(完整版)上海市八年级(下)数学第二十一章代数方程练习卷一(可编辑修改word版)
沪教版八年级下册数学第二十一章 代数方程含答案

沪教版八年级下册数学第二十一章代数方程含答案一、单选题(共15题,共计45分)1、若关于x的方程﹣=0有增根,则m的值是()A.3B.4C.1D.﹣12、关于x的方程=2+ 会产生增根,那么k的值()A.3B.﹣3C.1D.﹣13、一列客车已晚点6分钟,如果将速度每小时加快10千米,那么继续行驶20千米便可正点运行,如果设客车原来行驶的速度是x千米/小时,可列出分式方程为()A. - =6B. - =C. - =6D.- =4、某公司为尽快给医院供应一批医用防护服,原计划x天生产1200套防护服,由于采用新技术,每天增加生产30套,因此提前2天完成任务,列出方程为()A. =﹣30B. =﹣30C. =﹣30 D. =﹣305、若分式方程=2+有增根,则a的值为()A.4B.2C.1D.06、甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,已知两个转盘每分钟共转200圈,设甲每分钟转x圈,则列方程为()A. B. C. D.7、若关于x的分是方程+=2有增根,则m的值是()A.m=﹣1B.m=0C.m=3D.m=0或m=38、穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A. ﹣=4B. =4C. =4D. =49、若分式方程有增根,则m的值是()A.﹣1或1B.﹣1或2C.1或2D.1或﹣210、在抗击“新型冠状病毒”期间,甲、乙两人准备帮助某抗疫指挥中心整理一批新到的物资,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.设乙单独整理这批物资需要x分钟完工,则根据题意列得方程()A. B. C. D.11、解关于x的方程产生增根,则常数m的值等于()A.﹣1B.﹣2C.1D.212、学校为创建“书香校园”,购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为( )A. B. C. D.13、黄金分割比在实际生活中有广泛的应用,比如在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感,按此比例,如果雕像的高为2m,它的下部为x米,则下列关于x的方程正确的是()A.x 2+2x-4=0B.x 2-2x-4=0C.x 2-6x+4=0D.x 2-6x-4=014、某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A. B. C. D.15、体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是()A. B. C.D.二、填空题(共10题,共计30分)16、A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程________.17、若关于x的分式方程有增根,则常数m的值为________.18、市场上的红茶由茶原液与纯净水按一定比例配制而成,其中购买一吨茶原液的钱可以买15吨纯净水.由于今年以来茶产地连续大旱,茶原液收购价上涨50%,纯净水价也上涨了10%,导致配制的这种茶饮料成本上涨40%,问这种茶饮料中茶原液与纯净水的配制比例为________.19、列分式方程的步骤:(1)审清题意,明确题目中的未知数;(2)根据题意找________,列出分式方程.20、若y=1是方程+ = 的增根,则m=________.21、当a为________时,关于x的方程有增根.22、某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意列方程为________.23、某次列车平均提速.用相同的时间,列车提速前行驶,提速后比提速前多行驶50 .可求得提速前列车的平均速度为________ .24、关于x的分式方程- =0无解,则m=________.25、若关于x的分式方程有增根,则m的值为________.三、解答题(共5题,共计25分)26、若关于x的分式方程无解,则m的值为多少?27、新化到长沙的距离约为200km,小王开着小轿车,张师傅开着大货车都从新化去长沙,小王比张师傅晚出发20分钟,最后两车同时到达长沙.已知小轿车的速度是大货车速度的1.2倍,求小轿车和大货车的速度各是多少?28、城市到城市的铁路里程是300千米.若旅客从城市到城市可选择高铁和动车两种交通工具,高铁速度是动车速度的1.5倍,时间相差0.5小时,求高铁的速度.29、某市在精致城市建设过程中,需铺设一条长度为900米的管道.决定由甲工程队来完成这一工程,为加快施工进程,甲工程队引进了新设备,实际每天铺设管道长度比原计划增加了50%,结果比原计划少用2天完成任务.求甲工程队实际每天铺设管道多少米?30、某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、A6、D7、A8、B9、D10、B11、B12、B13、A14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
沪教版八年级数学下册第二十一章【代数方程】单元测试卷(一)含答案与解析

沪教版八年级数学下册第二十一章单元测试卷(一)代数方程学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1B .x=-1C .x=3D .x=- 3 2.如果,且,则的值可能是( ) A .- B .1 C . D .以上都无可能3.如果14x y =⎧⎨=⎩是方程组x y a xy b +=⎧⎨=⎩的一组解,那么这个方程组的另一组解是( ) A .41x y =⎧⎨=⎩ B .14x y =-⎧⎨=-⎩ C .41x y =-⎧⎨=-⎩ D .41x y =⎧⎨=-⎩ 4.下列各对未知数的值中,是方程组()()22229320x xy y x y x y ⎧++=⎪⎨---+=⎪⎩的解的是( ) A .21x y =⎧⎨=⎩ B .5212x y ⎧=⎪⎪⎨⎪=⎪⎩ C .12x y =-⎧⎨=-⎩ D .1252x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 5.若两个分式与的和等于它们的积,则实数x 的值为( )A .-6B .6C .-D .6.方程的解是( )A .±1B .1C .-1D .无解7.下列方程中,是关于x 的分式方程的是( )A.B.C.D.8.为提升我市城区旅游形象,将大湖景观和沿江景观连成一片,市政府决定对棋盘山南段mkm道路规划修建,工程施工期间为减少对周边小区居民生活的影响,工作效率比原计划提高了n%,结果提前了8天完成任务,设原计划每天修建x千米,根据题意,下列方程正确的是()A.B.=8C.D.9.清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为()A.B.C.D.10.一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.如果设船在静水中的速度为x千米/时,可列出的方程是()A.B.C.D.11.若关于x的方程无解,则m的值为( )A.﹣1或5B.﹣1或5或﹣C.5或﹣D.﹣12.某厂计划x天生产120个零件,由于改进技术,每天比计划多生产3个,因此比原计划提前2天完成,列出的正确方程为()A .12012032x x =--B .12012032x x =-+C .12012032x x =-+D .12012032x x =-- 二、填空题(本大题共6小题,每小题3分,共18分)13.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是_________元.14.若关于x 的方程322x m x x-=--有增根,则m 的值为________ 15.直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是105,则较短的直角边的长为___________.16.在数学活动课上,小聪把一张白卡纸画出如图①所示的8个一样大小的长方形,再把这8个长方形纸片剪开,无重叠的拼成如图②的正方形ABCD ,若中间小正方形的边长为2,则正方形ABCD 的周长是 ______ .17.若方程244x a x x =+--有增根,则a =________. 18.若关于x 的方程2018x -存在整数解,则正整数m 的所有取值的和为___________.三、 解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.20.若解分式方程()21111x m x x x x x++-=++产生增根,则m 的值是多少? 21.解下列方程(1)21421242x x x x ++=+-- (2)22212524222221x x x x x x +=---+-+ 22.已知a 是非零整数,且满足()3213811322a a a a ⎧->-⎪⎨->+⎪⎩,解关于x的方程:2310x x a -+=23.每年春节是市民购买葡萄酒的高峰期,某商场分两批购进同一种葡萄酒,第一批所用资金是8000元,第二批所用资金是10000元.第二批葡萄酒每瓶比第一批葡萄酒每瓶贵90元,结果购买数量比第一批少20%.(1)求该商场两次共购进多少瓶葡萄酒.(2)第一批葡萄酒的售价是每瓶200元,很快售完,但因为进价的提高第二批葡萄酒的售价在第一批基础上提高了2a%,实际售卖对比第一批少卖a%,结果两次销售共赚得利润3200元,求a (其中a >25).24.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段达到节水的目的,右下表是调控后的价目表.(1)若该户居民8月份用水8吨,则该用户8月应交水费 元;若该户居民9月份应交水费26元,则该用户9月份用水量 吨;(2)若该户居民10月份应交水费30元,求该用户10月份用水量;(3)若该户居民11月、12月共用水18吨,共交水费52元,求11月、12月各应交水费多少元?参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。
完整版上海教育版八下第二十一章代数方程word单元测试1

第二十一章代数方程综合测试题(时间90分钟,满分100分)1. 填空:(每空2分共28分)(1) 当a ___ 时,关于x 的方程(a 3)x a 2 9的根是x a 3 ; (2) 方程x 3 x 0的根是 ___________________________ .(3) _______________________________________ 方程- 亠的根是 .x x 2 (4) ____________________________________ 方程仮 x 的根是 .(5) 方程(x 2y )(x y 1) 0的二次项是 _____________________ ,一次项是 _______ ,常数项是 _________ .(6) 写出一个双二次方程,这个方程可以是 __________________ . (7)把方程x 2 4xy 5y 2 0化为两个二元一次方程,它们是 _______________ 和 _______________________ ;_______________ 和 _________________ (9) 用代入消元法解方程组x y 6,可得它的解是 ____________________ .xy 8(10) 如果方程关于x 的无理方程1 k 没有实数根,那么k 的取值范围 是 .2. 选择题:(每题2分共12分) (11) 方程x 4 2x 2 1 0的根的个数是()(A )无数个;(B ) 4 ;( C ) 2 ; ( D ) 0 . (12) 下列方程中,有实数根的是()(A ) 、x 2 1 0 ; ( B ) '、门 1 0 ;3(C )2 ;(D )厂.厂x 2.(8 )解方程组x 2 y 220,(x 2y)(x 3y) 时,可以先把这个方程组化为方程组根据题意,列出的方程是()(16)某景区有一景点的改造工程要限期完工•甲工程队独做可提前1天完成,乙工程队独做要误期6天•现由两工程队合做4天后,余下的由乙工程队独做, 正好如期完成•设工程期限为x 天,则下面所列方程中正确的是().3解答:(每小题2分共36分) (17) 解下列关于x 或y 的方程:(2) b 2y 2 1 y 2 .(18) 解下列方程(如利用计算器计算求近似根,则保留三位小数):2(13)如果用换元法把方程(X +1)+(x + 1)x 2+17化为关于y 的方程2y + - = 7 ,y那么下列“换元”中正确的是1(A )二;二 y ; 1 P+T y;(C)汁2x +1 =y . x + 1(14)二元二次方程组(X y i)(y 2x 2) 0,的解的个数是( (A ) 1;(B ) 2(C ) 3;(D ) 4 .