
又1V 的维数是n-1,2V 的维数是1故21V V ⊕的维数是n 维,所以12V V V ⊕=。
注:任给一个V 的子空间1V ,可以找到子空间2V 使得:12V V V =⊕此式称为V 的一个直和分解,1V ,2V 称为互补空间2、 线性空间中线性变换的象空间与核例题1:证明:线性空间V 的线性变换T 的象空间和核都是V 的子空间 证明:V (),,,,()()()()()V 0k e r ()k e r (),k e r (),0,()0,k e r ()(),k e r ()k e r ()VT V x y V P x y V x V Tx Ty T x y T V Tx T x T V T V T T x y T P Tx Ty T x y Tx Ty x y T T x Tx x T T λλλλλλλλ∀∈∀∈+∈∈+=+∈=∈∈∀∈∀∈==+=+=+∈=∈因为非空,所以非空故是是的线性子空间因为所以非空因为所以非空则于是故故因此是的线性子空间。
例题2:线性空间V 中的线性变化T 的象空间和核的维数之和等于V 的维数 dim(T(V))+dim(ker(T))=dim(V)证明:设dim(V)=n dim(ker(T))=s 只需证明dim(T(V))=n-s 即可取ker(T)的一组基12s ,,...,x x x 再添加n-s 个向量将这组向量扩充为V 的一组基12s 122,,...,,,,...,,s s s x x x y y y +++112211n n112211n n11n n111...............(){,,...,}s s s s s s s s s s s s s x V x x x x y y Tx Tx Tx Tx Ty Ty Ty Ty T V Span Ty Ty Ty λλλμμλλλμμμμ+++++++++∀∈=++++++=++++++=++=对则现在只需证明12,,...,s s n Ty Ty Ty ++线性无关。
矩阵论

定义3.9 如果方阵A满足AH A=E,则称A为一个酉矩 定义 阵. 例如,矩阵
2 i 1 A= 2 −i 1
是一个酉矩阵. 正交矩阵是酉矩阵的特例,即当实矩阵A为酉矩阵时, A是正交矩阵. 酉矩阵有与正交矩阵平行的一系列性质: 性质1 方阵A为酉矩阵的充分必要条件是A-1= AH ; 性质 性质2 性质 若A为酉矩阵,则-A,A , AT, AH(A-1)也是酉 矩阵 ; 性质3 性质 若A,B都是n阶酉矩阵,则AB也是n阶酉矩阵; 性质4 若A为酉矩阵,则|A|的值是模为1的复数. 性质
列 j行 i列 i列 j行; i列; i列;
P[i, j (k )]左 乘A等于将A的第 右 2°以 P[i, j ]左 右
之k倍加于第
3°以
乘A等于互换A的i,j两 行.; . 列
二、向量组的线性相关性
线性相关:对 α1 , α2 ,⋯ , αs ,若有不全为 0的数k1,k2, …,ks,使 (*) k1α1 + k2 α2 + ⋯ + k s αs = 0 线性无关 ⇔ α1 , α2 ,⋯ , αs 不相关
1.3多项式的整除性
1.4多项式的根与标准分解
第2 节 方阵的特征值与特征向量 一.特征值与特征向量的概念
定义2.1 对于n 阶矩阵A=(aij),其主对角线上n个元素 定义 之和a11+a22+…+ann称为A的迹,记为trA. 迹 定义2.2 对于n 阶矩阵A=(aij),把含有字母λ的矩阵 定义 轾 a11 - a12 L λ- a1n 犏 犏 a21 λ - a22 L - a2n (3) λE λE - A = 犏 犏M M M 犏 犏a - an2 L λ - ann 臌 n1 称为A的特矩阵. 行列式 |λE- A|的值表达式 ψ(λ) 是一 个多项式,称为A的特征多项式.特征多项式的根称为的特 征值,亦称为特征根. 如果是特征多项式的单根,则称为单特征值,否则称 为重特征值
矩阵分析(3)

这里 , , 是 V 中任意向量,k 为任意实数
,只有当 0 时 (,) 0 ,我们称带有 这样内积的 n 维线性空间 V 为欧氏空间。
例 1 在 Rn 中,对于
(x1, x2 ,L , xn )T , ( y1, y2 ,L , yn )T
规定
( , ) T x1 y1 x2 y2 L xn yn
足
AT A AAT I 则称 A 是正交矩阵,一般记为 A Enn
例:
(1)
4 5
1 5
i
2 5
2 5
i
2 5
2 5
i
1 5
4 5
i
是一个酉矩阵
(2)
223
1 3
2
2
3 1
3 3 3
1
2
2
3 3 3
是一个正交矩阵
(3)
cos sin
sin cos
是一个正交矩阵
i 1
i 1
t
t
(4) (, kii ) ki (, i )
i 1
i 1
定义:设 V 是 n 维酉空间,i 为其一组
基底,对于V 中的任意两个向量
n
n
xii , y j j
i 1
j 1
那么 与 的内积
n
n
n
(, ) ( xii , yii ) xi y j (i , j )
例 2 设 C%[a, b] 表示闭区间 [a,b]上的所有
连续复值函数组成的线性空间,证明:对于
任意的 f (x), g(x) C%[a,b] ,我们有
b
b
2
b
2
a f (x)g(x)d (x) a f (x) d (x) a g(x) d ( x)
矩阵论小结

