实验1_进程管理
操作系统实验实验报告

操作系统实验实验报告一、实验目的操作系统是计算机系统中最为关键的核心软件,它管理着计算机的硬件资源和软件资源,为用户提供了一个方便、高效、稳定的工作环境。
本次操作系统实验的目的在于通过实际操作和实践,深入理解操作系统的基本原理和核心概念,掌握操作系统的基本功能和操作方法,提高对操作系统的认识和应用能力。
二、实验环境本次实验使用的操作系统为 Windows 10 专业版,开发工具为Visual Studio 2019,编程语言为 C 和 C++。
实验硬件环境为一台配备Intel Core i7 处理器、16GB 内存、512GB SSD 硬盘的个人计算机。
三、实验内容(一)进程管理实验1、进程创建与终止通过编程实现创建新的进程,并在完成任务后终止进程。
在实验中,我们使用了 Windows API 函数 CreateProcess 和 TerminateProcess 来完成进程的创建和终止操作。
通过观察进程的创建和终止过程,深入理解了进程的生命周期和状态转换。
2、进程同步与互斥为了实现进程之间的同步与互斥,我们使用了信号量、互斥量等同步对象。
通过编写多线程程序,模拟了多个进程对共享资源的访问,实现了对共享资源的互斥访问和同步操作。
在实验中,我们深刻体会到了进程同步与互斥的重要性,以及不正确的同步操作可能导致的死锁等问题。
(二)内存管理实验1、内存分配与释放使用 Windows API 函数 VirtualAlloc 和 VirtualFree 进行内存的分配和释放操作。
通过实验,了解了内存分配的不同方式(如堆分配、栈分配等)以及内存释放的时机和方法,掌握了内存管理的基本原理和操作技巧。
2、内存分页与分段通过编程模拟内存的分页和分段管理机制,了解了内存分页和分段的基本原理和实现方法。
在实验中,我们实现了简单的内存分页和分段算法,对内存的地址转换和页面置换等过程有了更深入的理解。
(三)文件系统实验1、文件操作使用 Windows API 函数 CreateFile、ReadFile、WriteFile 等进行文件的创建、读取和写入操作。
实验1:进程管理

实验1:进程管理要求:编写程序,模拟实现创建新的进程;查看运行进程;换出某个进程;撤销某个进程。
提示:1、进程状态简单处理为:0为不在内存,1为在内存,2为阻塞,3为挂起。
2、撤销进程指将进程的状态从运行变为阻塞。
3、程序的结构可以处理为在主函数中用switch语句调用各种表示进程管理功能的函数。
源程序代码:#include <iostream>#include <fstream>#include <string>#include <windows.h>#include <iomanip>using namespace std;const Max=100;int Tread[3][Max];//[号码][大小][状态]int n=-1;int mem=64;int a;void T(){cout<<"**********************************"<<endl;cout<<"* 进程演示系统*"<<endl;cout<<"**********************************"<<endl;cout<<"* 1.创建进程*"<<endl;cout<<"* 2.调入内存*"<<endl;cout<<"* 3.杀死进程*"<<endl;cout<<"* 4.查看进程*"<<endl;cout<<"----------------------------------"<<endl;cout<<"< 提示:状态0为不在内存,1为在内存,2为阻塞,3为挂起。
进程管理实验报告源代码(3篇)