(15)某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,为求二月、三月平均每月的增长率是多少, 可设平均每月增长的百分率为x ,(A ) 50(1+X )2=175 ;(B) 50+50(1+X )2=175;(C) 50(1 + X )+50(1+X )2=175;(D) 50+50(1+X )+50(1 + X )2=175.(A ) xF~6 (B )x F~6 ; (C ) xF"6(D )X F"6(3) 3x 4 4x 27 0;3 2(4) x 3x 2x 0.(19) 解下列方程(组)(1)(20) 解下列方程:(1)、25 x 2 x 1 ;(1)1x 5 16;⑵丄(x 1)464 0;2(3) x 22x6~2x 22x(4)31 x y x y2 1 x yx y8, 7(2)(2) x 2 4x 1 x 3 ;专业文档(3) 2y —4厂5 1 ; (4) 3y —2y _3 3 0.(21) 解下列方程组:2 2(3) x3xy 2 y 0 x3y 4.4应用:(每题3分)(22) 某地区开展“科技下乡”活动四年来,接受科技培训的人员累计达33.75 万人次,其中第一年培训了 10万人次.假设这四年中,每年接受科技培训的人次 的增长率相同,求这个增长率(1)x y 10,2 2x y 13.(2)x y 10, xy 9.2 2x 2xy y 1, 2 22x 5xy 3y 0.(23) 某市政府为残疾人办实事,在一道路改造中,为盲人修建一条长 3000m 的 盲道•根据规划设计和要求,该市工程队在实际施工时增加了施工人员,每天修建 的盲道比原计划多250米,结果提前2天完成,问实际每天修建盲道多少米?(24) 如图,公园里有一块三角形草地,测得 长为60米,求这块草地的另两条边的长.C A第10题图(25) 有一段河道需进行清淤疏通,现有甲乙两家清淤公司可供选择•如果甲 公司单独做4天,乙公司单独做6天,那么恰好能完成全部清淤任务的一半; 如 果甲公司先做4 天,剩下的清淤工作由乙公司单独完成, 那么乙公司所用时间恰 好比甲公司单独完成清淤任务所用时间多 2天.求甲、乙两公司单独完成清淤任 务各需多少天?(26) 当x 取什么值时,代数式2x 5的值与(1) x 3 5的值相等?(2) 丄 4的值相等?3x5C 90,边AB 长为26米,周B(3)、、FT0的值相等?(27)当m是取什么值时,方程组x22y2 6 0①y mx 3. ②有两个相同的实数解?并求出此时方程组的解。
沪教版(上海)八年级数学第二学期第二十一章代数方程章节训练试卷(精选含答案)

八年级数学第二学期第二十一章代数方程章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一艘轮船顺水航行100km 后返回,返回时用同样的时间只航行了80km ,若列方程100802525x x =+-表示题中的等量关系,则关于方程中x 和25这两个量的描述正确的是( )A .x 表示轮船在静水中的速度为x km/hB .x 表示水流速度为x km/hC .25 表示轮船在静水中的速度为25 km/hD .25 表示轮船顺水航行速度为25km/h2、关于x 的方程312a x x -=-的解为整数.且关于x 的不等式组312(2)413x x x a +≤-⎧⎪-⎨≤⎪⎩的解集为5x ≤-.则满足条件的所有整数a 值之和为( )A .5B .3C .4D .03、若直线y x m =-+与直线24y x =+的交点在第一象限,则m 的取值范围是( ).A .4m ≥B .1m ≥-C .4m >D .1m >-4、学校建围栏,要为24000根栏杆油漆,由于改进了技术,每天比原计划多油400根,结果提前两天完成了任务,请问原计划每天油多少根栏杆?如果设原计划每天油x 根栏杆,根据题意列方程为( )A .24000x =24000400x -+2 B .24000x =24000400x -﹣2 C .24000x =24000400x +﹣2 D .24000x =24000400x ++2 5、已知关于x 的分式方程10327333x k x x --=---的解满足2<x <5,则k 的取值范围是( ) A .﹣7<k <14B .﹣7<k <14且k ≠0C .﹣14<k <7且k ≠0D .﹣14<k <76、若分式方程244x a x x =+--无解,则a 的值为( ) A .4 B .2 C .1 D .07、已知直线l 1:y=kx +b 与直线l 2:y =-2x+4交于点C (m ,2),则方程组24y kx b y x =+⎧⎨=-+⎩的解是( )A .12x y =⎧⎨=⎩B .12x y =-⎧⎨=⎩C .21x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩ 8、如图,直线l 1:y =x ﹣4与直线l 2:y =﹣43x +3相交于点(3,﹣1),则方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .13x y =-⎧⎨=-⎩D .31x y =⎧⎨=⎩ 9、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.设前一小时的行驶速度为x km/h ,则可列方程( )A .180218013 1.5x x-=+ B .180218013 1.5x x +=+ C .180218013 1.5x x x --=+ D .180218013 1.5x x x ++=+ 10、设直线y =kx +6与y =(k +1)x +6(k 是正整数)及x 轴围成的三角形面积为S k (k =1,2,3,…),则S 5的值等于( )A .35B .910C .1D .3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一次函数y kx b =+的图象上一部分点的坐标见下表:正比例函数的关系式为y x =,则方程组y kx b y x =+⎧⎨=⎩的解为x =________. 2、某中学全体同学到距学校15千米的科技馆参观,一部分同学骑自行车先走40分钟后,其余同学乘汽车出发,结果他们同时到达科技馆,已知汽车的速度是自行车速度的3倍,求汽车的速度,设汽车的速度是x 千米/小时,根据题意列方程________________.3、一次函数24y x =-+与1y x =-的图像交点坐标为______.4、若点A (8,0),B (0,n ),且直线AB 与坐标轴围成的三角形面积为12,则n =____.5、为了了解某池塘里背蛙的数量,先从池塘里捕捞30只青蛙,作上标记后放回池塘,经过一段吋间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有 _____只青蛙.三、解答题(5小题,每小题10分,共计50分)1、设a ,b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a ⊕b =(0)(0)a ab a b a ⎧>⎪⎨⎪-≤⎩例如:111(3)33⊕-==--;(3)2(3)25-⊕=--=-,221(1)(1)1x x x x ++⊕-=-(因为210x ) 参照上面材料,解答下列问题:(1)(-)²______________.(2)解方程:22(2)8(4)x x ⊕-=⊕-2、长春市政府计划对城区某道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造480米的道路比乙队改造同样长的道路少用2天.(1)求乙工程队每天能改造道路的长度;(2)若甲队工作一天的改造费用为8万元,乙队工作一天的改造费用为6万元,如需改造的道路全长为8000米,如果安排甲、乙两个工程队同时开工,并一起完成这项城区道路改造,求改造该段道路所需的总费用.3、为了迎接新学期的到来,某文化用品商店分两批购进同样的书包,提供给新入学的学生购买使用.(1)第二批购进书包的单价是多少元?(2)两批书包的销售价格都是90元,当第二批书包投放市场后立即产生了滞销,商店以进价的八五折优惠促销,全部售出后,商店是盈利还是亏损?4、某经销商用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元.(1)求一件A ,B 型商品的进价分别为多少元?(2)若该经销商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A 型商品m件,求该经销商销售这批商品的利润p与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,该经销商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该经销商售完所有商品并捐献慈善资金后获得的最大收益.5、解分式方程:(1)231x x= +(2)11222xx x-=----参考答案-一、单选题1、A【分析】根据题意,这是一个顺(逆)水行船问题,根据基本关系:顺水速度=水速+船速,逆水速度=水速-船速即可判断.【详解】根据题意,等量关系是往返时间相同,∴x表示轮船在静水中的速度为x km/h,25表示水流速度为25 km/h.故选:A.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意:顺水速度=水速+船速,逆水速度=水速-船速.2、B(1)先解分式方程得62x a =+,由于解是整数,故可推出a 的值,解不等式,由于解集为5x ≤-,即可确定a 的可能值,相加即可得出答案.【详解】 解分式方程得:62x a =+, ∵x 为整数,2x ≠且0x ≠,∴a 可为8-,5-,4-,-3,1-,0,4,312(2)413x x x a +≤-⎧⎪⎨-≤⎪⎩①②, 由①得:5x ≤-,由②得:43x a ≤+,∵解集为5x ≤-,∴435a +≥-,解得:2a ≥-,∴整数a 可为1-,0,4,∴1043-++=.故选:B .【点睛】本题考查解分式方程和一元一次不等式组,掌握求解的步骤是解题的关键.3、C【分析】联立两直线解析式求出交点坐标,再根据交点在第一象限列出不等式组求解即可.解:根据题意,联立方程组24y x m y x =-+⎧⎨=+⎩, 解得:43243m x m y -⎧=⎪⎪⎨+⎪=⎪⎩, 则两直线交点坐标为4(3m -,24)3m +, 两直线交点在第一象限, ∴4032403m m -⎧>⎪⎪⎨+⎪>⎪⎩, 解得:4m >,故选:C .【点睛】本题考查了两直线相交的问题,解二元一次方程组和一元一次不等式组,联立两函数解析式求交点坐标是常用的方法.4、D【分析】如果设每天油x 根栏杆,要为24000根栏杆油漆,开工后,每天比原计划多油400根,结果提前2天完成任务,根据原计划天数=实际天数+2可列出方程.【详解】解:设每天油x 根栏杆, 根据题意列方程:24000x =24000400x ++2 故选:D .本题考查列分式方程解应用题,掌握列分式方程解应用题的步骤与解法,抓住原计划天数=实际天数+2可列出方程是解题关键.5、C【分析】先解分式方程,然后根据分式方程的解满足2<x <5和分式有意义的条件进行求解即可.【详解】 解:∵10327333x k x x --=---, ∴()1032733x k x -=-++-, ∴217k x -=, ∵分式方程10327333x k x x --=---的解满足2<x <5, ∴212572137k k -⎧<<⎪⎪⎨-⎪≠⎪⎩, 解得147k -<<且0k ≠,故选C .【点睛】本题主要考查了解一元一次不等式组,解分式方程,分式方程的解,解题的关键在于能够熟练掌握相关知识进行求解.6、A【分析】分式方程去分母转化为整式方程,根据分式方程有增根,得到最简公分母为0,求出x 的值,代入整式方程即可求出a 的值.【详解】解:分式方程去分母得:2(4)x x a =-+,由分式方程有增根,得到40x -=,即4x =,把4x =代入整式方程得:42(44)a =⨯-+,解得:4a =,故选:A .【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①化分式方程为整式方程;②让最简公分母为0确定增根;③把增根代入整式方程即可求得相关字母的值.7、A【分析】根据直线解析式求出点C 坐标,根据两函数交点坐标与方程组的解得关系即可求解.【详解】解:∵y =-2x+4过点C (m ,2),∴224m =-+,解得1m =,∴点C (1,2),∴方程组24y kx b y x =+⎧⎨=-+⎩的解12x y =⎧⎨=⎩. 故选择A .【点睛】本题考查两函数的交点坐标与方程组的解的关系,掌握两函数的交点坐标与方程组的解是解题关键.8、A【分析】关于x 、y 的二元体次方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解即为直线1:4l y x =-与直线24:33l y x =-+相交于点(3,﹣1)的坐标.