各种排序的时间复杂度

合集下载

各种排序的时间复杂度

各种排序的时间复杂度

排序算法所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

分类在计算机科学所使用的排序算法通常被分类为:计算的复杂度(最差、平均、和最好表现),依据串列(list)的大小(n)。

一般而言,好的表现是O。

(n log n),且坏的行为是Ω(n2)。

对於一个排序理想的表现是O(n)。

仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。

记忆体使用量(以及其他电脑资源的使用)稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。

也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。

一般的方法:插入、交换、选择、合并等等。

交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。

选择排序包含shaker排序和堆排序(heapsort)。

当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。

然而,假设以下的数对将要以他们的第一个数字来排序。

(4, 1) (3, 1) (3, 7) (5, 6)在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。

不稳定排序算法可以被特别地时作为稳定。

作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。

然而,要记住这种次序通常牵涉到额外的空间负担。

排列算法列表在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。

稳定的冒泡排序(bubble sort)— O(n2)鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)插入排序(insertion sort)— O(n2)桶排序(bucket sort)— O(n); 需要 O(k) 额外记忆体计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外记忆体归并排序(merge sort)— O(n log n); 需要 O(n) 额外记忆体原地归并排序— O(n2)二叉树排序(Binary tree sort)— O(n log n); 需要 O(n) 额外记忆体鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体基数排序(radix sort)—O(n·k); 需要 O(n) 额外记忆体Gnome sort — O(n2)Library sort — O(n log n) with high probability, 需要(1+ε)n 额外记忆体不稳定选择排序(selection sort)— O(n2)希尔排序(shell sort)— O(n log n) 如果使用最佳的现在版本Comb sort — O(n log n)堆排序(heapsort)— O(n log n)Smoothsort — O(n log n)快速排序(quicksort)—O(n log n) 期望时间, O(n2) 最坏情况; 对於大的、乱数串列一般相信是最快的已知排序Introsort — O(n log n)Patience sorting —O(n log n + k) 最外情况时间, 需要额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)不实用的排序算法Bogo排序—O(n × n!) 期望时间, 无穷的最坏情况。

时间复杂度分析及常用算法复杂度排名

时间复杂度分析及常用算法复杂度排名

时间复杂度分析及常用算法复杂度排名随着计算机技术的不断发展,人们对于算法的效率也提出了更高的要求。

好的算法可以大大地提高程序的运行效率,而坏的算法则会导致程序运行缓慢,浪费更多的时间和资源。

因此,在实际的开发中,需要对算法的效率进行评估和分析。

其中,时间复杂度是评估算法效率的重要指标之一,接下来就让我们来探讨一下时间复杂度分析及常用算法复杂度排名。

一、时间复杂度时间复杂度,简称时间复杂度,是指在算法中用来衡量算法运行时间大小的量。

通常情况下,时间复杂度用 O(n) 来表示,其中n 表示输入数据规模的大小。

由于常数系数和低次项不会对时间复杂度的大致表示产生影响,因此,时间复杂度的精确算法往往会被简化为最高次项的时间复杂度,即 O(n)。

二、时间复杂度的分析时间复杂度可以通过算法中的循环次数来分析。

一般来说,算法中的循环分为两种情况:一种是 for 循环,一种是 while 循环。

因为 for 循环的循环次数一般是固定的,因此可以通过循环次数来估算时间复杂度;而 while 循环的循环次数取决于输入数据的大小,因此时间复杂度的分析需要基于输入数据的规模进行分析和推导。

三、时间复杂度的常见表示法在实际的算法分析中,常常用到以下几种时间复杂度表示法:常数阶 O(1)、对数阶 O(logn)、线性阶 O(n)、线性对数阶 O(nlogn)、平方阶 O(n^2)、立方阶 O(n^3)、指数阶 O(2^n) 等。

