共振现象及其应用
共振的原理现象及应用

共振的原理现象及应用
共振是指物体在受到外力的作用下,振动频率与外力频率接近甚至完全相等时,振动幅度会显著增大的现象。
共振的原理是基于物体的固有频率和外力频率接近时,外力对物体的周期性作用会使物体振动幅度逐渐增大。
当外力频率与物体的固有频率完全一致时,振动幅度达到最大值,这就是共振现象。
共振现象在日常生活和科学研究中有许多重要的应用。
以下列举几个常见的应用:
1. 声学:共振是音箱、乐器等声学设备的基本原理。
当谐振腔中的空气柱振动频率与声源频率匹配时,共振现象会导致声音的放大。
2. 结构工程:共振现象对于建筑和桥梁等结构的设计和评估非常重要;例如,桥梁的自然频率不能与行车的频率相匹配,否则会导致共振现象出现,从而引发结构破坏。
3. 电子学:共振现象在电路中的应用非常广泛。
例如,无线电接收器中的天线和谐振电路会选择性地放大特定频率的信号。
4. 医学成像:核磁共振成像(MRI)是一种利用共振现象来生成人体内部图像的技术。
通过外加磁场和电磁波,可以激发人体内部的核自旋共振,并通过检测
返回信号来生成图像。
5. 传感器:共振传感器利用共振现象来检测物体的重量、压力、应力等物理量。
当被测量物体与传感器的共振频率匹配时,传感器的振幅或频率会发生变化,从而实现测量。
总之,共振现象的应用非常广泛,涵盖了声学、结构工程、电子学、医学等各个领域。
通过合理利用共振,可以实现很多实用、高效的技术和设备。
共振现象在实际生活中的应用

共振现象在实际生活中的应用
1、收音机的调谐就是利用共振来接收某一频率的电台广播。
2、弦乐器的琴身和琴筒,当短频率与长频率出现倍数的关系时,就会产生共振,成为用来增强声音的共鸣器。
3、股市技术分析中存在的共振现象往往能提供非常有效的介入时机。
4、消声器利用共振吞掉噪声,而且还能转变为热量来进行使用。
5、女高音高频的歌声会造成玻璃杯周遭的空气分子随之振动,并且频率与其共振频率相同,于是这个玻璃杯也会随之发生振动。
而这名歌唱家的嗓音足够嘹亮,玻璃杯就可能因为大幅度的振动而碎裂。
共振现象的原理:
荷兰科学家贺金斯所发现的共振原理:当两种有着不同周期的物质能量相遇时,振动韵律强大的物质会使较弱的一方以同样的速率振动,而形成同步共振现象。
也就是说,强大韵律的振动,投射到另一有相对应频率的物体上,因此振动韵律弱的物体由于受到相对应频率之周期性的刺激,因而与较强的物体产生共鸣而振动。
一切的振动其表现形式必然是位移,其背后则必然是能量的流动。
普朗克的能量公式说明,振动频率越高,它的能量越强。
共振在生活中的例子

共振在生活中的例子
共振是物理学中的一个重要现象,但是它也存在于生活中。
下面是几个共振在生活中的例子:
1. 摇摆:当摇摆被推动时,它会在特定的频率下摆动。
如果在
摆动时不断给予恰当的力量,摇摆会继续摆动,并且振幅会不断增加,直到达到最大值。
这就是共振现象。
2. 歌唱:如果两个人在唱同一首歌,并且唱的音调非常接近,
这两个声波就会发生共振。
这意味着两个声波会互相增强,使得声音更加响亮。
3. 演奏乐器:当一个乐器演奏时,它会产生一定的频率。
如果
在附近有另一个相同类型的乐器演奏,两个乐器就会发生共振。
这种共振可以让声音更加深厚和响亮。
4. 桥梁崩塌:当桥梁的频率与外部力的频率相同时,桥梁就会
发生共振。
这会导致桥梁发生振动,可能导致崩塌。
5. 玻璃碎裂:玻璃杯的频率通常是一个固定的值。
如果在附近