【详解】解:因为直线1:4l y x =-与直线24:33l y x =-+相交于点(3,﹣1),则方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解是31x y =⎧⎨=-⎩ , 故选A..【点睛】本题考查了一次函数与二元一次方程组的关系的理解和运算,主要考查学生的观察图形的能力和理解能力.9、C【分析】根据原计划的时间=实际所用时间+提前的时间可以列出相应的分式方程.【详解】解:设前一小时的行驶速度为x km/h , 由题意可得:180******** 1.5x x x--=+, 即180218013 1.5x x x--=+, 故选:C .【点睛】本题主要是考查了列分式方程,熟练地根据题意找到等量关系,通过等量关系列出对应的分式方程,这是解题的关键.10、A【分析】利用一次函数图象上点的坐标特征,可分别求出直线y=5x+6、y=6x+6与两坐标轴的交点坐标,再利用三角形的面积公式即可求出结论.【详解】解:当x=0时,y=5×0+6=6,∴直线y=5x+6与y轴的交点A的坐标为(0,6);当y=0时,5x+6=0,解得:x=65 -,∴直线y=5x+6与x轴的交点B的坐标为(65-,0),当x=0时,y=6×0+6=6,∴直线y=6x+6与y轴的交点C的坐标为(0,6);当y=0时,6x+6=0,解得:x=-1,∴直线y=6x+6与x轴的交点D的坐标为(-1,0).∴S5=12BD•OA=12×|-1-(65-)|×6=35,故选:A.【点睛】本题考查了一次函数图象上点的坐标特征以及三角形的面积,牢记直线上任意一点的坐标都满足函数关系式y =kx +b 是解题的关键.二、填空题1、2【分析】根据函数图象上的坐标,可以求出k 和b 的值,然后把k 、b 的值代入方程组即可求得x 的值.【详解】解:点(1,7)--,(0,4)-是函数图象上的点,∴74k b b -+=-⎧⎨=-⎩, 把4b =-代入方程,可得:3k =,∴34y x y x =-⎧⎨=⎩①②,把②代入①得:2x =, 故答案为:2.【点睛】本题考查了根据函数图象与坐标求k 、b 的值,熟练掌握一次函数与二元一次方程组的关系是解题关键.2、154015 1603x x-=【分析】根据汽车的速度是x千米/小时,则自行车的速度是13x,根据题意,自行车比汽车多走40分钟列方程即可.【详解】解:根据题意得:154015 1603xx-=,故答案为:154015 1603xx-=.【点睛】本题考查了分式方程得应用,读懂题意,找准等量关系是解本题的关键.3、∴关于x的方程(a-1)x=b-2的解为:x=故答案为x=3.【点睛】本题考查了一次函数与二元一次方程(组)的关系:方程组的解就是两个相应的一次函数图象的交点坐标.3.52 () 33,【分析】两函数解析式联立方程组,求出方程组的解即可.【详解】解:联立方程组,得:241y x y x =-+⎧⎨=-⎩, 解得,5323x y ⎧=⎪⎪⎨⎪=⎪⎩∴一次函数24y x =-+与1y x =-的图像交点坐标为(5233,) 故答案为:52()33,.【点睛】本题考查了两直线交点坐标的求法,联立方程组是解答此类试题的常用方法.4、±3【分析】先分别求出点A 、点B 到坐标轴的距离即OA 、OB ,再利用三角形的面积公式求解即可.【详解】解:∵点A (8,0),B (0,n ),∴OA =8,OB =|n |,∵直线AB 与坐标轴围成的三角形面积等于12, ∴12×8×|n |=12,解得:n =±3,故答案为:±3.【点睛】本题考查了坐标与图形性质、三角形的面积公式,熟练掌握坐标与图形的性质,会利用点的坐标求图形的面积的方法是解答的关键.5、300【分析】设池塘大约有x 只,根据题意,得到30440x =,计算即可. 【详解】设池塘大约有x 只,根据题意,得到30440x =, 解得 x =300,经检验,x=300是原方程的根,故答案为:300.【点睛】本题考查了分式方程的应用,正确列出分式方程是解题的关键.三、解答题1、(1)4--(2)原方程无解.【分析】(1)根据10-< ,再代入新定义的运算,即可求解;(2)根据20,80>> ,再代入新定义的运算,可得到分式方程22824x x =--,解出即可. 【详解】解:(1)∵10-< ,∴()((2211111124-⊕=--=---=--(2)∵20,80>> ,∴()2222x x ⊕-=-,()228844x x ⊕-=-, 22824x x ∴=--, 去分母:()228x +=解得:2x =,检验:当2x =时,240x -=,所以2x =是原方程的增根,∴原方程无解.【点睛】本题主要考查了二次根式的混合运算,解分式方程,熟练掌握相关运算法则是解题的关键.2、(1)乙工程队每天能改造道路的长度为80米;(2)甲、乙两个工程队一起完成这项城区道路改造的总费用为560万元.【分析】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为1.5x 米,由题意:甲队改造480米的道路比乙队改造同样长的道路少用2天.列出分式方程,解方程即可;(2)设安排甲、乙两个工程队同时开工需要m 天完成,由题意:需改造的道路全长为8000米,安排甲、乙两个工程队同时开工,列出一元一次方程,解得40m =,再求出总费用即可.【详解】解:(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为1.5x 米, 根据题意得:48048021.5x x-=, 解得:80x =,经检验,80x =是所列分式方程的解,且符合题意,答:乙工程队每天能改造道路的长度为80米.(2)设安排甲、乙两个工程队同时开工需要m 天完成,由题意得:120808000m m +=,解得:40m =,则408406560⨯+⨯=(万元),答:甲、乙两个工程队一起完成这项城区道路改造的总费用为560万元.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.3、(1)第二批购进的单价是64元;(2)全部书包售出后,商店是盈利【分析】(1)设设第一批购进的单价是x 元,则第二批购进的单价是()4x +元,根据两次购买书包的数量之间的关系列出分式方程求解即可;(2)根据题意分别计算出两批书包的利润,然后求解判断即可.【详解】(1)设第一批购进的单价是x 元,则第二批购进的单价是()4x +元, 依题意得:30006400142x x =⨯+, 解这个方程得:60x =,经检验:60x =是原分式方程的解,且符合题意.460464x +=+=(元)答:第二批购进的单价是64元;(2)由(1)得,第二批购机书包的价格为64元,第一批销售的利润:()()90603000601500-÷=(元)第二批销售的利润:64000.856400960⨯-=-(元)1500960540-=(元)答:全部书包售出后,商店是盈利.【点睛】此题考查了分式方程应用题,解题的关键是正确分析题目中的等量关系.4、(1)一件B 型商品的进价为150元,则一件A 型商品的进价为160元;(2)()101750080125p m m =+≤≤;(3)当010a <<时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为(18750125)a ﹣元;当10a =时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为17500元;当1080a <≤时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为(1830080)a -元【分析】(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(10)x +元.根据16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为w 元.则(80)70(250)(10)17500w a m m a m =-+-=-+,分三种情形讨论利用一次函数的性质即可解决问题.(1)解:设一件B 型商品的进价为x 元,则一件A 型商品的进价为(10)x +元, 由题意:160007500210x x=⨯+, 解得150x =,经检验150x =是分式方程的解,∴10160x +=,答:一件B 型商品的进价为150元,则一件A 型商品的进价为160元;(2)解:∵客商购进A 型商品m 件,∴客商购进B 型商品(250)m -件,由题意:()()240160220150(250)1017500p m m m =-+--=+,∵A 型商品的件数不大于B 型的件数,且不小于80件,∵80250m m ≤≤-,∴80125m ≤≤;(3)解:设收益为w 元,则()(240160)220150(250)(10)17500w a m m a m =--+--=-+,①当100a ->时,即010a <<时,w 随m 的增大而增大,∴当125m =时,最大收益为(18750125)a ﹣元; ②当100a =-,即10a =时,最大收益为17500元;③当100a <-时,即1080a <≤时,w 随m 的增大而减小,∴80m =时,最大收益为(1830080)a -元,∴当010a <<时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为(18750125)a ﹣元;当10a =时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为17500元;当1080a <≤时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为(1830080)a -元.【点睛】本题主要考查了分式方程的实际应用,一次函数的实际应用,,熟练掌握相关知识及寻找题目的等量关系列式求解是解决本题的关键.5、(1)3x =-;(2)分式方程无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:2x=3x+3,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)去分母得:1﹣x=﹣1﹣2x+4,移项合并得:x=2,经检验x=2是增根,分式方程无解.【点睛】本题考查解分式方程;注意去分母时,单独的一个数也要乘最简公分母;互为相反数的两个式子为分母,最简公分母应为其中的一个.。
2022年最新沪教版(上海)八年级数学第二学期第二十一章代数方程单元测试练习题(含详解)

八年级数学第二学期第二十一章代数方程单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在2020年3月底新过师炎疫情在我国得到快速控制,教育部要求低风险区错时、错峰开学,某校在只有初三年级开学时,一段时间用掉120瓶消毒液,在初二、初一年级也错时、错峰开学后,平均每天比原来多用4瓶消毒液,这样120瓶消毒液比原来少用5天,若设原来平均每天用掉x 瓶消毒液,则可列方程是( )A .12012054x x -=+ B .12012054x x -=- C .12012054x x +=+ D .12012054x x +=- 2、若分式方程1244x a x x +=---无解,则a 的值是( ) A .-5 B .4 C .3 D .03、如图所示,若一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,则方程组1122,y k x b y k x b =+⎧⎨=+⎩的解是( )A.2,3xy=-⎧⎨=⎩B.3,2xy=⎧⎨=-⎩C.2,3xy=⎧⎨=⎩D.2,3xy=-⎧⎨=-⎩4、若a为整数,关于x的不等式组2(1)4340x xx a+<+⎧⎨-<⎩有解,且关于x的分式方程11222axx x-+=--有正整数解,则满足条件的a的个数()A.1 B.2 C.3 D.45、八年级学生去距学校15km的博物馆参观,一部分学生骑自行车先走,过了30min后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车同学的速度为x千米/时,则所列方程时()A.1515302x x+=B.1515302x x-=C.1511522x x+=D.1511522x x-=6、“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=7、若关于x的方程2222x mx x++=--有增根,则m的取值是()A.0 B.2 C.-2 D.18、要把方程25363y y-=-化为整式方程,方程两边可以同乘以()A .3y -6B .3yC .3 (3y -6)D .3y (y -2)9、给出下列说法:①直线24y x =-+与直线1y x =+的交点坐标是()1,2;②一次函数y kx b =+,若0k >,0b <,那么它的图象过第一、二、三象限;③函数6y x =-是一次函数,且y 随x 增大而减小;④已知一次函数的图象与直线1y x =-+平行,且过点()8,2,那么此一次函数的解析式为6y x =-+;⑤直线1y kx k =+-必经过点()1,1--.