常数阶 O(1):表示算法的时间不随着输入规模的增加而增加,即不论输入数据的大小,算法的运行时间都是固定的。

例如,最好的情况下,二分查找的时间复杂度即为 O(1)。

对数阶 O(logn):表示算法的时间复杂度随着输入规模的增加而增加,但增长比较缓慢,即随着输入规模的每增加一倍,算法所需的运行时间大致增加一个常数。

例如,二分查找的时间复杂度即为 O(logn)。

线性阶 O(n):表示算法的时间复杂度随着输入规模的增加而增加,增长速度与输入规模成线性比例关系。

排序—时间复杂度为O(n2)的三种排序算法

排序—时间复杂度为O(n2)的三种排序算法

排序—时间复杂度为O(n2)的三种排序算法1 如何评价、分析⼀个排序算法?很多语⾔、数据库都已经封装了关于排序算法的实现代码。

所以我们学习排序算法⽬的更多的不是为了去实现这些代码,⽽是灵活的应⽤这些算法和解决更为复杂的问题,所以更重要的是学会如何评价、分析⼀个排序算法并在合适的场景下正确使⽤。

分析⼀个排序算法,主要从以下3个⽅⾯⼊⼿:1.1 排序算法的执⾏效率1)最好情况、最坏情况和平均情况时间复杂度待排序数据的有序度对排序算法的执⾏效率有很⼤影响,所以分析时要区分这三种时间复杂度。

除了时间复杂度分析,还要知道最好、最坏情况复杂度对应的要排序的原始数据是什么样的。

2)时间复杂度的系数、常数和低阶时间复杂度反映的是算法执⾏时间随数据规模变⼤的⼀个增长趋势,平时分析时往往忽略系数、常数和低阶。

但如果我们排序的数据规模很⼩,在对同⼀阶时间复杂度的排序算法⽐较时,就要把它们考虑进来。

3)⽐较次数和交换(移动)次数内排序算法中,主要进⾏⽐较和交换(移动)两项操作,所以⾼效的内排序算法应该具有尽可能少的⽐较次数和交换次数。

1.2 排序算法的内存消耗也就是分析算法的空间复杂度。

这⾥还有⼀个概念—原地排序,指的是空间复杂度为O(1)的排序算法。

1.3 稳定性如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变,那么这种排序算法叫做稳定的排序算法;如果前后顺序发⽣变化,那么对应的排序算法就是不稳定的排序算法。

在实际的排序应⽤中,往往不是对单⼀关键值进⾏排序,⽽是要求排序结果对所有的关键值都有序。

所以,稳定的排序算法往往适⽤场景更⼴。

2 三种时间复杂度为O(n2)的排序算法2.1 冒泡排序2.1.1 原理两两⽐较相邻元素是否有序,如果逆序则交换两个元素,直到没有逆序的数据元素为⽌。

每次冒泡都会⾄少让⼀个元素移动到它应该在的位置。

2.1.2 实现void BubbleSort(int *pData, int n) //冒泡排序{int temp = 0;bool orderlyFlag = false; //序列是否有序标志for (int i = 0; i < n && !orderlyFlag; ++i) //执⾏n次冒泡{orderlyFlag = true;for (int j = 0; j < n - 1 - i; ++j) //注意循环终⽌条件{if (pData[j] > pData[j + 1]) //逆序{orderlyFlag = false;temp = pData[j];pData[j] = pData[j + 1];pData[j + 1] = temp;}}}}测试结果2.1.3 算法分析1)时间复杂度最好情况时间复杂度:当待排序列已有序时,只需⼀次冒泡即可。

常用排序算法的时间复杂度和空间复杂度

常用排序算法的时间复杂度和空间复杂度

常⽤排序算法的时间复杂度和空间复杂度以上快速排序和归并排序的空间复杂度不正确没有的参考图1,以图2为准(对,就是懒得重新画图了)排序法最差时间分析平均时间复杂度稳定度空间复杂度冒泡排序O(n2)O(n2)稳定O(1)快速排序O(n2)O(n*log2n)不稳定O(log2n)~O(n)选择排序O(n2)O(n2)稳定O(1)⼆叉树排O(n2)O(n*log2n)不稳定O(n)序插⼊排序O(n2)O(n2)稳定O(1)堆排序O(n*log2n)O(n*log2n)不稳定O(1)希尔排序O O不稳定O(1)1.插⼊排序由N-1趟排序组成,对于p=1到p=N-1趟,插⼊排序保证从位置0到位置p上的元素为已排序状态。