有一个频率与玻璃杯相同的声源,声波就会与玻璃杯的频率发生共振,导致玻璃杯破碎。
这些例子表明共振不仅在物理学中存在,而且在生活中也非常普遍。
了解共振现象可以帮助我们更好地理解我们周围的世界。
- 1 -。
共振现象原理及应用

共振现象原理及应用共振现象是指在外界作用下,系统的振动响应达到最大的现象。
其原理主要涉及系统的固有频率、振幅和阻尼等关键因素。
共振现象在各个领域都有广泛的应用,如物理学、工程学、生物学等。
下面将从原理和应用两方面进行详细介绍。
一、原理:1. 固有频率:共振现象的基础是系统的固有频率。
系统固有频率是指在没有外界干扰下,系统自由振动的频率。
当外界作用频率与系统的固有频率匹配时,系统会发生共振现象。
2. 振幅:共振现象的明显特点是振幅增大。
当外界作用频率与系统的固有频率匹配时,由于能量输入与损耗相平衡,系统振幅不断变大。
3. 阻尼:阻尼是影响共振现象的重要因素。
有阻尼时,系统振幅的增长速度会受到阻尼的影响,并且随着阻尼的增加,共振效应逐渐减弱。
4. 能量传递:共振现象涉及能量的传递。
外界作用频率与系统固有频率匹配时,能量会以最高效率传递给系统,从而使系统振幅不断增大。
二、应用:1. 物理学应用:(1) 光学:共振现象在光学中有重要应用,如衍射格点、光纤共振器等。
其中,衍射格点可以通过改变物体的结构或尺寸来改变物体对特定波长的反射性能,是光学共振的基本原理之一。
(2) 声学:共振现象在声学领域中有广泛应用,如乐器的共鸣箱、声纳设备、共振腔等。
共振现象使得声波能够集中能量并传播得更远。
(3) 电子学:共振现象在电子电路中也有应用,如电子滤波器、放大器等。
共振电路可以选择性地放大或滤除特定频率的信号。
2. 工程学应用:(1) 振动控制:共振现象在工程振动控制中常使用,通过调节工程结构的固有频率或改变外界激励频率,可以减小或避免共振引发的破坏性振动。
(2) 能量传输:共振现象有助于能量传输的增强。
如利用声学共振现象,可以实现超声波清洗器、超声波焊接等工艺。
(3) 结构识别:共振现象可以被用于结构的识别和检测。
通过观察系统的共振频率和振幅变化,可以判断结构的完整性和损伤情况。
3. 生物学应用:(1) 医学成像:共振现象被广泛应用于医学成像技术中,如核磁共振成像(MRI)。
共振现象及其应用

一 共振的现象
显然,和尚的朋友深通物理知识,他不仅知道这是一种共振现象, 而且知道如何消除这种现象.他巧妙地在磬上锉了几下,这就改变了磬的 固有频率,使磬与钟的频率不再一样,也就引 不起共鸣了.
共振现象及其应用
一 共振的现象
荡秋千 秋千是个摆,有它的固有频率.轻推一下使秋千微微摆动起来以后, 只要按它的固有频率周期性地施加推力,每当它往前摆时轻轻推它一下, 尽管每次的推力都很小,经过一段时间,秋千也会荡得很高,即发生了共 振.
共振现象及其应用
三 共振的危害
1906年的一天,一队俄国骑兵齐步通过彼得堡封塔克河上的爱纪毕 特桥,突然大桥断裂.原来是士兵们整步走的频率与桥的频率一致,引 起了桥的共振.
共振现象及其应用
三 共振的危害
自从揭示了毁桥的原因后,各国军队规定,过桥时不用整齐的步 伐走,而用不整齐的碎步走,以避免共振的发生.
共振现象及其应用
三 共振的危害 机器损坏
机器在工作时由于零部件的运动 (如活塞轴的转动),也会产生周期性 的策动力,使机器 因共振而受到损坏.
共振现象及其应用
三 共振的危害
为了避免共振,设计时要注意机器的转速,使机器的 固有频率不与策动 力的频率接近.