其中正确的有( ).A .2个B .3个C .4个D .5个10、若关于x 的一元一次不等式组2(3)4152x x x a+-<+⎧⎨-≤⎩的解集为1x <-,且关于y 的分式方程1144y a y y++=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .-15 B .-10 C .-7 D .-4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x 的方程42x x -﹣5=2mx x-无解,则m 的值为_____. 2、若数a 使关于x 的不等式组11(1)3223(1)x x x a x ⎧⎪⎨⎪-≤-≤-⎩-有且仅有三个整数解,且使关于y 的分式方程31222y a y y-+-- =1 有整数解,则满足条件的所有a 的值之和是____________ 3、某车间有A ,B ,C 型的生产线共12条,A ,B ,C 型生产线每条生产线每小时的产量分别为4m ,2m ,m 件,m 为正整数.该车间准备增加3种类型的生产线共7条,其中B 型生产线增加1条.受到限电限产的影响,每条生产线(包括之前的和新增的生产线)每小时的产量将减少4件,统计发现,增加生产线后,该车间每小时的总产量恰比增加生产线前减少10件,且A 型生产线每小时的产量与三种类型生产线每小时的总产量之比为30:67.请问增加生产线后,该车间所有生产线每小时的总产量为______件.4、数形结合是解决数学问题常用的思想方法之一.如图,直线y =2x 和直线y =ax +b 相交于点A ,则方程组200x y ax b y -=⎧⎨+-=⎩的解为______.5、新新面粉厂现有小麦若干千克和面粉500千克准备一边继续将小麦生产成面粉,一边将生产好的面粉加工成面条,现将全部10名工人,分为A 、B 两组,A 组负责将小麦加工成面粉,B 组负资将面粉加工成面条.已知每位工人每天可将100千克小麦生产成75千克面粉或将25千克面粉加工成50千克面条.生产m 天后,面粉质量与面条质量之比为13:2,又生产了若干天后,小麦全部用完,此时面粉质量与面条质量之比为6:1,若继续将所有面粉都加工成面条再出售,且每千克面条售出后可获利3元,则所有面条售出后,新新面粉厂共可获利_______元.三、解答题(5小题,每小题10分,共计50分)1、解答(1)计算:①215(4)25--+- ②41351|3|12()346-+--⨯+-(2)解方程:①2(1)33x x +=-+ ②213132x x --+= 2、解方程:(1)21124x x x -=-- (2)32322x x x +=+- 3、解分式方程:(1)21133x x x x =+++. (2)11222x x x -+=--. 4、随着元旦的到来,某超市准备在元旦期间推出甲、乙两种商品,甲型的售价是乙型的34. (1)元旦第一周该商家两种商品的总销售额为3600元,乙商品的销售额是甲商品的2倍,销售量比甲商品多40件,求甲商品销售了多少件?(2)为增加销量,该商家第二周决定将乙商品的售价下调12a %,甲商品的售价保持不变,结果与第一周相比,乙商品的销量增加了2a %,甲商品的销量增加了a %,最终第二周的销售额比第一周的销售额增加了1615a %,求a 的值. 5、解方程:48233x x-=-- -参考答案-一、单选题1、A【分析】根据天数比原来少用5天建立等量关系.【详解】设原来平均每天用x 瓶消毒液,则原来能用120x天现在每天用x+4瓶消毒液,则现在能用1204x +天, 再根据少用5天得到等量关系:12012054x x -=+ 故选A .【点睛】 本题考查分式方程的实际应用,找到等量关系是本题的解题关键.2、A【分析】按解分式方程的步骤化为关于x 的一元一次方程,可知x =4是一元一次方程的解,把解代入即可求得a 的值.【详解】 方程1244x a x x +=---两边同乘(x -4),得:12(4)x x a +=-- 即9x a -=由题意知,x=4是原分式方程的增根,则它是9x a -=的解∴49a -=解得5a =-故选:A【点睛】本题是分式方程无解问题,考查了分式方程的解法,一元一次方程的解的概念,关键是理解分式方程无解,则它在一般情况下是有增根,也即使分式方程的分母为零的未知数的值.3、A【分析】根据两个一次函数的交点坐标即可得.【详解】 解:一次函数11y k x b =+的图象1l 与22y k x b =+的图象2l 相交于点(2,3)P -,∴方程组1122y k x b y k x b =+⎧⎨=+⎩的解为23x y =-⎧⎨=⎩, 故选:A .【点睛】本题考查了利用一次函数的交点确定方程组的解,掌握函数图象法是解题关键.4、A【分析】观察此题先解不等式组确定x 的解集,由不等式组有解确定a 的取值范围,再根据分式方程有正整数解,即可找出符合条件的所有整数a .【详解】不等式组2(1)4340x x x a +<+⎧⎨-<⎩①②, 解①得:2x >-, 解②得:4a x <, 24a x ∴-<<且不等式组有解, 2,48,a a ∴-<∴>-解关于x 的分式方程11222ax x x -+=--得: 22x a =-,分式方程有正整数解,a为整数,1,0,x a∴==2,1,x a==方程产生增根,舍去,∴符合条件的a的值有1个,为0,故选:A.【点睛】此题考查不等式组的解法以及分式方程的解法,综合性较强,熟练掌握不等式组的解法以及分式方程的解法是解决本题的关键.5、C【分析】设骑车同学的速度为x千米/时,汽车的速度是2x千米/时,根据同时到达列出方程即可.【详解】解:设骑车同学的速度为x千米/时,汽车的速度是2x千米/时,根据题意列方程得,1511522x x+=,故选:C.【点睛】本题考查了分式方程的应用,解题关键是找准等量关系,列出方程,注意单位转换.6、A【分析】设原计划工作时每天绿化的面积为x万平方米,则实际每天绿化的面积为(125%)x+万平方米,根据题意,得606030(125%)x x-=+,选择即可.【详解】设原计划工作时每天绿化的面积为x万平方米,则实际每天绿化的面积为(125%)x+万平方米,根据题意,得606030(125%)x x-=+,故选A.【点睛】本题考查了分式方程的应用题,准确找到等量关系是解题的关键.7、A【分析】方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【详解】方程两边都乘以(x-2)得:-2+x+m=2(x-2),∵分式方程有增根,∴x-2=0,解得x=2,∴-2+2+m=2×(2-2),解得m=0.故答案为:A.【点睛】此题考查分式方程的增根,掌握运算法则是解题关键.8、D【详解】略9、B【分析】联立241y x y x =-+⎧⎨=+⎩,求出交点坐标即可判断①;根据一次函数图像与系数的关系即可判断②③;可设一次函数的解析式为y x b =-+,然后求出解析式即可判断④;根据一次函数解析式可化为()11y k x =+-,即可判断⑤.【详解】解:联立241y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩, ∴直线24y x =-+与直线1y x =+的交点坐标是()1,2,故①正确;∵一次函数y kx b =+,若0k >,0b <,∴它的图象过第一、三、四象限,故②错误;∵函数6y x =-是一次函数,且y 随x 增大而减小,∴③正确;∵一次函数的图象与直线1y x =-+平行,∴可设一次函数的解析式为y x b =-+,∵一次函数经过点()8,2,∴28b =-+,∴10b =,∴一次函数解析式为10y x =-+,故④错误;∵直线的解析式为1y kx k =+-,即()11y k x =+-∴直线1y kx k =+-必经过点()1,1--,故⑤正确;故选B .【点睛】本题主要考查了一次函数图像的性质,求一次函数图像,求两直线的交点等等,解题的关键在于能够熟练掌握相关知识进行求解.10、B【分析】解出一元一次不等式组的解集,根据不等式组的解集为1x <-,在数轴上标出x 的解集求出a 的范围;根据分式方程分母不能为0的性质得出y -4≠0,再在分式方程两边同乘以y -4,解出分式方程的解,再根据a 的范围求出y 的取值范围,找出符合条件的y 的正整数解,分别代入求出a 的值,求和即可.【详解】解:2(3)4152x x x a +-<+⎧⎨-≤⎩ ① ②, 解不等式①得:x <-1,解不等式②得:x ≤25a +, ∵不等式组的解集为1x <-, ∴25a +≥-1, ∴a ≥-7;要想分式方程有意义,则y -4≠0,∴y ≠4分式方程两边同乘以(y -4)得:y +y -4=-a -1,解得:y =32a -, ∵a ≥-7∴y =32a -≤5, ∵方程的解是正整数且y ≠4∴ y 的正整数解有:1,2,3,5.把y =1,2,3,5分别代入32a -,可得整数a 的值为1,-1,-3,-7. ∴所有满足条件的整数a 的值之和是:1+(-1)+(-3)+(-7)=-10故选:B .【点睛】解一元一次不等式组可通过数轴求解解集,注意不等式两边同乘以负号的时候不等号的方向一定要改变.解分式方程时,防止增根产生,要保证分母不为0.二、填空题1、﹣4或1【分析】先去分母方程两边同乘以x -2根据无解的定义得到关于m 的方程,解方程即可求出m 的值.【详解】 解:∵42x x -﹣5=2mx x- 去分母得,()452x x mx --=-去括号得,4510x x mx -+=-移项,合并同类项得,()110m x -=-∵关于x 的方程42x x -﹣5=2mx x-无解, ∴当10m -=时,整式方程无解,即1m =;当10m -≠时,此时方程有增根,增根为2x =,∴代入得,()2110m -=-,解得:4m =-,∴m 的值为4-或1.故答案为:﹣4或1.【点睛】本题考查了分式方程无解的条件, 分式方程无解的条件是:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于0.2、-18【分析】根据不等式的解集,可得a 的范围,根据方程的的整数解,可得a 的值,根据有理数的加法,可得答案.【详解】 解:()()11132231x x x a x ⎧-≤-⎪⎨⎪-≤-⎩①②,解①得x ≥-3,解②得x ≤35a +, 不等式组的解集是-3≤x ≤35a +. ∵仅有三个整数解-3,-2,-1,∴-1≤35a +<0 ∴-8≤a <-3,31222y a y y-+-- =1 3y -a +12=y -2.∴y =142a -, ∵y ≠2,∴a ≠18>-3,又y =142a -有整数解, ∴a =-8,-6,-4,所有满足条件的整数a 的值之和是-8-6-4=-18,故答案为-18.【点睛】本题考查了分式方程的解,有理数的解法,解不等式组,解分式方程,利用不等式的解集及方程的解得出a 的值是解题关键.3、134【分析】设增加生产线前A 、B 、C 型生产线各有x 、y 、z 条,增加生产线后A 型增加a 条,则C 型增加(7-1-a )条,由题意得:()()()()()()42441246410mx my mz x a m y m z a m ++=+-++-++--+,从而可以求出6638m a =+,由m 是正整数,06a ≤≤且a 是整数,可求出1a =,6m =,再由A 型生产线每小时的产量与三种类型生产线每小时的总产量之比为30:67可得()()()()()()()()146430146412647116467x x y z +⨯-=+⨯-++⨯-++---可以求出4544940y z -=,由z 是非负整数,则45449y -一定能被40整除,即45449y -的个位数字一定是0,即49y 的个位数字一定是4,即可求出6y =,4z =,2x =,由此即可得到答案.【详解】解:设增加生产线前A 、B 、C 型生产线各有x 、y 、z 条,增加生产线后A 型增加a 条,则C 型增加(7-1-a )条,由题意得:()()()()()()42441246410mx my mz x a m y m z a m ++=+-++-++--+,x +y +z =12, ∴424444224464244mx my mz mx am x a my m y mz m am z a ++=+--++--++---+,整理得:38660am m +-=, ∴6638m a =+, ∵m 是正整数,∴3866a +=或3833a +=或3822a +=或3811a +=或382a +=或381a +=,又∵06a ≤≤且a 是整数,∴只有3811a +=符合题意,即1a =,∴6m =,∵A 型生产线每小时的产量与三种类型生产线每小时的总产量之比为30:67∴()()()()()()()()146430146412647116467x x y z +⨯-=+⨯-++⨯-++---, ∴1340134060060024024060300x x y z +=+++++,∴7420246x y z +=+,∴()741220246z y y z --+=+,∴9087474246y z y z --=+,∴4940454y z +=,∴4544940y z -=, ∵z 是非负整数,∴45449y -一定能被40整除,∴45449y -的个位数字一定是0,即49y 的个位数字一定是4,又∵y 是非负整数,∴6y =,∴4z =,∴2x =,经检验当6y =,4z =,2x =时,原分式方程分母不为0,∴该车间所有生产线每小时的总产量为()()()2021861245134+++++=,故答案为:134.