时间复杂度:O(N^2)代码void InsertionSort(ElementType A[],int N){int j,p;ElementType Tmp;for(p=1;p<N;p++){Tmp=A[j];//把A[j]保存下来,因为它要被插⼊到前⾯的某个位置去for(j=p;j>0&&A[j-1]>Tmp;j--)//⼤于A[j]的元素逐个后移{A[j]=A[j-1];}A[j]=Tmp;}}2.希尔排序希尔排序使⽤⼀个序列h1,h2,h3,ht,叫做增量排序。

在使⽤增量hk的⼀趟排序之后,对于每个i我们有A[i]<A[i+hk],所有相隔hk的元素被排序。

时间复杂度:O(N^(1+a)),其中0<a<1。

//代码不太好理解,使⽤了3层循环void ShellSort(ElementType A[],int N){int j,p,Increment;ElementType Tmp;for(Increment=N/2;Increment>0;Increment/=2){for(p=Increment;p<N;p++){Tmp=A[p];for(j=p;j>=Increment;j-=Increment){if(A[j]<A[j-Increment])A[j]=A[j-Increment];elsebreak;}A[j]=Tmp;}}}3. 堆排序思想:建⽴⼩顶堆,然后执⾏N次deleteMin操作。

各种内排序算法的实验心得

各种内排序算法的实验心得

各种内排序算法的实验心得
1. 冒泡排序
冒泡排序是一种简单的排序算法,但它的时间复杂度为O(n^2),在处理大量数据时效率很低。

在实验过程中,我发现当数据量较小时,冒泡排序的效率其实还是不错的,但一旦数据量增加,它的效率就明显下降了。

2. 插入排序
插入排序的时间复杂度也是O(n^2),类似于冒泡排序。

但是插入排序比冒泡排序更快,因为它每次只需要比较一个元素。

在实验中,我发现当数据量比较小且有序时,插入排序的效率非常高,但如果数据量较大且随机分布,效率就会明显下降。

3. 选择排序
选择排序同样是时间复杂度为O(n^2)的算法,但是它比冒泡排序和插入排序都要快。

在实验中,我发现当数据量很大时,选择排序的效率比较稳定,但是当数据量比较小时,它的效率反而不如插入排序。

4. 快速排序
快速排序是一种常用的排序算法,它的时间复杂度为O(nlogn),比冒泡、插入和选择排序都要快。

在实验中,我发现当数据量比较大时,快速排序的效率非常高,但是当数据量比较小时,它的效率反而不如插入排序和选择排序。

5. 归并排序
归并排序与快速排序的时间复杂度相同,都是O(nlogn)。

但是归并排序比快速排序更稳定,因为它的最坏时间复杂度是O(nlogn)。

在实验中,我发现当数据量比较大时,归并排序的效率非常高,而且在处理大量数据时表现优异。

6. 基数排序
基数排序是一种特殊的排序算法,它适用于数据量较大且每个元素长度相同的情况。

在实验中,我发现基数排序的效率非常高,尤其是对于大量数据的排序。

但需要注意的是,基数排序无法处理字符串等非数字类型的数据。

几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较1.选择排序:不稳定,时间复杂度 O(n^2)选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。

这样,经过i遍处理之后,前i个记录的位置已经是正确的了。

2.插入排序:稳定,时间复杂度 O(n^2)插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。

第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。

要达到这个目的,我们可以用顺序比较的方法。

首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。

图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。

3.冒泡排序:稳定,时间复杂度 O(n^2)冒泡排序方法是最简单的排序方法。

这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。

在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。

所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。

如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。

显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。

在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。

一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。

4.堆排序:不稳定,时间复杂度 O(nlog n)堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。

各种排序算法的时间复杂度和空间复杂度(阿里)

各种排序算法的时间复杂度和空间复杂度(阿里)

各种排序算法的时间复杂度和空间复杂度(阿⾥)⼆分查找法的时间复杂度:O(logn) redis,kafka,B+树的底层都采⽤了⼆分查找法参考:⼆分查找法 redis的索引底层的跳表原理实现参考:⼆分查找法参考:⼆分查找法:1.⼆分查找⼆分查找也称为折半查找,它是⼀种效率较⾼的查找⽅法。