共振现象及其应用
三 共振的危害
在厂房、桥梁等建筑物的设计 时,也要考虑到共振的因素而尽量 设法避免共振.
磬无故而鸣,使和尚大为惊奇,渐渐由惊而疑,由疑而怯 ,一听到磬发出声音,就坐卧不安,心惊肉跳,以为是妖孽作怪 ,结果忧虑成疾,病倒在床.
共振现象及其应用
一 共振的现象
一天,和尚向前来探望他的朋友诉说了内心的忧虑.正在说话 时,寺院里的钟声响了,说来奇怪,磬也发出了嗡嗡的响声.
共振的原理以及应用

共振的原理以及应用共振是指当一个物体或系统的外力与其固有的频率相符时,物体或系统将以较大的振幅进行振动的现象。
共振现象存在于各个领域,如物理学、工程学、声学、电子学等,并在许多实际应用中具有重要意义。
f=1/(2π√(m/k))其中,f为谐振子的振动频率,m为质点的质量,k为弹簧的弹性系数。
当外力的频率与谐振子的固有频率相符时,即f=f0,共振现象将发生。
共振现象在实际应用中具有多种重要的应用。
首先,共振在声学中有广泛的应用。
共振箱体是一种用于增强声音的装置,其工作原理就是利用共振现象。
共振箱体可以调整其大小和形状以匹配所需的共振频率,从而增强特定频率的声音。
共振现象还广泛应用于声学传感器中,通过测量共振频率的变化来检测环境条件或材料的性质。
其次,共振在电子学中有重要的应用。
共振电路是一种能够选择性地增强或抑制特定频率的电路。
共振电路通常由电感和电容组成,其共振频率由它们的参数决定。
共振电路广泛应用于无线通信、调谐器、滤波器等电子设备中。
此外,共振在工程学中的应用也非常重要。
例如,建筑物结构设计中的共振需要仔细考虑,以避免共振频率与外界的激励频率相符,从而导致结构破坏。
在机械领域,共振筛选器被用于对颗粒进行筛选,通过将筛子的共振频率与待筛颗粒的频率匹配,可以有效地提高筛选效果。
此外,共振还在医学、天文学等领域有重要的应用。
在医学中,共振成像技术如磁共振成像(MRI)和超声共振成像(Ultrasound Resonance Imaging)被广泛应用于诊断和治疗。
在天文学中,共振轨道是行星和卫星之间相互作用的重要机制,通过共振的作用,行星和卫星可以保持稳定的轨道运动。
总之,共振现象不仅在物理学中有着重要的原理基础,而且在各个领域都有广泛的应用。
通过合理利用共振现象,可以实现许多实际应用,从而推动科学技术的发展。
共振现象的原理和应用

共振现象的原理和应用1. 共振现象的基本原理共振是指当一个物体受到外界振动作用时,在特定的条件下,会发生自身的振动幅度增大的现象。
共振现象的基本原理可以归结为以下几点:•谐振频率:物体自身有自然的振动频率,即谐振频率。
如果外界振动的频率与物体的谐振频率相同或接近,那么物体将容易产生共振现象。
•能量传递:外界振动作用会将能量传递给物体,当外界振动频率与物体的谐振频率相同时,能量的传递较为高效,物体的振动幅度会增大。
•相位关系:物体的振动与外界振动之间存在一定的相位关系。
当相位差为零或180度时,物体更容易发生共振。
2. 共振现象的应用共振现象在众多领域都有着重要的应用,下面将介绍几个具体的应用场景:2.1 声学中的共振应用•声音共振: 在声学中,共振现象在乐器制造中起着重要作用。
比如,各种乐器中的共鸣腔体,通过选择合适的材质和形状,使得乐器在特定频率下共振,从而产生特定音调。
•共鸣峰利用: 在音频信号处理中,共振滤波器可以通过调节频率来加强或减弱特定频率成分,被广泛应用于音频均衡器、语音信号处理等领域。
2.2 物理中的共振应用•机械共振: 机械共振的应用非常广泛。
比如,桥梁在受到风力作用时,通过调节桥梁结构的共振频率,可以避免共振破坏;电子设备中的共振电路,可以增强信号的能量传递;ICP保护装置利用共振原理,对机械系统进行动态测量。