【点睛】本题主要考查了二元一次方程和分式方程,解题的关键在于能够理解题意列出方程求解.4、323x y ⎧=⎪⎨⎪=⎩ 【分析】由直线y =2x 求得A 的坐标,两直线的交点坐标为两直线解析式所组成的方程组的解.【详解】解:∵直线y =2x 和直线y =ax +b 相交于点A ,A 的纵坐标为3,∴3=2x ,解得x =32, ∴A (32,3),∴方程组20x yax b y-=⎧⎨+-=⎩的解为323xy⎧=⎪⎨⎪=⎩.故答案为:323xy⎧=⎪⎨⎪=⎩.【点睛】本题考查一次函数与二元一次方程组之间的关系,理解两直线的交点坐标即为两直线解析式所组成的方程组的解是解题关键.5、23160【分析】设有x名工人分在A组,则有(10﹣x)名工人分在B组,根据题意列出方程求出m及x的值,设又生产了t天后,小麦全部用完,根据此时面粉质量与面条质量之比为6:1,列出关于t的方程,解方程求出t的值,进而得出最后生产的面条质量,即可求出答案.【详解】解:设有x名工人分在A组,则有(10﹣x)名工人分在B组,生产m天后,面粉质量为:500+75mx﹣25m(10﹣x)(kg),面条质量为:50m(10﹣x)(kg),∵生产m天后,面粉质量与面条质量之比为13:2,∴5007525(10)1350(10)2mx m xm x+--=-,∴x=20(71)17mm-,∵m、x为正整数,且x<10,∴20(7m﹣1)为17m的倍数,∴m=5,∴x=20(71)17mm-=20(751)175⨯⨯-⨯=8,∴生产m天后,面粉质量为:500+75mx﹣25m(10﹣x)=500+75×5×8﹣25×5×(10﹣8)=3250(kg),面条质量为:50m(10﹣x)=50×5×(10﹣8)=500(kg),设又生产了t天后,小麦全部用完,此时面粉质量与面条质量之比为6:1,∴面粉质量为:3250+75×8t﹣25t×(10﹣8)=3250+600t﹣50t=(3250+550t)(kg),面条质量为:500+50t×(10﹣8)=(500+100t)(kg),∴32505506 5001001tt+=+,解得:t=5,经检验,t=5是所列方程的解,∴最后生产面条质量为: ( 3250+550×2 ) ×2+500+100×5=7720 ( kg )故所有面条售出后可获利: 7720×3=23160 (元),故答案为: 23160.【点睛】本题考查列代数式、整式的加减运算、分式方程的应用,理解题意,能正确列出对应的代数式和方程是解答的关键,注意x 、m 为正整数这一隐含条件.三、解答题1、(1)①4-②1-(2)①5x =②57x =【分析】(1)①先算乘方,最后根据有理数加减运算法则即可求出值;②先算乘方和绝对值,再用乘法分配律进行计算,最后算加减;(2)①去括号、移项、合并同类项、系数化为1即可求解;②去分母、去括号、移项、合并同类项、系数化为1即可求解;(1)解:①原式1542254=++-=-;②原式1349101=-+--+=-.(2)解:①2(1)33x x +=-+2233x x +=-+2332x x -=-- 5x -=-5x =; ②213132x x --+= ()()221633x x -+=-42693x x -+=-4394x x +=-75x =57x =. 【点睛】本题考查了有理数的混合运算以及解一元一次方程,掌握有理数混合运算顺序和解一元一次方程的一般步骤是解题的关键.2、(1)32x =-;(2)4x =【分析】(1)找到最简公分母,将分式方程化为整式方程,进行求解,注意验.(2)找到最简公分母,将分式方程化为整式方程,进行求解,注意验根.【详解】(1)解:方程两边同乘以()()22x x +-, 去分母得:()()()2221x x x x +-+-=, 解得:32x =-, 经检验:当32x =-时,()()220x x +-≠, 所以原分式方程的解为32x =-.(2)解:方程;两边同乘以()()22x x +-去分母得:3(2)2(2)3(2)(2)x x x x x -++=-+,整理得:416-=-x ,解得:4x =,经检验:当4x =时,()()220x x +-≠,所以原分式方程的解为:4x =。
沪教版(上海)数学 八年级第二学期 第21章 代数方程 单元测试卷 (含详细答案)

第21章 代数方程 单元测试卷一.选择题(共6小题)1ABCD2ABC D3ABCD4A .无解BCD5A .1B .2C .3 D .46240360万元10ABCD 二.填空题(共12小题)7的解是 .8的根是 .9的根是 . 10的解是 . 112x +=的根为 .12中, 是方程的二次项. 13的解是 . 1415的取值范围是 .16可以化为两个一次方程,它们是 .17为解的二元二次方程组,这个方程组可以是 .18.小丽、小明练习打字,小丽比小明每分钟多打35个字,小丽打400个字的时间与小明打300个字,那么根据题意可列方程是 .三.解答题(共7小题) 192021 222324.为迎接线下开学,某学校决定对原有的排水系统进行改造,如果甲组先做5天后,剩下的工程由乙组单独承担,还需7.5天才能完工,为了早日完成工程,甲乙两组合作施工,6天完成了任务;甲乙两组单独完成此项工程各需要多少天?25.某工厂生产的1640件新产品,需要精加工后才能投放市场.现把精加工新产品的任务(1)求甲、乙两人各需加工多少件新产品;(2)已知乙比甲平均每天少加工20件新产品,用时比甲多用1天时间.求甲平均每天加工多少件新产品.参考答案一.选择题(共6小题)1ABCD2ABC D解:3ABCD4A.无解B C D2,5A.1B.2C.3D.4由①与方程②组成新的方程组得:第一个方程组无解,第二个方程组有两个解,所以原方程组有两个解,6240360万元购买B 型机器人的台数相同,且B 型机器人的单价比A 型机器人多10万元.设A 型机器人每台x 万元,则所列方程正确的是( ) A .24036010x x =+ B .24036010x x=- C .24036010x x+= D .36024010x x-= 解:设A 型机器人每台x 万元,则B 型机器人每台(10)x +万元, 依题意,得:24036010x x =+. 故选:A .二.填空题(共12小题)7.方程62x -=的解是 10x = . 解:62x -=, 64x -=, 10x =,经检验,10x =是原方程的解, 所以原方程的解是10x =. 故答案为:10x =.8.方程4(1)16x -=的根是 3x =或1x =- .解:4(1)16x -=,444(1)2(2)x ∴-==-,12x ∴-=或12x -=-, 3x ∴=或1x =-.故答案为:3x =或1x =-.9.方程2303x xx +=+的根是 0x = . 解:去分母得,230x x +=, 解得0x =或3-,检验:把0x =代入330x +=≠, 0x ∴=是原方程的解;把3x =-代入3330x +=-+=,10解:x+= 112解:12解:13由②,把①代入③.由①④14故答案为:1.15解:16.二元二次方以化为两个一次方程,它们解:17.请你写出一个解的二元二次方程组,这个方程组可以是解:18.小丽、小明练习打字,小丽比小明每分钟多打35个字,小丽打400个字的时间与小明打300个字的时间相同.如果设小明每分钟字,那么根据题意可列方程是解:三.解答题(共7小题)1920解:21由①,把③代入②③22解:原方程组变形为:23解:24.为迎接线下开学,某学校决定对原有的排水系统进行改造,如果甲组先做5天后,剩下的工程由乙组单独承担,还需7.5天才能完工,为了早日完成工程,甲乙两组合作施工,6天完成了任务;甲乙两组单独完成此项工程各需要多少天?解:答:甲组单独完成此项工程需要10天,乙组单独完成此顶工程需要15天.25.某工厂生产的1640件新产品,需要精加工后才能投放市场.现把精加工新产品的任务(1)求甲、乙两人各需加工多少件新产品;(2)已知乙比甲平均每天少加工20件新产品,用时比甲多用1天时间.求甲平均每天加工多少件新产品.解:(1答:甲需加工840件新产品,乙需加工800件新产品.(2答:甲平均每天加工120件产品.。
2021-2022学年度沪教版(上海)八年级数学第二学期第二十一章代数方程专题练习试题(含解析)

八年级数学第二学期第二十一章代数方程专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x的不等式组4331523m xx x->-⎧⎪-+-⎨≤⎪⎩有且仅有3个整数解,且关于y的分式方程2622my yy y-++--=﹣2的解是整数,则所有满足条件的整数m的值之和是()A.5 B.6 C.9 D.102、若关于x的一元一次不等式组313221xxx a-⎧≤-⎪⎨⎪-<-⎩的解集为5x≤-,且关于y的分式方程11422ayy y-+=--有正整数解,则满足条件的所有整数a的和为()A.4 B.5 C.6 D.7 3、下列无理方程有解的是()A50=B4x-Cx=-D4、若关于x的一元一次不等式组2(3)4152x xx a+-<+⎧⎨-≤⎩的解集为1x<-,且关于y的分式方程1144y a y y++=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .-15 B .-10 C .-7 D .-45、若a 为整数,关于x 的不等式组2(1)4340x x x a +<+⎧⎨-<⎩有解,且关于x 的分式方程11222ax x x -+=--有正整数解,则满足条件的a 的个数( )A .1B .2C .3D .46、如图,直线2y x =与y kx b =+相交于点(),2P m ,则关于x 的方程2kx b +=的解是( )A .12x =B .1x =C .2x =D .4x =7、若整数a 使关于x 的不等式组2062x a x x->⎧⎨->⎩有解,且最多有2个整数解,且使关于y 的分式方程2ay y +-412y=-的解为整数,则符合条件的所有整数a 的和为( ) A .4-B .4C .2-D .2 8、若分式方程1244x a x x +=---无解,则a 的值是( ) A .-5 B .4 C .3 D .09、学校建围栏,要为24000根栏杆油漆,由于改进了技术,每天比原计划多油400根,结果提前两天完成了任务,请问原计划每天油多少根栏杆?如果设原计划每天油x 根栏杆,根据题意列方程为( )A .24000x =24000400x -+2B .24000x =24000400x -﹣2C .24000x =24000400x +﹣2D .24000x =24000400x ++2 10、以二元一次方程21x y -=的解为坐标的点组成的图象画在坐标系中可能是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一辆汽车先以一定速度行驶120千米,后因临时有任务,每小时加5千米,又行驶135千米,结果行驶这两段路程所用时间相等,则汽车先后行驶的速度分别是________.2、已知一次函数4y kx =-的图象与两坐标轴所围成的三角形的面积等于2,则k 的值是 __.3、关于x 的方程211x a x +=-的解是正数,则实数a 的取值范围是________. 4、已知直线y =3x 与y =﹣x +b 的交点坐标为(a ,3)则2b +a 的平方根是______.5、阅读下列材料:①1111123x x x x -=-+--的解为x =1,②1111134x x x x -=----的解为x =2,③11111245x x x x -=-----的解为x =3.请你观察上述方程与解得特征,写出能反映上述方程一般规律的方程 ___,这个方程的解为 ___.三、解答题(5小题,每小题10分,共计50分)1、列方程解应用题:某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用时间与原计划生产450台机器所需时间相同,现在平均每天生产多少台机器?2、如图,已知直线1l:y=3x+1与y轴交于点A,且和直线2l:y=mx+n交于点P(-2,a),根据以上信息解答下列问题:(1)求a的值;(2)不解关于x,y的方程组31y xy mx n=+⎧⎨=+⎩,请你直接写出它的解;(3)判断直线3l:122y nx m=--是否也经过点P?请说明理由;(4)若直线1l,2l表示的两个一次函数都大于0,此时恰好x>3,求直线2l的函数解析式.3、王强参加了3000米的赛跑比赛.预赛中他以6m/s的速度跑了前一段路程后,又以2m/s的速度跑完了其余路程,一共花了15min.(1)求王强以2m/s的速度跑了多少米?(2)为了在决赛中取得好名次,赛跑时间应不超过10min.