第1篇---进程管理实验报告一、实验目的1. 理解进程的概念和进程管理的基本原理。
2. 掌握进程的创建、调度、同步和通信等操作。
3. 通过编程实现简单的进程管理功能。
二、实验环境1. 操作系统:Windows/Linux2. 编程语言:C/C++3. 开发环境:Visual Studio/Code::Blocks三、实验内容1. 进程的创建与终止2. 进程的同步与互斥3. 进程的通信4. 进程调度算法四、实验步骤1. 进程的创建与终止```cinclude <stdio.h>include <sys/types.h>include <unistd.h>int main() {pid_t pid;// 创建子进程pid = fork();if (pid < 0) {// 创建进程失败perror("fork failed");return 1;} else if (pid == 0) {// 子进程printf("Child process, PID: %d\n", getpid()); // 执行子进程的任务...sleep(5); // 子进程暂停5秒_exit(0); // 子进程退出} else {// 父进程printf("Parent process, PID: %d\n", getpid()); wait(NULL); // 等待子进程结束printf("Child process has terminated.\n");}return 0;}```2. 进程的同步与互斥```cinclude <stdio.h>include <pthread.h>pthread_mutex_t mutex;void thread_func(void arg) {pthread_mutex_lock(&mutex); // 加锁printf("Thread %ld is running\n", (long)arg);sleep(1); // 模拟任务执行pthread_mutex_unlock(&mutex); // 解锁return NULL;}int main() {pthread_t thread1, thread2;// 初始化互斥锁pthread_mutex_init(&mutex, NULL);// 创建线程pthread_create(&thread1, NULL, thread_func, (void )1); pthread_create(&thread2, NULL, thread_func, (void )2); // 等待线程结束pthread_join(thread1, NULL);pthread_join(thread2, NULL);// 销毁互斥锁pthread_mutex_destroy(&mutex);return 0;}```3. 进程的通信```cinclude <stdio.h>include <stdlib.h>include <sys/ipc.h>include <sys/shm.h>int main() {key_t key;int shmid;int data;// 生成共享内存标识符key = ftok("shmfile", 65);// 创建共享内存段shmid = shmget(key, sizeof(int), 0666 | IPC_CREAT); if (shmid == -1) {perror("shmget failed");exit(1);}// 连接到共享内存段data = (int )shmat(shmid, (void )0, 0);if (data == (int )(-1)) {perror("shmat failed");exit(1);}// 使用共享内存data = 100;printf("Data in shared memory: %d\n", data); // 分离共享内存段if (shmdt(data) == -1) {perror("shmdt failed");exit(1);}// 删除共享内存段if (shmctl(shmid, IPC_RMID, NULL) == -1) { perror("shmctl failed");exit(1);}return 0;}```4. 进程调度算法```cinclude <stdio.h>include <stdlib.h>include <sys/time.h>typedef struct {int pid;int arrival_time;int burst_time;int waiting_time;int turnaround_time;} Process;int main() {Process processes[] = {{1, 0, 5, 0, 0},{2, 1, 3, 0, 0},{3, 4, 8, 0, 0}};int n = sizeof(processes) / sizeof(processes[0]);// 计算等待时间和周转时间int total_waiting_time = 0, total_turnaround_time = 0;for (int i = 0; i < n; i++) {if (i == 0) {processes[i].waiting_time = 0;} else {processes[i].waiting_time = processes[i - 1].turnaround_time;}processes[i].turnaround_time = processes[i].burst_time + processes[i].waiting_time;total_waiting_time += processes[i].waiting_time;total_turnaround_time += processes[i].turnaround_time;}printf("Average Waiting Time: %f\n", (float)total_waiting_time / n);printf("Average Turnaround Time: %f\n", (float)total_turnaround_time / n);return 0;}```五、实验结果与分析(此处应填写实验结果,包括运行程序输出、图表等,以及对实验结果的分析。
操作系统-进程管理实验报告

操作系统-进程管理实验报告实验一进程管理1.实验目的:(1)加深对进程概念的理解,明确进程和程序的区别;(2)进一步认识并发执行的实质;(3)分析进程争用资源的现象,研究解决进程互斥的方法;(4)了解Linux系统中进程通信的基本原理。
2.实验预备内容(1)阅读Linux的sched.h源码文件,加深对进程管理概念的理解;(2)阅读Linux的fork()源码文件,分析进程的创建过程。
3.实验内容(1)进程的创建:编写一段程序,使用系统调用fork()创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。
试观察记录屏幕上的显示结果,并分析原因。
源代码如下:#include<XXX>#include<XXX>#include<unistd.h>#include <XXX>#include <XXX>int main(int argc,char* argv[]){pid_t pid1,pid2;pid1 = fork();if(pid1<0){fprintf(stderr,"childprocess1 failed");exit(-1);}else if(pid1 == 0){printf("b\n");}else{pid2 = fork();if(pid2<0){fprintf(stderr,"childprocess1 failed"); exit(-1);}else if(pid2 == 0){printf("c\n");}else{printf("a\n");sleep(2);exit(0);}}return 0;}结果如下:分析原因:pid=fork();操纵体系创建一个新的历程(子历程),而且在历程表中相应为它建立一个新的表项。
进程管理设计实验报告