⼆分查找的使⽤前提是线性表已经按照⼤⼩排好了序。

这种⽅法充分利⽤了元素间的次序关系,采⽤分治策略。

基本原理是:⾸先在有序的线性表中找到中值,将要查找的⽬标与中值进⾏⽐较,如果⽬标⼩于中值,则在前半部分找,如果⽬标⼩于中值,则在后半部分找;假设在前半部分找,则再与前半部分的中值相⽐较,如果⼩于中值,则在中值的前半部分找,如果⼤于中值,则在后半部分找。

以此类推,直到找到⽬标为⽌。

假设我们要在 2,6,11,13,16,17,22,30中查找22,上图所⽰,则查找步骤为:⾸先找到中值:中值为13(下标:int middle = (0+7)/2),将22与13进⾏⽐较,发现22⽐13⼤,则在13的后半部分找;在后半部分 16,17,22,30中查找22,⾸先找到中值,中值为17(下标:int middle=(0+3)/2),将22与17进⾏⽐较,发现22⽐17⼤,则继续在17的后半部分查找;在17的后半部分 22,30查找22,⾸先找到中值,中值为22(下标:int middle=(0+1)/2),将22与22进⾏⽐较,查找到结果。

⼆分查找⼤⼤降低了⽐较次数,⼆分查找的时间复杂度为:O(logn),即。

⽰例代码:public class BinarySearch {public static void main(String[] args) {int arr[] = {2, 6, 11, 13, 16, 17, 22, 30};System.out.println("⾮递归结果,22的位置为:" + binarySearch(arr, 22));System.out.println("递归结果,22的位置为:" + binarySearch(arr, 22, 0, 7));}//⾮递归static int binarySearch(int[] arr, int res) {int low = 0;int high = arr.length-1;while(low <= high) {int middle = (low + high)/2;if(res == arr[middle]) {return middle;}else if(res <arr[middle]) {high = middle - 1;}else {low = middle + 1;}}return -1;}//递归static int binarySearch(int[] arr,int res,int low,int high){if(res < arr[low] || res > arr[high] || low > high){return -1;}int middle = (low+high)/2;if(res < arr[middle]){return binarySearch(arr, res, low, middle-1);}else if(res > arr[middle]){return binarySearch(arr, res, middle+1, high);}else {return middle;}}}其中冒泡排序加个标志,所以最好情况下是o(n)直接选择排序:排序过程:1 、⾸先在所有数据中经过 n-1次⽐较选出最⼩的数,把它与第 1个数据交换,2、然后在其余的数据内选出排序码最⼩的数,与第 2个数据交换...... 依次类推,直到所有数据排完为⽌。

二分归并排序的时间复杂度以及递推式

二分归并排序的时间复杂度以及递推式

一、简介二分归并排序是一种常见的排序算法,它通过将问题分解为子问题,并将子问题的解合并来解决原始问题。

该算法的时间复杂度非常重要,因为它直接影响算法的效率和性能。

在本文中,我们将深入探讨二分归并排序的时间复杂度,并通过递推式来进一步分析算法的性能。

二、二分归并排序的时间复杂度1. 分析在二分归并排序中,时间复杂度可以通过以下三个步骤来分析:- 分解:将原始数组分解为较小的子数组。

- 解决:通过递归调用来对子数组进行排序。

- 合并:将排好序的子数组合并为一个整体有序的数组。

2. 时间复杂度在最坏情况下,二分归并排序的时间复杂度为O(nlogn)。

这是因为在每一层递归中,都需要将数组分解为两个规模近似相等的子数组,并且在每一层递归的最后都需要将这两个子数组合并起来。

可以通过递推式来进一步证明算法的时间复杂度。

3. 递推式分析我们可以通过递推式来分析二分归并排序的时间复杂度。

假设对规模为n的数组进行排序所需的时间为T(n),则可以得到以下递推式:T(n) = 2T(n/2) +其中,T(n/2)表示对规模为n/2的子数组进行排序所需的时间表示将两个子数组合并所需的时间。