•电磁共振: 电磁共振是一种重要的物理现象,应用广泛。
比如,无线电中的共振天线可以提高天线发射和接收的效果;共振电路在电子设备中广泛应用于频率选择电路、滤波器等。
2.3 医学中的共振应用•核磁共振: 核磁共振(NMR)是医学诊断中常用的技术之一。
它基于原子核在强磁场作用下的共振现象,通过对原子核发出的信号进行处理,可以得到人体组织的详细信息,用于诊断疾病。
•超声共振: 超声共振技术在医学中也有重要的应用。
超声波在人体组织中的传播速度与组织的密度和弹性有关,通过对超声波的共振频率的测量,可以获得组织的物理性质,用于临床诊断。
声音的共振现象及应用

声音的共振现象及应用声音是我们日常生活中常见的一种物质的振动传播形式,它具有共振现象。
共振是指当一个物体在受到外力的作用下,得到加速度后,与自身的固有频率发生共振,振幅会大幅增加的现象。
声音的共振效应在自然界和日常生活中广泛存在,并在各个领域都有着重要的应用。
一、共鸣腔体共鸣腔体是指一定形状的空腔或器件,在特定的声音频率下产生共振的现象。
例如,说话时,声音通过喉咙、口腔等共鸣腔体产生共振,使声音倍增。
乐器也是利用共鸣腔体的共振效应来增强声音的音量和质量,如木琴、吉他等。
二、声音共振的应用1. 共鸣频率检测声音共振现象可以用作频率检测。
通过一个空腔或器件,当外界声音的频率与其固有频率相同时,将产生共振现象,可以通过共振的声音来检测频率。
这在物理实验中经常用到。
2. 音响设备音响设备的设计中经常利用共振来增强声音的效果。
例如,音箱内部的共鸣腔体可以使得低音更加浑厚,高音更加明亮。
此外,鼓的共振腔体也是音响设备中常用的共振器件。
3. 共振装置共振装置广泛应用于建筑、桥梁和航天等领域。
在地震工程中,可以利用声音的共振现象来检测土层结构,提高建筑物的抗震能力。
在桥梁设计中,通过共振装置可以减小风的影响,增强桥梁的稳定性。
同时,共振的原理也被用于减震器和航天器材的设计中。
4. 生物医学共振现象在生物医学方面也有着重要的应用。
例如,对于人体骨骼的共振频率,可以进行声波检测,用于判断骨骼的健康状况。
此外,超声波检查和核磁共振等技术,也是医学领域中常见的应用。
5. 乐器演奏乐器演奏中的声音共振效应是提高音质的重要手段之一。
不同乐器的共振效应使其具有独特的音色和音质。
对于演奏者而言,理解共振现象可以帮助他们掌握乐器的演奏技巧,提高演奏的水平。
从以上的应用可以看出,声音共振现象在物理学、工程学、医学和音乐等各个领域均有重要作用。
对声音共振的研究和应用可以帮助我们更好地理解声音的传播特性,并为技术和艺术的发展提供更多可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二 共振的条件
条件
系统在周期性外力(强迫力)作用 下发生受迫振动.在受迫振动时,如果 外力的频率跟系统的固有振动频率接 近或相等时,受迫振动达极大值,这 种现象叫做共振.
二 共振的条件
分类
A 振幅共振
A
受迫振动位移 振幅达极大值.
条件:
0
O
无阻尼
小阻尼
大阻尼
0
二 共振的条件
v B 速度共振 受迫振动速度
三 共振的危害
change
美国Tacoma大桥 倒塌前
Tacoma大桥倒 塌时
三 共振的危害
雪崩
在冰山雪峰间,动物的 吼叫声引起空气的振动,当频 率等于雪层中某一部分的固有 振动频率时,会发生共振,形成 雪崩,因此,登山队员严禁高声 说话.
三 共振的危害
机器在工作时由于Biblioteka 部件的运动(如活塞轴的转动),也会产生周期性
共振对我们的生活影响有好也有坏,我们 相信只要好好利用,它一定会成为生活密不 可分的一部分,促进社会生产以及经济发展, 为人们带来极大的便利!