一、实验目的1. 理解进程管理的概念和作用;2. 掌握进程的创建、调度、同步与通信等基本操作;3. 分析并解决进程管理中的常见问题;4. 提高编程能力和系统设计能力。
二、实验环境1. 操作系统:Linux;2. 编程语言:C/C++;3. 开发工具:GCC。
三、实验内容1. 进程创建与调度(1)创建一个简单的进程,实现进程的创建、运行和退出;(2)实现进程的调度,采用时间片轮转算法(RR)进行进程调度;(3)分析进程调度的过程,观察不同调度算法对进程执行的影响。
2. 进程同步与互斥(1)实现进程同步,采用信号量机制实现进程间的同步;(2)实现进程互斥,使用互斥锁(mutex)保护临界资源;(3)分析进程同步与互斥的原理,解决死锁、饥饿等问题。
3. 进程通信(1)实现进程间的通信,采用管道(pipe)进行数据传输;(2)实现共享内存(shared memory)进行进程间通信;(3)分析进程通信的原理,解决通信中的同步与互斥问题。
4. 实验拓展(1)设计一个多进程并发程序,实现生产者-消费者问题;(2)实现进程的优先级调度,观察不同优先级对进程执行的影响;(3)分析并实现进程的动态创建与销毁,提高系统的灵活性和可扩展性。
四、实验步骤1. 编写进程创建与调度的代码,实现进程的创建、调度和执行;2. 编写进程同步与互斥的代码,实现信号量机制和互斥锁;3. 编写进程通信的代码,实现管道和共享内存通信;4. 编写实验拓展的代码,实现生产者-消费者问题、优先级调度和动态创建与销毁;5. 编译并运行实验程序,观察实验结果,分析并解决问题。
五、实验结果与分析1. 进程创建与调度实验结果显示,采用时间片轮转算法(RR)进行进程调度,进程按照一定的顺序执行,实现了进程的并发执行。
2. 进程同步与互斥实验结果显示,采用信号量机制实现进程同步,可以避免进程间的冲突,保证进程按预期顺序执行;使用互斥锁(mutex)保护临界资源,可以防止多个进程同时访问同一资源,避免数据竞争。
进程管理实验报告_共10篇 .doc

★进程管理实验报告_共10篇范文一:_进程管理实验报告进程管理实验报告一、进程与线程1.实验目的:1.通过本实验学习Linux中创建进程的方法。
2.学习系统调用fork的使用方法。
3.学习系统调用exec族调用的使用方法。
2.实验准备1.进程的创建创建一个进程的系统调用很简单,只要调用fork函数就可以了。
#includepid_tfork();当一个进程调用了fork以后,系统会创建一个子进程,这个子进程和父进程是不同的地方只有它的进程ID和父进程ID,其他的都一样,就像父进程克隆(clone)自己一样,当然创建两个一模一样的进程是没有意义的,为了区分父进程和子进程,我们必须跟踪fork调用返回值。
当fork调用失败的时候(内存不足或者是用户的最大进程数已到)fork返回—1,否则fork的返回值有重要的作用。
对于父进程fork返回子进程ID,而对于fork 子进程返回0,我们就是根据这个返回值来区分父子进程的。
2.关于fork的说明使用该函数时,该函数被调用一次,但返回两次,两次返回的区别是子进程的返回值是0,而父进程的返回值则是新子进程的进程ID。
将子进程ID返回给父进程的理由是:因为一个进程的子进程可以多于一个,所以没有一个函数可以是一个子进程获得其所有子进程的进程ID。
而fork函数使子进程得到的返回值是0的理由是:一个子进程只会有一个父进程,所以子进程总是可以调用函数getpid获得其父进程的进程ID。
3.系统调用exec族调用的说明父进程创建子进程后,子进程一般要执行不同的程序。
为了调用系统程序,我们可以使用系统调用exec族调用。
Exec族调用有以下五个函数:intexecl(constchar*path,constchar*arg,?);intexeclp(constchar*file,constchar*arg,?);intexecle(constchar*path,constchar*arg,?);intexecv(constchar*path,constchar*argv[]);intexecvp(constchar*file,constchar*argv[]);exec族调用可以执行给定程序。
进程管理实验报告分析(3篇)

第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。
为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。
二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质。
3. 分析进程争用资源的现象,学习解决进程互斥的方法。
4. 了解Linux系统中进程通信的基本原理。
三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。
2. 修改程序,使每个进程循环显示一句话。
3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。
4. 分析利用软中断通信实现进程同步的机理。
四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。
在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。
实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。
2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。
实验结果显示,父进程和子进程的打印顺序仍然是随机的。
这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。
3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。
实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。
这表明signal()和kill()在进程控制方面具有重要作用。
4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。
操作系统实验报告----进程管理