若前一段路程王强仍保持6m/s的速度,则其余路程2m/s的速度至少应该提高到m/s.4、某一工程,在工程招标时,接到甲乙两个工程队的投标书.施工一天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元.工程领导们根据甲乙两队的投标书测算,可有三种施工方案:方案A:甲队单独完成这项工程刚好如期完成;方案B:乙队单独完成这项工程比规定日期多用5天;方案C:若甲乙两队合作4天后,余下的工程由乙队单独做也正好如期完成.在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?5、2020年3月,象群共计16头从西双版纳州进入普洱市,一路“象”北.当地政府组成大象护卫队,全程跟踪象群迁移轨迹,全景式记录大象“出走”经过.护卫队分成甲、乙两组,甲组行程120km和乙组行程80km所用时间相等,已知甲组的速度比乙组速度每小时快3km,求甲、乙两组的速度.-参考答案-一、单选题1、A【分析】先解不等式组,根据不等式组有3个整数解可以确定m的取值范围,再解分式方程,根据分式方程的解是整数在取值范围内找到符合条件整数m,再根据增根排除掉使分母为0的根,从而可得答案.【详解】解:4331523m xx x->-⎧⎪⎨-+-≤⎪⎩①②解不等式①得34mx+ <,解不等式②得1x≥-,∵不等式组仅有三个整数解,∴3124m+<≤,即15m<≤,所以,m的整数值为2、3、4、5解2622my yy y-++--=﹣2,方程两边乘以2y-得:2624 my y y---=-+移项合并同类项得121y m =+, ∵方程的解是整数, ∴整数2m =或3m =或5m =,∵20y -=时方程有增根,∴5m ≠,∴2m =或3m =,满足条件的整数m 的值之和是5.故选:A .【点睛】本题考查一元一次不等式组的解集,分式方程的解,熟练掌握一元一次不等式组的解集,分式方程的解法,注意分式方程增根的情况是解题的关键.2、B【分析】解关于x 的不等式组,然后根据不等式组的解集确定a 的取值范围,解分式方程并根据分式方程解的情况结合a 为整数,取所有符合题意的整数a ,即可得到答案.【详解】 解:313221x x x a -⎧≤-⎪⎨⎪-<-⎩①②,解不等式①得:5x ≤-,解不等式②得:21x a <-,∵该不等式组的解集为5x ≤-,∴215a ->-,∴2a >-,分式方程去分母得:14(2)1ay y -+-=-,解得:64y a=-, ∵分式方程有正整数解,且2y ≠,∴满足条件的整数a 可以取:2、3,∴235+=,故选:B .【点睛】本题考查了解分式方程和一元一次不等式组的整数解,正确掌握解分式方程的步骤和解一元一次不等式组的方法是解本题的关键.3、C【分析】根据二次根式双重非负性逐一判断即可得.【详解】解:A 5=-知,此方程无实数解;B 、由题意得3040x x -≥⎧⎨-≥⎩,解得34x x ≤⎧⎨≥⎩无解知,此方程无实数根; C 、由题意得030x x -≥⎧⎨+≥⎩,解得30x -≤≤知,此方程有实数根; D 、由题意得5030x x -=⎧⎨-=⎩,解得53x x =⎧⎨=⎩无解知,此方程无实数根; 故选:C .【点睛】本题主要考查了无理方程,解题的关键是熟练掌握二次根式有意义的条件.4、B【分析】解出一元一次不等式组的解集,根据不等式组的解集为1x<-,在数轴上标出x的解集求出a的范围;根据分式方程分母不能为0的性质得出y-4≠0,再在分式方程两边同乘以y-4,解出分式方程的解,再根据a的范围求出y的取值范围,找出符合条件的y的正整数解,分别代入求出a的值,求和即可.【详解】解:2(3)4152x xx a+-<+⎧⎨-≤⎩ ① ②,解不等式①得:x<-1,解不等式②得:x≤25a+,∵不等式组的解集为1x<-,∴25a+≥-1,∴a≥-7;要想分式方程有意义,则y-4≠0,∴y≠4分式方程两边同乘以(y-4)得:y+y-4=-a-1,解得:y=32a-,∵a≥-7∴y=32a-≤5,∵方程的解是正整数且y≠4∴ y 的正整数解有:1,2,3,5.把y =1,2,3,5分别代入32a -,可得整数a 的值为1,-1,-3,-7. ∴所有满足条件的整数a 的值之和是:1+(-1)+(-3)+(-7)=-10故选:B .【点睛】解一元一次不等式组可通过数轴求解解集,注意不等式两边同乘以负号的时候不等号的方向一定要改变.解分式方程时,防止增根产生,要保证分母不为0.5、A【分析】观察此题先解不等式组确定x 的解集,由不等式组有解确定a 的取值范围,再根据分式方程有正整数解,即可找出符合条件的所有整数a .【详解】不等式组2(1)4340x x x a +<+⎧⎨-<⎩①②, 解①得:2x >-, 解②得:4a x <, 24a x ∴-<<且不等式组有解, 2,48,a a ∴-<∴>-解关于x 的分式方程11222ax x x -+=--得: 22x a =-,分式方程有正整数解,a为整数,∴==x a1,0,x a==方程产生增根,舍去,2,1,∴符合条件的a的值有1个,为0,故选:A.【点睛】此题考查不等式组的解法以及分式方程的解法,综合性较强,熟练掌握不等式组的解法以及分式方程的解法是解决本题的关键.6、B【分析】首先利用函数解析式y=2x求出m的值,然后再根据两函数图象的交点横坐标就是关于x的方程kx+b=2的解可得答案.【详解】解:∵直线y=2x与y=kx+b相交于点P(m,2),∴2=2m,∴m=1,∴P(1,2),∴当x=1时,y=kx+b=2,∴关于x的方程kx+b=2的解是x=1,故选:B.【点睛】此题主要考查了一次函数与一元一次方程,关键是求得两函数图象的交点坐标.7、D根据题意先解不等式,确定a 的范围,进而根据分式方程的解为整数,确定a 的值,再求其和即可.【详解】解:2062x a x x ->⎧⎨->⎩①② 解不等式①得:2ax >解不等式②得:2x < 不等式组有解,则22a x <<且最多有2个整数解,则122a -≤< 解得24a -≤<2,1,0,1,2,3a ∴=--分式方程去分母得:42ay y -=- 解得21y a =- 分式方程2ay y +-412y =-的解为整数, 21a ∴-是整数,且2,10y a ≠-≠ 2,1,2a ∴≠-1,0,3a ∴=-1032∴-++=即符合条件的所有整数a 的和为2,故选D此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.8、A【分析】按解分式方程的步骤化为关于x 的一元一次方程,可知x =4是一元一次方程的解,把解代入即可求得a 的值.【详解】 方程1244x a x x +=---两边同乘(x -4),得:12(4)x x a +=-- 即9x a -=由题意知,x=4是原分式方程的增根,则它是9x a -=的解∴49a -=解得5a =-故选:A【点睛】本题是分式方程无解问题,考查了分式方程的解法,一元一次方程的解的概念,关键是理解分式方程无解,则它在一般情况下是有增根,也即使分式方程的分母为零的未知数的值.9、D【分析】如果设每天油x 根栏杆,要为24000根栏杆油漆,开工后,每天比原计划多油400根,结果提前2天完成任务,根据原计划天数=实际天数+2可列出方程.【详解】解:设每天油x 根栏杆,根据题意列方程:24000x =24000400x ++2 故选:D .【点睛】 本题考查列分式方程解应用题,掌握列分式方程解应用题的步骤与解法,抓住原计划天数=实际天数+2可列出方程是解题关键.10、B【分析】先解出方程2x −y =1的二个解,再在平面直角坐标系中利用描点法解答.【详解】解:二元一次方程2x −y =1的解可以为:01x y =⎧⎨=-⎩或120x y ⎧=⎪⎨⎪=⎩. 所以,以方程2x −y =1的解为坐标的点分别为:(12,0)、(0,-1),它们在平面直角坐标系中的图象如下图所示: ,故选:B .【点睛】本题主要考查的是二元一次方程的解及其直线方程的图象,表示出方程的解是解题的关键.二、填空题1、km/h,4045km/h【分析】 设汽车先行驶的速度是x km h ,则汽车后行驶的速度是()5x km h +,根据“行驶这两段路程所用时间相等”可列出方程,解出即可.【详解】 解:设汽车先行驶的速度是x km h ,则汽车后行驶的速度是()5x km h +,根据题意得:1201355x x =+ , 解得:40x = ,经检验:40x =是原分式方程的解且符合题意, ∴汽车后行驶的速度是545x km +=.故答案为:40/,45/km h km h .【点睛】本题主要考查了分式方程的实际应用,明确题意,准确得到等量关系是解题的关键.2、4±【分析】先求出直线与两坐标轴的交点,再根据三角形的面积公式即可得出结论.【详解】解:当0x =时,044y k =⨯-=-,∴一次函数4y kx =-的图象与y 轴交于点(0,4)-;当0y =时,40kx -=,解得:4x k=, ∴一次函数4y kx =-的图象与x 轴交于点4(k ,0).一次函数4y kx =-的图象与两坐标轴所围成的三角形的面积等于2, ∴14|4|||22k⨯-⨯=, 4k ∴=±,经检验,4k =±是原方程的解,且符合题意.故答案为:4±.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键. 3、1a <-且2a ≠-【分析】根据题意得:0x > 且10x -≠ ,然后解出方程,得到1x a =-- ,从而得到关于a 的不等式,解出即可.【详解】解:根据题意得:0x > 且10x -≠ ,211x a x +=-,解得:1x a =-- , ∴10a --> 且110a ---≠ ,解得:1a <- 且2a ≠- .故答案为:1a <-且2a ≠-【点睛】本题主要考查了分式方程的解,根据题意得到0x > 且10x -≠ 是解题的关键.4、±3【分析】将x =a ,y =3代入y =3x ,求得a =1,将x =1,y =3代入y =﹣x +b 得b =4,然后可求得2b +a 的值,进而求出2b +a 的平方根.【详解】解:∵将x =a ,y =3代入y =3x 得:3=3a ,解得a =1,∴直线y =3x 与y =﹣x +b 的交点坐标为(1,3).将x =1,y =3代入y =﹣x +b 得:﹣1+b =3.解得:b =4.∴2b +a =8+1=9,∴2b +a 的平方根是±3.故答案为:±3.【点睛】本题考查了两条直线相交问题以及平方根,根据题意求得a 、b 的值是解题的关键.5、()()()()11112112x n x n x n x n -=------+-+ x n = 【分析】根据观察发现规律:方程的解是方程的最简公分母为零时x 值的平均数,可得答案.【详解】解:方程为:()()()()11112112x n x n x n x n -=------+-+,解为x n =, 故填:()()()()11112112x n x n x n x n -=------+-+,x n =. 【点睛】此题考查了分式方程的解,弄清题中的规律是解本题的关键.三、解答题【分析】设原计划平均每天生产x 台机器,则现在平均每天生产(x +50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x 的分式方程,解方程即可.【详解】设该工厂原来平均每天生产x 台机器,则现在平均每天生产(x +50)台机器.依题意得: 60045050x x=+ 解得:x =150.经检验知,x =150是原方程的根.所以现在平均每天生产200台机器.答:现在平均每天生产200台机器.【点睛】考查了分式方程的应用,解题关键是找准等量关系,正确列出分式方程.2、(1)-5;(2)25x y =-⎧⎨=-⎩;(3)122y nx m =--经过点P ,见解析;(4)y =x -3. 【分析】(1)因为点P (-2,a )在直线y =3x +1上,可求出a =-5;(2)因为直线y =3x +1直线y =mx +n 交于点P ,所以方程组31y x y mx n =+⎧⎨=+⎩的解就是P 点的坐标; (3)把点P 坐标代入直线l 2,得到关于m 、n 的等式,再把点P 代入直线l 3,如果得到同样的m 、n 的关系式,则点P 在直线l 3上,否则不在;(4)因为直线l 1,l 2表示的两个一次函数都大于0,此时恰好x >3,所以直线l 2过点(3,0),又有直线l 2过点P (-2,-5),可得关于m 、n 的方程组,解方程组即可.解:(1)∵(-2,a)在直线y=3x+1上,∴当x=-2时,a=-5;(2)∵直线l1:y=3x+1与y轴交于点A,且和直线l2:y=mx+n交于点P(-2,-5),∴关于x,y的方程组31y xy mx n=+⎧⎨=+⎩的解为25xy=-⎧⎨=-⎩;(3)由(2)知点P(-2,-5),∵点P(-2,-5)在直线l2:y=mx+n上,∴-2m+n=-5,当x=-2时,直线l3:y=-12nx-2m=-2m+n=-5,所以直线l3:y=-12nx-2m也经过点P(-2,5);(4)∵直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,∴直线l2过点(3,0),又∵直线l2过点P(-2,-5),∴3025m nm n+=⎧⎨-+=-⎩,解得13mn=⎧⎨=-⎩.