小组长:刘思芬 收李集媛资、料吕旋:王松亮、张帅、程兵、王祺、马志林、熊雪杉、 整理资料:王松亮、张帅、程兵 制作PPT:马志林、熊雪杉、胡康 论文总结:刘思芬、付露、李媛 主讲人:吕旋
胡康、刘思芬、付露、
目录
一 共振的现象 二 共振的条件 三 共振的危害 四 共振的利用
一 共振的现象
的策动力,使机器
机器损坏
因共振而受到损坏.
三 共振的危害
为了避免共振,设计时要注意机 器的转速,使机器的 固有频率不与策动 力的频率接近.
四 共振的利用
共振现象具有两重性.我们既要防 止共振给工农业生产和人民生活带来 危害又要利用共振现象为人类造福.
四 共振的利用
乐器的共 鸣箱 共振利用 案例
电磁 共振
核磁共振
四 共振的利用
乐器的共鸣箱
钢琴\提琴\二胡等乐 器的木制琴身,就是利用了 共振现象使其成为一共鸣 箱(盒),将优美悦耳的音乐 发送出去,以提高音响效果.
四 共振的利用
电磁共振
电磁共振在生活与生产中都有很 多的应用,特别是在无线电技术中.
收音机的调谐装置就是利用了电 磁共振现象,以接受某一 频率的电台广播.
无阻尼
振幅达极大值.
条件:
0
O 大阻尼 0
小阻尼
二 共振的条件
原因周期性的驱动力跟振动“合拍”时,每次
驱动力都跟物体的速度方向一致,驱动力做的
都是正功,故振幅越来越大,能量也越来越大.
当驱动力不与振动“合拍”时,它做的一部分
是负功,振动系统所得能量要少,引不起共振.
三 共振的危害
桥梁
雪
倒塌 共振危害
通过放射电磁波引起 体内氢原子共振,再检测 氢原子共振反射出来的波 运用计算机成像
核磁共振成像是随着计算机技术、电子电路技术、超 导体技术的发展而迅速发展起来的一种生物磁学核自旋成 像技术。它是利用磁场与射频脉冲使人体组织内进动的氢 核(即H+)发生章动产生射频信号,经计算机处理而成像 的。原子核在进动中,吸收与原子核进动频率相同的射射 频脉冲,原子核就发生共振吸收,去掉射频脉冲之后,原 子核磁矩又把所吸收的能量中的一部分以电磁波的形式发 射出来,称为共振发射。共振吸收和共振发射的过程叫做“ 核磁共振”。
荡秋千
秋千是个摆,有它的固有频率.轻推一下 使秋千微微摆动起来以后,只要按它的固有频率 周期性地施加推力,每当它往前摆时轻轻推它一 下,尽管每次的推力都很小,经过一段时间,秋 千也会荡得很高,即发生了共振.
一 共振的现象
骑木马
木马的摆动也是如此. 每当它往下摆时轻轻压它 一下,尽管每次的压力都 很小,经过一段时间,木 马也会摆得很高.
崩
案例
机器 损坏
三 共振的危害
桥梁倒塌
200年前,拿破仑率领法军入侵西班牙. 有一天,法国一队威武的士兵迈着整齐的步 伐通过一座铁链悬桥.没想到,行到桥中间时, 突然惊天动地一声巨响,铁桥从中断裂,掉 落河中,士兵们也纷纷坠入急流.
三 共振的危害
自从揭示了毁桥的原因后,各国 军队规定,过桥时不用整齐的步伐走, 而用不整齐的碎步走,以避免共振的 发生.
当施加一射频脉冲信号时,氢 核能态发生变化,射频过后,氢核 返回初始能态,共振产生的电磁波 便发射出来。原子核振动的微小差 别可以被精确地检测到,经过进一 步的计算机处理,即可能获得反应 组织化学结构组成的三维图像,从 中我们可以获得包括组织中水分差 异以及水分子运动的信息。这样, 病理变化就能被记录下来。