实验内容:进程管理一、实验目的1、掌握Linux中进程的创建方法及执行情况;2、加深对进程、进程树等概念的理解;3、掌握Linux中如何加载子进程自己的程序;4、掌握父进程通过创建子进程完成某项任务的方法;5.、掌握系统调用exit()和_exit()调用的使用。
6、分析进程竞争资源的现象,学习解决进程互斥的方法;进一步认识并发执行的实质二、实验内容(一)进程的创建1、编写一段程序,使用系统调用fork( )创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符。
#include<stdio.h>main(){int p,x;p=fork();if(p>0){x=fork();if(x>0)printf("father\n");elseprintf("child2");}elseprintf("child1");}输出结果:child1child2father2、运行以下程序,分析程序执行过程中产生的进程情况。
#include <stdio.h>main(){int p,x;p=fork();if (p>0)fork();else{fork();fork();}sleep(15);}实验步骤:编译连接gcc –o forktree forktree.c后台运行./forktree &使用pstree –h 查看进程树运行结果:├─gnom e-terminal─┬─bash─┬─forktree─┬─forktree─┬─forkt ree───forktree││││└─forktree│││└─forktree││└─pstree 分析:程序运行,系统首先创建一个进程forktree,执行到p=fork()创建一个子进程forktree,子进程获得处理机优先执行,父进程等待;执行else,当执行到第一个fork()函数时,子进程创建了一个进程forktree,称之为孙进程,孙进程获得处理机往下执行,子进程等待;执行到第二个fork()函数时,孙进程又创建一个进程forktree,称之为重孙进程,重孙进程很快执行完,将处理机还给孙进程,孙进程很快执行完,将处理机还给子进程;子进程继续往下执行,执行到第二个fork()函数,又创建一个进程forktree,称之为第二孙进程,并获得处理机执行,此进程很快执行完,将处理机还给子进程,子进程也很快执行完,将处理机还给父进程,父进程P>0执行if语句,运行fork()函数,又创建一个进程forktree,称之为第二子进程,此进程获得处理机执行很快运行完,将处理机还给父进程,父进程运行sleep(15)语句,休眠15秒,用pstree命令查询进程树。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一进程管理
【实验目的】
1.加深对进程概念及进程管理各部分内容的理解。
2.熟悉进程管理中主要数据结构的设计和进程调度算法、进程控制机构、同步机构、通讯机构的实施。
【实验要求】
1.调试并运行一个允许n 个进程并发运行的进程管理模拟系统。
了解该系统的进程控制、同
2.步及通讯机构,每个进程如何用一个PCB 表示、其内容的设置;各进程间的同步关系;系统在运行过程中显示各进程的状态和有关参数变化情况的意义。
【实验环境】
具备Windows或MS-DOS操作系统、带有Turbo C 集成环境的PC机。
【实验重点及难点】
重点:理解进程的概念,进程管理中主要数据结构的设计和进程调度算法、进程控制
机构、同步机构、通讯机构的实施。
难点:实验程序的问题描述、实现算法、数据结构。
【实验内容】
一.阅读实验程序
程序代码见【实验例程】。
二.编译实验例程
用Turbo C 编译实验例程。
三.运行程序并对照实验源程序阅读理解实验输出结果的意义。
【问题与讨论】
系统为进程设置了几种状态?说明这些状态的含义。
三种。
就绪、执行、阻塞。
就绪:处于就绪状态的进程已经得到除 CPU之外的其他资源,只要由调度得到处理机,便可立即投入执行。
执行:只有处于内存就绪状态的进程在得到处理机后才能立即投入执行。
阻塞:进程因等待某个事件发生而放弃处理机进入等待状态。
采用何种方式来模拟时间片?简要说明实现方法。
系统分时执行各进程,并规定3个进程的执行概率均为33%。
通过产生随机数x来模拟时间片。
当进程process1访问随机数x时,若x ≥0.33;当进程process2访问x时,若x<0.33或x≥0.66;当进程process3访问x时,若x<0.66,分别认为各进程的执行时间片到限,产生“时间片中断”而转入低就绪态t。
进程调度算法采用剥夺式最高优先数法。
各进程的优先数通过键盘输入予以静态设置。
调度程序每次总是选择优先数最小(优先权最高)的就绪进程投入执行。
先从r状态进程中选择,在从t状态进程中选择。
当现行进程唤醒某个等待进程,且被唤醒进程的优先数小于现行进程时,则剥夺现行进程的执行权。
各进程在使用临界资源s1和s2时,通过调用信号量sem1和sem2上的P,V操作来实现同步,阻塞和唤醒操作负责完成从进程的执行态到等待态到就绪态的转换。
系统启动后,在完成必要的系统初始化后便执行进程调度程序。
但执行进程因“时间片中断”,或被排斥使用临界资源,或唤醒某个等待资源时,立即进行进程调度。
当3个进程都处于完成状态后,系统退出运行
由于输出结果较多,一屏显示不完,如何较好地阅读程序输出?
一是在程序中控制输出的行数,比如20行,输出后用gets停顿一下,继续时回车即可;
还有一种更简单办法,运行时将输出重定向到文件:c:\程序名> doc.txt,然后使用记事本或dos下的Edit查看doc.txt里的输出内容。
描述进程管理主控程序的算法(流程图或N-S图)。
N
Y
图1 进程管理主控程序
描述进程调度程序的算法(流程图或N-S图)。
(1)
Y
N
N
Y
Y
N
N
Y
Y
N
Y
实验截图:。