∴直线l2的函数解析式为y=x-3.【点睛】本题考查了一次函数与二元一次方程(组),用待定系数法确定函数的解析式,是常用的一种解题方法,另外本题还渗透了数形结合的思想.3、(1)1200m;(2)4m/s.【分析】(1)设王强以2m/s的速度跑了x米,则王强以6m/s的速度跑了(3000-x)米,根据题意可列出关于x的一元一次方程,解出x即可.(2)设其余路程2m/s的速度至少应该提高到y m/s,根据题意可列出关于y的分式方程,求出y,即得出答案.【详解】(1)设王强以2m/s的速度跑了x米,则王强以6m/s的速度跑了(3000-x)米.15min900s=,根据题意可列方程300090062x x-+=,解得:1200x=.故王强以2m/s的速度跑了1200米;(2)根据(1)可求王强以6m/s的速度跑了3000-1200=1800米.设其余路程2m/s的速度至少应该提高到y m/s,10min600s=,根据题意可列方程180012006006y+=,解得:4y=.经检验,4y=是原分式方程的解.故其余路程2m/s的速度至少应该提高到4m/s.【点睛】本题考查一元一次方程和分式方程的实际应用.根据题意找出等量关系列出方程是解答本题的关键.4、选择C方案,理由见解析【分析】设甲单独完成这一工程需x天,则乙单独完成这一工程需()5+x天.根据方案C,可列方程得444155x x x x -++=++,解方程即可解决问题. 【详解】解:设甲单独完成这一工程需x 天,则乙单独完成这一工程需()5+x 天.根据方案C ,可列方程得444155x x x x -++=++, 解这个方程得20x ,经检验:20x 是所列方程的根.即甲单独完成这一工程需20天,乙单独完成这项工程需25天.所以A 方案的工程款为1.52030⨯=(万元),B 方案的工程款为1.12527.5⨯=(万元),但乙单独做超过了日期,因此不能选.C 方案的工程款为1.54 1.14 1.11628⨯+⨯+⨯=(万元),所以选择C 方案.【点睛】本题考查分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.解题的关键是熟练掌握路程=速度×时间的关系,正确寻找等量关系构建方程解决问题.5、甲组的速度为9km/h ,乙组的速度为6km/h .【分析】设乙组的速度为x km/h ,则甲组的速度为(x +3)km/h ,根据题意可列出关于x 的分式方程,解出方程并检验,即可得出结果.【详解】解:设乙组的速度为x km/h ,则甲组的速度为(x +3)km/h , 依题意列方程得:120803x x =+解得x=6经检验,x=6是方程的解∴x+3=6+3=9(km/h)答:甲组的速度为9km/h,乙组的速度为6km/h.【点睛】本题考查分式方程的实际应用.根据题意找出数量关系列出方程是解答本题的关键.。
2022年沪教版(上海)八年级数学第二学期第二十一章代数方程综合练习试卷(含答案解析)

八年级数学第二学期第二十一章代数方程综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x 的分式方程3111m x x +=--的解是正数,则m 的取值范围是( ) A .2m > B .2m ≥ C .2m ≥且3m ≠ D .2m >且3m ≠2、一次函数3y x p =+和y x q =+的图象都经过点A (-2,0),且与y 轴分别交于B 、C 两点,那么△ABC 的面积是( )A .2B .4C .6D .83、八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了15min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是自行车速度的2倍,设汽车到博物馆所需的时间为x h ,则下列方程正确的是( )A .101020.25x x=⨯+ B .101020.25x x =⨯- C .101020.25x x =⨯+ D .101020.25x x =⨯- 4、以二元一次方程21x y -=的解为坐标的点组成的图象画在坐标系中可能是( )A .B .C .D .5、斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A —B —C 横穿双向行驶车道,其中AB =BC =12米,在绿灯亮时,小敏共用22秒通过AC 路段,其中通过BC 路段的速度是通过AB 路段速度的1.2倍,则小敏通过AB 路段时的速度是( )A .0.5米/秒B .1米/秒C .1.5米/秒D .2米/秒 6、若关于x 的方程11ax x =+的解大于0,则a 的取值范围是( ) A .1a > B .1a < C .1a >- D .1a <-7、如图,在平面直角坐标系中,点A ,B 分别在x 轴和y 轴上,2OB OA =,AOB ∠的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数k y x=的图象过点C ,当ACD △面积为1时,k 的值为( )A .1B .2C .3D .48、若关于x 的不等式组11123x a x x ≤⎧⎪-+⎨+>⎪⎩至少有4个整数解,且关于y 的分式方程4122a y y -+--=1的解是非负数,则符合条件的所有整数a 的和是( )A .17B .20C .22D .259、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.设前一小时的行驶速度为x km/h ,则可列方程( )A .180218013 1.5x x-=+ B .180218013 1.5x x +=+ C .180218013 1.5x x x --=+ D .180218013 1.5x x x ++=+ 10、如果关于x 的方程3111a x x =---无解,则a =( ) A .1 B .3 C .-1 D .1或3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果直线2y x =--与直线2y x b =-的交点在第二象限,那么b 的取值范围是______.2、某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,需缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x 米,则所列方程是____________________.3、已知,一次函数1y x =-+与反比例函数2y x=-的图象交于点A 、B ,在x 轴上存在点P (n ,0),使△ABP 为直角三角形,则P 点的坐标是______.4、代数式22231x x x ---的值等于0,则x =________.5、关于x 的分式方程7311+=--m x x 无解,则m 的值为 _____. 三、解答题(5小题,每小题10分,共计50分)1、解方程:48233x x-=-- 2、(1)解方程:23111x x x -=++ (2)化简:223(2)()(2)()a b a b a b ab ab +-+-÷-3、解方程:()23133x x x -=--. 4、解方程:22110x x x x+++=. 5、解答下列各题.(1)分解因式:223242ab a b a -+.(2)解方程:2122a a a +=--.-参考答案-一、单选题1、D【分析】先求出分式方程的解,由方程的解是正数得m -2>0,由x -1≠0,得m -2-1≠0,计算可得答案.【详解】 解:3111m x x+=--, m -3=x -1,得x=m -2, ∵分式方程3111m x x+=--的解是正数, ∴x >0即m -2>0,得m >2,∵x -1≠0,∴m -2-1≠0,得m ≠3,∴2m >且3m ≠,故选:D .【点睛】此题考查了利用分式方程的解求参数的取值范围,正确求解分式方程并掌握分式的分母不等于零的性质是解题的关键.2、B【分析】首先把(-2,0)分别代入一次函数y =3x +p 和y =x +q 中,可求出p ,q 的值,则求出两个函数的解析式;然后求出B 、C 两点的坐标;最后根据三角形的面积公式求出△ABC 的面积.【详解】解:一次函数y =3x +p 和y =x +q 的图象都经过点A (-2,0),把(-2,0)代入解析式得-6+p =0,-2+q =0,解得p =6,q =2,则函数的解析式是y =3x +6,y =x +2,这两个函数与y 轴的交点是B (0,6),C (0,2).因而CB =4,因而△ABC 的面积是12×2×4=4.故选:B .【点睛】本题考查了函数解析式与图象的关系.函数的图象上的点满足函数解析式,反之,满足解析式的点一定在函数的图象上.3、C【分析】设汽车到博物馆所需的时间为x h ,根据时间=路程÷速度,汽车的速度是自行车速度的2倍,即可得出关于x 的分式方程,此题得解.【详解】解:设汽车到博物馆所需的时间为x h ,根据题意列方程得,101020.25x x =⨯+; 故选:C【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.4、B【分析】先解出方程2x −y =1的二个解,再在平面直角坐标系中利用描点法解答.【详解】解:二元一次方程2x −y =1的解可以为:01x y =⎧⎨=-⎩或120x y ⎧=⎪⎨⎪=⎩. 所以,以方程2x −y =1的解为坐标的点分别为:(12,0)、(0,-1),它们在平面直角坐标系中的图象如下图所示: ,故选:B .【点睛】本题主要考查的是二元一次方程的解及其直线方程的图象,表示出方程的解是解题的关键.5、B【分析】设通过AB 的速度是x m/s ,则根据题意可列分式方程,解出x 即可.【详解】设通过AB 的速度是x m/s , 根据题意可列方程:1212221.2x x+= , 解得x =1,经检验:x =1是原方程的解且符合题意.所以通过AB 时的速度是1m/s .故选B .【点睛】本题考查分式方程的实际应用,根据题意找出等量关系并列出分式方程是解答本题的关键.6、A【分析】先去分母,求出分式方程的解,进而得到关于a 的不等式组,即可求解.【详解】 解:由11ax x =+,解得:11x a =-, ∴101a >-且a -1≠0, ∴1a >,故选A .【点睛】本题主要考查解分式方程以及不等式,掌握去分母,把分式方程化为整式方程,是解题的关键.7、C【分析】 根据2OB OA= ,得到OB =2OA ,设OA =a ,则OB =2a ,设直线AB 的解析式是y =kx +b ,利用待定系数法求出直线AB 的解析式是y =﹣2x +2a ,根据题意可得OD 的解析式是y =x ,由此求出D 的坐标,再根据ACD AOD AOC S S S =-△△△求解即可.【详解】 解:∵2OB OA= , ∴OB =2OA ,设OA =a ,则OB =2a ,设直线AB 的解析式是y =kx +b ,根据题意得:02ak b b a+=⎧⎨=⎩ , 解得:22k b a=-⎧⎨=⎩ , 则直线AB 的解析式是y =﹣2x +2a ,∵∠AOB =90°,OC 平分∠AOB ,∴∠BOC =∠AOC =45°,CE =OE =11=22OA a ,∴OD 的解析式是y =x ,根据题意得:22y x y x a =⎧⎨=-+⎩, 解得:2323x a y a ⎧=⎪⎪⎨⎪=⎪⎩ , 则D 的坐标是(23a ,23a ),∴CE =OE =12OA , ∴C 的坐标是(12a ,12a ), ∴22111244AOC S AO CE OA a ===△,2121233AOD S AO a a ==△ ∴22211113412ACD AOD AOC S S S a a a =-=-==△△△, ∴212a =,∴21113224k a a a ===, 故选C .【点睛】本题主要考查了待定系数法求一次函数解析式,求两直线的交点,反比例函数比例系数的几何意义,三角形面积公式等等,解题的关键在于能够熟练掌握相关知识进行求解. 8、B【分析】分别求出符合不等式组和分式方程解的条件的整数a ,再计算出所有整数a 的和.【详解】11123x a x x ≤⎧⎪⎨-++>⎪⎩①② 由②得:3(1)62(1)x x -+>+解得:1x >-∵不等式组11123x a x x ≤⎧⎪-+⎨+>⎪⎩至少有4个整数解,如图所示:解该分式方程得:7y a =-,∵70a -≥且72a -≠,解得:7a ≤且5a ≠,∴a 取37a ≤≤且5a ≠的整数,即a 取3,4,6,7,∴346720+++=.故选:B .【点睛】本题考查解不等式组与分式方程,掌握它们的解法是解题的关键.9、C【分析】根据原计划的时间=实际所用时间+提前的时间可以列出相应的分式方程.【详解】解:设前一小时的行驶速度为x km/h , 由题意可得:180******** 1.5x x x--=+, 即180218013 1.5x x x--=+, 故选:C .