根据递推式的定义,我们可以得到二分归并排序的时间复杂度为O(nlogn)。

三、结论与个人观点通过以上分析,我们可以得出二分归并排序的时间复杂度为O(nlogn)。

这意味着该算法在最坏情况下也能保持较好的性能,适用于大规模数据的排序。

我个人认为,二分归并排序作为一种经典的排序算法,其时间复杂度的分析对于理解算法的工作原理和性能至关重要。

通过深入研究递推式,可以更加直观地理解算法的性能表现,为进一步优化算法提供了重要的参考依据。

四、总结在本文中,我们探讨了二分归并排序的时间复杂度,通过分析和递推式的方式深入理解了该算法的性能表现。

通过对时间复杂度的分析,我们对算法的性能有了更深入的认识,并且能够更好地理解算法在实际应用中的表现。

相信通过本文的阅读,读者能够对二分归并排序有更全面、深刻和灵活的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—0(n+k);需要0(k)额外记忆体
基数排序(radix sort)—
0(n•k);需要0(n)
额外记忆体
Gnome sort—0(n 2)
Library sort——0(n log n) with high probability,
忆体
需要(1+&)n
不稳定
选择排序(selecti on sort
)—0(n2)
额外记
(shell sort)—0(n log n)如果使用最佳的现在版本
Comb sort—0(n log n)
堆排序(heap sort)—0(n log n)
Smoothsort—0(n log n)
快速排序(quicksort) —O(n log n)期望时间,0(n2)最坏情况;对於大的、
排列算法列表
在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。 稳定的
冒泡排序(bubble sort)—0(n2)
排序(Cocktail sort,双向的冒泡排序)一0(n2)
(in serti on sort)—0(n2)
桶排序(bucket sort)—0(n);需要0(k)额外记忆体
从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
/ \
重复2号步骤,直至原数列为空。
插入排序的平均为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成
果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。
冒泡排序
冒泡排序是这样实现的:
首先将所有待排序的数字放入工作列表中。
(3, 1) (3, 7) (4, 1) (5, 6)(维持次序)
(3, 7) (3, 1) (4, 1) (5, 6)(次序被改变)
不稳定排序算法可能会在相等的键值中改变纪录的相对次序, 但是稳定排序算法 从来不会如此。不稳定排序算法可以被特别地时作为稳定。 作这件事情的一个方 式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较, 就会 被决定使用在原先资料次序中的条目, 当作一个同分决赛。然而,要记住这种次 序通常牵涉到额外的
稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。 也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原
本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。交换排序包含(bubble sort)和
乱数串列一般相信是最快的已知排序
In trosort—0(n log n)
Patienee sorting—0(n log n+k)最外情况时间,需要额外的0(n+k)空间,也需要找至U最长的递增子序列(longest increasing subsequenee
不实用的排序算法
Bogo排序一0(nxn!)期望时间,无穷的最坏情况。
从列表的第一个数字到倒数第二个数字, 逐个检查:若某一位上的数字大于他的
下一位,则将它与它的下一位交换。
重复2号步骤,直至再也不能交换。
冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实
现的算法。
选择排序
选择排序是这样实现的:
设数组内存放了n个待排数字,数组下标从1开始,到n结束。
求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求 稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较
小范围内的排序算法。
插入排序
冒泡排序
选择排序
快速排序
堆排序
归并排序
基数排序
希尔排序
插入排序 插入排序是这样实现的:
首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")<
(quicksort)。包含shaker排序和(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假 设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的 次序,而另外一个则没有:
计数排序(counting sort)—0(n+k);需要0(n+k)额外记忆体
(merge sort)—0(n log n);需要0(n)额外记忆体
原地归并排序一0(n2)
排序 (Binary tree sort)
0(n log n);需要
0(n)额外记忆体
鸽巢排序(Pigeonhole sort)
所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减
的排列起来的操作。
分类
在计算机科学所使用的排序算法通常被分类为:
计算的复杂度(最差、平均、和最好表现),依据串列(list)的大小(n)。一般而言,好的表现是Q (n log n),且坏的行为是Q(n2)。对於一个排序理 想的表现是0(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少 需要Q(n log n)。
i=1
从数组的第i个元素开始到第n个元素,寻找最小的元素。
将上一步找到的最小元素和第i位元素交换。
如果i=n—1算法结束,否则回到第3步
选择排序的平均时间复杂度也是0(n2)的。
Stupid sort—0(n3);递回版本需要0(n2)额外记忆体
Bead sort—0(n) or0(Vn),但需要特别的硬体
Pan cake sorti ng—0( n),但需要特别的硬体
排序的算法
排序的算法有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常
见的排序算法。这里面插入排序和冒泡排序又被称作简单排序,他们对空间的要
相关文档
最新文档