矩阵论线性空间定义:本质是个集合,满足一定条件卜•的集合。
首先定义了加法运算(满足加法的交换结合律),在这个集合中能找到零元素,与负元素;然后定义数乘运算(数域上的元素与集合当中的元素相乘),并且满足数乘的分配,结合律(集合中的兀素能否进行乘法运算并没有定义)。
最后指出,这些运算都是封闭的,运算的结果与集合中的九素唯一对应。
称这样的一个集合为线性空间。
注总:运算结果与集介中的元素对应。
例如0*a=0 (此零非彼零,不是数域里的零,而是线性空间当中的零,即集合当中的零元素<很可能不是零〉)核空间:矩阵A对应于齐次线性方程组Ax=O的解空间。
子空间:线性空间对应集合的一个子集,并且也满足线性空间的定义的一个子集。
其中,冬空间,与线性空间本身构成平凡子空间,还存在的其他子空河构成非平凡子空间。
矩阵A的核空间就是他的•个子空间,相当于对矩阵A构成的空间中的尤素进行了限定。
矩阵A的列向量的线性组介构成了矩阵A的值域空间(其中的基为最人无关组的个数)。
注意:子空间交,与子空间的和任然为子空间,但子空间的并集不一定再是子空间。
属于两个子空间的线性无关的两个基的并基构成新的元素,但是这个元素不在属于原来的两个子空间的任意一个。
子空间中的几个等价定义:(1)直和定义为VI与V2的交空间只包含零元素(不一定是数字零),构成零子空间(2)直和空间中的元素表达式唯一。
(3)VI的基于V2的基直接构成直和空间的基。
(4)和空间的维度等于VI巧V2维度的和。
线性映射性质:(1)VI的零元素经过线性映射变为V2的零元素(2 )线性相关组经过线性映射之后任然为线性相关(3)线性无关组经过单射线性映射后任然为线性无关同构:两个线性空间之间存在一个一一对应的线性变换,则称这两个矩阵是同构的。
相应的线性变换称为同构映射。
任一线性空间都能够找到一个数域向量与其同构,这个向最就是坐标。
线性变换T的秩,线性映射的坐标表示:T表示线性空间到线性空间的映射,在貝体的基底下(两个线性空间基都确定的情况),可以由一个矩阵A表示T,为V到V '的线性映射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在矩阵理论中,经常利用矩阵来描述变换.在实空间中正交变换保持度量不变,而正交变换中对应的变换矩阵就是正交矩阵,所以对正交矩阵的研究就显得格外重要.同样道理,想要得到复空间中保持度量不变的线性变换,就应该对正交变换进行推广,将其推广到复数域上,那对应的正交矩阵相应的也推广到复数域上就是酉矩阵.本文通过矩阵理论的研究,对正交矩阵与酉矩阵进行比较,得到了酉矩阵的若干结果.
正交矩阵是一类重要的实矩阵,由于它的一些特殊性质,使得它在不同的领域都有着广泛的作用,也推动了其它学科的发展.本文从矩阵理论的角度,探讨正交矩阵的常用性质以及正交矩阵在数学方面的一些应用。
以酉矩阵的定义为基础,对酉矩阵的性质等进行研究,通过对这些问题的研讨,为酉矩阵的构造奠定了基础.在实际应用方面,若要应用酉矩阵解决实际问题,快速地构造一个酉矩阵就显得及其重要.
本文对酉矩阵的性质及构造展开研究. 根据矩阵理论, 通过查阅图书、电子书库, 以及对以前的知识进行归纳总结, 深入理解, 进行深入的研究, 从而对酉矩阵有了新的认识, 总结一些结论. 在代数性质方面包括:酉矩阵的特征根、对角化、判断方法及酉矩阵的等价条件等. 在运算性质方面包括:酉矩阵的逆、转置矩阵、方幂、数乘、矩阵乘、伴随矩阵等是否仍为酉矩阵. 在酉矩阵的构造方面:以酉矩阵的定义为基础, 对酉矩阵的性质等进行研究, 通过对这些问题的探讨, 为酉矩阵的构造奠定了基础. 在实际应用方面, 若要应用酉矩阵解决实际问题, 快速地构造出一个酉矩阵就显得极其重要, 本文给出了构建酉矩阵的五种方法, 并对应相应的构造方法给出证明. 通过本文的研究对酉矩阵的构造有了进一步的认识.。