【点睛】本题主要是考查了列分式方程,熟练地根据题意找到等量关系,通过等量关系列出对应的分式方程,这是解题的关键.10、B先去分母,化成整式方程,令x-1=0,确定x的值,回代x=4-a,得a值.【详解】∵3111ax x=---,∴去分母,得3=x-1+a,整理,得x=4-a,令x-1=0,得x=1,∴4-a=1,∴a=3.故选B.【点睛】本题考查了分式方程无解问题,正确理解分式方程无解的意义是解题的关键.二、填空题1、b<4-【分析】联立两直线解析式求出交点坐标,再根据交点在第二象限列出不等式组求解即可.【详解】解:联立22y xy x b--⎧⎨-⎩==,解得2343bxby-⎧=⎪⎪⎨--⎪=⎪⎩,∵交点在第二象限,∴2343bb-⎧<⎪⎪⎨--⎪>⎪⎩①②,解不等式①得:2b<,解不等式②得:4b<-,∴b的取值范围是4b<-.故答案为:4b<-.【点睛】本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用.2、7207202(120%)x x-=+【详解】略3、(3,0)或(-3,0)或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】先根据函数的性质,求出A、B的坐标,再分三种情况分析,利用勾股定理的逆定理建立方程即可得出结论.【详解】解:∵一次函数y=−x+1与反比例函数y=2-x的图象交于点A、B,∴1y xyx=-+⎧⎪⎨=-⎪⎩2的解是点A、B的坐标,解这个方程组得:111 2x y =-⎧⎨=⎩,2221xy=⎧⎨=-⎩,∴A(-1,2),B(2,-1),设P(n,0),∵A(-1,2),B(2,-1),P(n,0),∴AB2=(2+1)2+(1+2)2=18,BP2=(n-2)2+1,AP2=(n+1)2+4,∵△ABP为直角三角形,∴①当∠ABP=90°AB2+BP2=AP2∴18+(n-2)2+1=(n+1)2 +4,∴n= 3,∴ P(3, 0),②当∠BAP= 90°时,AB2+ AP2= BP2,∴18+(n+1)2 +4=(n-2)2+1,∴n= -3,∴P(-3,0),③当∠APB= 90°时,AP2+ BP2= AB2,∴(n+1)2+4+(n-2)2+1= 18,∴n =∴P 0)或P 0),故答案为:P 点的坐标(3,0)、 (-3,0)、,0)或0). 【点睛】此题是反比例函数综合题,主要考查了分式方程的解法,勾股定理的逆定理,利用方程的思想解决问题是解本题的关键.4、3【分析】根据题意建立分式方程,求解并检验即可.【详解】 解:由题意,222301x x x --=-, 左右同乘21x -,得:2230x x --=,()()310x x -+=,解得:3x =或1x =-,检验:当3x =时,210x -≠;当1x =-时,210x -=,则舍去;故答案为:3.【点睛】本题考查可化为一元二次方程的分式方程,理解题意,准确建立分式方程求解并检验是解题关键. 5、7【分析】根据分式的性质去分母,再把增根x =1代入即可求出m 的值.【详解】 解7311+=--m x x ∴7+3(x -1)=m∵关于x 的分式方程7311+=--m x x 无解, ∴x =1是方程的增根,∴把增根x =1代入得m =7.故答案为:7.【点睛】此题主要考查分式方程的解法,解题的关键是根据分式方程无解得到关于m 的方程.三、解答题1、9x =【分析】方程两边同乘(x -3)把分式方程化简为整式方程,解整式方程,最后验根即可.【详解】解:42(3)8x --=-4268x -+=-9x =经检验:9x =是原方程的解.所以原方程的解为9x =.【点睛】本题考查了解分式方程,熟练解分式方程的步骤是解答此题的关键.注意:单独数字也要乘以最简公因式.2、(1)4x =;(2)2a【分析】(1)通过去分母,化为整式方程,进而即可求解;(2)先去括号,再合并同类项,即可求解.【详解】解:(1)23111x x x -=++, 去分母得:213x x -+=(), 解得:4x =,检验:当4x =时,150x +=≠.∴原方程的解为4x =;(2)原式=2222(2)a ab b ab b +-+-+=22222a ab b ab b +--+=2a .【点睛】本题主要考查解分式方程以及整式得混合运算,掌握分式方程的解题步骤以及合并同类项法则,是解题的关键.3、4x =【分析】方程两边同时乘以()23x -去掉分母,把分式方程化为整式方程,求出方程的解并检验后即得结果.【详解】解:()()()()22223331333x x x x x x ---=⋅---, ()()2333x x x --=-,223369x x x x --=-+,312x =,4x =.检验:当4x =时,()230x -≠∴4x =是原方程的解.∴ 原方程的解是4x =.【点睛】本题考查了分式方程的解法,属于基础题目,熟练掌握求解的方法是解题的关键.4、1x =-【分析】 设1 y x x=+,用完全平方公式将方程化为关于y 的一元二次方程,求出方程的解得到y 的值,即为1x x +的值,进而求出x 的值,将x 的值代入原方程进行检验,即可得到原分式方程的解. 【详解】 解:设1 y x x=+, 则222211()22x y x x x+=+-=-, 原方程化成220y y +-=,解这个方程,得11y =,22y =-,当y =1时,1x x +=1,即210x x -+=.由30=-<,此方程无实根,当y =-2时,12x x +=-,即2210x x ++=, 解得:121x x ==-,经检验,x =-1是原分式方程的解,∴原方程的解为x =-1.【点睛】 题目主要考查了换元法解分式方程,关键是利用22211()2x x x x +=+-进行转化,进而设1 y x x=+,将原方程转化为一元二次方程.5、(1)()22a a b -;(2)原方程无解【分析】(1)先提取公因式2a ,后采用差的完全平方公式分解.(2)两边同时乘以a -2,去分母,转化为整式方程求解,注意验根.【详解】(1)()()222322242222ab a b a a b ab a a a b -+=-+=-. (2)∵2122a a a +=-- 去公母得:22a a -=-,24a =,2a =,经检验2a =是原方程增根,原方程无解.【点睛】本题考查了因式分解,分式方程的解法,掌握先提后用公式进行因式分解,熟练进行分式方程的解法是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- = ⎩ ⎩
⎩ 八年级(下)数学第二十一章代数方程练习卷一
一.选择题(每题 3 分,共 18 分)
1. 下列关于 x 的方程中,高次方程是
( )
(A ) ax 2 -1 = 0(a ≠ 0) ; (B ) x 3 + 25x = 0 ; (C ) 1
x
5
+ x 3 = 2 ; (D ) x 2 + 5 = 0 .
2. 如果关于 x 的方程(m + 3)x = 6 有解,那么 m 的取值范围是
( )
(A ) m > -3 ;
(B ) m = -3 ; (C ) m ≠ -3 ;
(D )任意实数.
3. 下列方程中,有实数根的是
(
)
(A
= -
x ;(B
+1 =
0 ;
(C =
0 ;(D = x - 3 .
4. 用换元法解方程
x 2 +1 3x 2x x 2 +1 5 ,设 x 2 +1
x
= y ,则得到关于 y 的整式方程为 ( )
(A ) 2 y 2 - 5 y - 3 = 0 ; (B ) 6 y 2 +10 y -1 = 0 ;
(C ) 3y 2 + 5 y - 2 = 0 ; (D ) y 2 -10 y - 6 = 0 .
⎧ 2 + 1
= 0
⎧xy = 8 ⎧xz + y = 1 ⎧x 2
+ x = 3 ⎪ x y
5.下列方程组, ⎨x - y = 2 ; ⎨2xy = y + x ; ⎨2 y = 6 ; ⎨3 1 . 其中, 二元二次方程组的个数是 ⎩ ⎩ ⎩ ⎪ x - y
= 5
(
)
(A ) 1;
(B ) 2;
(C ) 3;
(D ) 4.
⎧⎪x 2 - 2xy - 3y 2
= 0
6.方程组⎨⎪x 2
+ 6 y = -2 的解的个数是 (
)
(A ) 1 ;
(B ) 2 ;
(C ) 3 ;
(D ) 4.
二、填空(每空 2 分,共 24 分)
7.方程 x 3 -1 = 0 的根是
.
8.方程2x 4 - 7x 2 - 4 = 0 的根是
.
9. = 3 的解是
.
10. 把二次方程9x 2 - 6xy + y 2 = 4 化成两个一次方程,这两个一次方程是
.
11. 已知关于 x 的方程2x 2 + mx + 3 = 0 是二项方程,那么 m =
.
12. 当 m
时,关于 x 的方程(m + 2)x = m 2 - 4 的根是 x = m - 2 .
13.方程( x )2 + 6 = 5(
x
) 的整数解是
.
x -1 ⎧x + y = 4
14. 方程组⎨
xy = -5
x 1
的解是.
6 ⎩
⎪
15. 若关于 x 的方程
ax + 3 + 3
= 2 有增根 x = -1 ,则 a 的值是 .
x +1 x
16. 已知一个直角三角形的周长为2 +
,斜边上的中线长为 1,那么这个直角三角形的面积是
.
17. 如果某工厂三月份生产总值比一月份增加44 0 0 ,那么二、三月份平均每月生产总值的增长率是
.
18. 如果方程
= k +1 有实数解,那么
k 的取值范围是 .
三、解答题: (19、20、21、24、25 每题 5 分,22 题 10 分,23 题 10 分, 266 分,27 每题 7 分)
19.
解方程:
x 2 - 3x x 2 -1 + 2x -1 = 0 .
20.解方程:1 +
x -1
= 2x .
⎧x - y = m
21.
当 m 取什么值时,方程组⎨x 2 - 2 y = -4 有两个相同的实数解?并求出此时方程组的解.
22. 解关于 x 或 y 的方程:
(1) ax = 3(3 - x )
(2) by 2 + 2 y 2 -1 = 0 ( b ≠ -2 )
23. 解方程组:
⎧ 10 + 3
= -5 ⎧x 2 - 5xy + 6 y 2 = 0 ⎪ x + y x - y (1) ⎨x + y = 8
;
(2) ⎨ 15 2 ⎩
⎪ - = -1 ⎩ x + y x - y
x 4x + 1
24. A 做90 个零件所需要的时间和 B 做120 个零件所用的时间相同,又知每小时 A、B 两人共做 35 个机器零件。
求
A、B 每小时各做多少个零件。
25.轮船顺水航行 80 千米所需要的时间和逆水航行 60 千米所用的时间相同。
已知水流的速度是 3 千米/时,求轮船在静水中的速度。
26.甲、乙两家便利店到批发站采购一批饮料,共 25 箱,由于两店所处的地理位置不同,因此甲店的销售价格比乙店的销售价格每箱多 10 元.当两店将所进的饮料全部售完后,甲店的营业额为 1000 元,比乙店少 350 元,求甲乙两店各进货多少箱饮料?
27.修建360 米长的一段高速公路,甲工程队单独修建比乙工程队多用10 天,甲工程队每天比乙工程队少修建6 米. 甲工程队每天修建的费用为2 万元,乙工程队每天修建的费用为3.2 万元.
(1)求甲、乙两个工程队每天各修建多少米;
(2)为在35 天内完成修建任务,应请哪个工程队修建这段高速公路才能在按时完成任务的前提下所花费用较少?并说
明理由.
八年级(下)数学第二十一章代数方程练习卷一
参考答案
1.BCA
2. D
3. B
4. B
5. x=1
6. x1=2,x2=-2
⎪ ⎪ x 3 7. x=3
8. 3x-y=2,3x-y=-2
9. 0
10. ≠ -2
11. x=2
⎧x 1 = 5
⎧x 2 = -1 12. ⎨ y = -1, ⎨ y = 5
⎩ 1 ⎩ 2
13. 3 1 14.
2
15. 20% 16. k ≥ -1
1 17. x = -
3
18. x=2
19. m = - , 2
⎧x 1 = x 2 = 1 ⎨ y = y = 5
⎩⎪
1 2
2
9
20. 当 a ≠ -3 时, x =
a + 3
;当 a = -3 时,无解
21. 当b > -2 时, y 1 =
b + 2 , b + 2 y 2 = - b + 2
b + 2
;当b < -2 时,无解
22. 提示:设 A 、B 每小时各做 x,y 个零件
⎧x + y = 35
⎪ 则⎨90 = 120
⎧x = 15
解得: ⎨ y = 20
⎪⎩ x
y ⎩
23. 提示:设轮船在静水中的速度为 x 千米/时
80 = x + 3 60 x - 3
,解得:x=21 24. 提示:设甲乙两店各进货 x 、y 箱饮料
⎧x + y = 25
⎪ 则: ⎨⎛ 1000 - ⎫
⎧x = 10 , 解得: ⎨ 10⎪ y = 1350 ⎩
⎝ ⎭ ⎩ y = 15
25. (1)提示:设甲、乙两个工程队每天各修建 x 米、y 米
⎧360 = 360 + 10
⎧x = 12
⎪
则: ⎨
x y ,解得: ⎨ y = 18
⎩ ⎪
⎩x =y - 6
(2)甲单独修的费用:60 万元,甲单独修的费用:64 万元,应请甲工程队。