SPSS学习笔记非参数检验

合集下载

SPSS的非参数检验

SPSS的非参数检验
非参数检验可以提供更准确的统计推断,特别是在 数据特征不明或数据量较小的情况下。
02
SPSS非参数检验概述
定义与特点
定义
非参数检验是在统计分析中,相对于参数检验的一种统计方法。 它不需要对总体分布做严格假定,只关注数据本身的特点,因此 具有更广泛的适用范围。
特点
非参数检验对总体分布的假设较少,强调从数据本身获取信息, 具有灵活性、稳健性和适用范围广等优点。
局限性
计算量大
对于大规模数据集,非参数检验的计算量可 能较大,需要较长的计算时间。
对数据要求高
非参数检验要求数据具有可比性,对于不可 比的数据集可能无法得出正确的结论。
解释性较差
非参数检验的结果通常较为简单,对于深入 的统计分析可能不够满足。
对异常值敏感
非参数检验对异常值较为敏感,可能导致结 果的偏差。
THANK YOU
感谢聆听
常用非参数检验方法
独立样本非参数检验
用于比较两个独立样本的差异 ,如Mann-Whitney U 检验 、Kruskal-Wallis H 检验等。
相关样本非参数检验
用于比较相关样本或配对样本 的关联性,如Wilcoxon signed-rank 检验、Kendall's tau-b 检验等。
等级排序非参数检验
案例二:两个相关样本的非参数检验
总结词
适用于两个相关样本的比较,如同一班级内不同时间点的成绩比较。
描述
使用SPSS中的两个相关样本的非参数检验,如Wilcoxon匹配对检验,可以比较两个相关样本的总体分布是否相 同。
案例二:两个相关样本的非参数检验
01
步骤
02
1. 打开SPSS软件,输入数据。

第七章SPSS非参数检验

第七章SPSS非参数检验
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
(一)目的 由独立样本数据推断两总体的分布是否存在显著差异
(或两样本是否来自同一总体)。 (二)基本假设 H0:两总体分布无显著差异(两样本来自同一总体) (三)数据要求 样本数据和分组标志
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
– 与样本在相同点的累计频率进行比较。如果相差较小,则认为样
本所代表的总体符合指定的总体分布。
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (4)基本步骤
菜单选项:analyze->nonparametric tests->1-sample k-s 选择待检验的变量入test variable list 框 指定检验的分布名称(test distribution)
将两样本混合并按升序排序 分别计算两个样本在相同点上的累计频数和累计频率 两个累计频率相减。 如果差距较小,则认为两总体分布无显著差异
应保证有较大的样本数
案例:7-5 p194使用寿命
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
3.游程?检验(Wald-Wolfowitz runs)
一、SPSS单样本非参数检验
(二)总体分布的二项分布检验 (1)目的
通过样本数据检验样本来自的总体是否服从指定的 概率p的二项分布根据 (2)原假设 样本来自的总体与指定的二项分布无显著差异。 (3)案例7-2 p187 产品合格率
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (1)目的
•第七章SPSS非参数检验
五、SPSS多配对样本非参数检验

第六章 spss非参数检验

第六章  spss非参数检验
非参数检验
5.1
非参数检验介绍
5.2
单样本非参数检验
+ 均值比较和T检验
+ 均值比较和T检验
均值比较:
按照分组变量计算因变量的描述统计量,例如均值、方差、 标准差等,并将结果并列显示出来,提供比较分析
单样本T检验:
用于进行样本均值与已知总体均值的比较,检验样本是否来 自已知均值的总体。(检验样本总体均值是否为某个值)
水平,则不能拒绝零假设H0,认为变量 值的出现是随机的。
+ 在SPSS单样本变量值的随机性检验中, SPSS将利用游程构造Z统计量,并依据正 态分布表给出对应的相伴概率值。如果相
伴概率小于或等于用户的显著性水平α, 则应拒绝零假设H0,认为样本值的出现 不是随机的;如果相伴概率值大于显著性
水平,则不能拒绝零假设H0,认为变量 值的出现是随机的。
+ 其零假设H0为样本来自的总体与指定的理 论分布无显著差异。
+ 打开
儿童身高体重检验.sav
+ 作业 + 检验独生子女比例是否符合0.75
+ 采用K—S检验分析减肥前后体重是否符合正 态分布,并做出直方图与P-P图进行对比
独立样本T检验:
用于检验两个样本是否来自具有相同均值的总体
两配对样本T检验:
是根据样本数据对样本来自的两配对总体的均值是否有显著 性差异进行推断。
5.1
非参数检验介绍
+ 前面已经讨论的许多统计分析方法对总体 有特殊的要求,如T检验要求总体符合正 态分布,等等。这些方法常用来估计或检 验总体参数,统称为参数检验。
+ 单样本变量值的随机性检验通过游程( Run)数来实现。所谓游程是样本序列中 连续出现的变量值的次数。

SPSS学习笔记之对样本的非参数检验

SPSS学习笔记之对样本的非参数检验

一、概述
非参数检验对于总体分布没有要求,因而使用范围更广泛。

对于两配对样本的非参数检验,首选Wilcoxon符号秩检验。

它与配对样本t检验相对应。

二、问题
为了研究某放松方法(如听音乐)对于入睡时间的影响,选择了10名志愿者,分别记录未进行放松时的入睡时间及放松后的入睡时间(单位为分钟),数据如下笔。

请问该放松方法对入睡时间有无影响。

本例可以采用配对样本t检验,但由于样本量少,数据可能不符合正太分布,所以考虑用非参数检验。

三、统计操作
数据视图
菜单选择
打开如下的对话框
该对话框有三个选项卡,第一个选项卡会根据第三个选项卡的设置自动设置,故一般不用手动设定。

点击进入“字段”选项卡。

将“放松前”、“放松后”均选入右边“检验字段”框中。

点击进入“设置”对话框,选择检验方法,切换为“自定义检验”,选择“Wilcoxon匹配样本对符号秩(二样本)”复选框。

“检验选项”可以设定显著性水平。

点击“运行”按钮,输出结果
四、结果解读
这就是输出结果。

原假设示放松前好放松后差值的中位数等于0,
P=0.015<0.05,拒绝原假设,认为放松前后有统计学差异。

双击该表格,会弹出如下的“模型浏览器”窗口,可以看到更详细的信息。

如下图。

spss教程_14-1(非参数检验)

spss教程_14-1(非参数检验)
将样本值从小到大排序,排列的序号 称为相应数据的的秩,对相同的数据取 序号的平均值作为秩
Xi Ri
15 7
9 5
18 9
3 1
17 8
8 4
5 2
13 6
7 3
19 10
Mann-Whitney U检验(Rank检验)
1 将两组样本混合按升序排序,得到每个 数据的秩
R (Q1 ,Qm , R1 , Rn )
游程检验 基本操作
1 Analyze==>Nonparametic test==> Runs
Test Variable List:待检验变量 Cut Point:游程数的分界值
实例分析
检验某耐压设备在某段时间内 工作是否持续正常
第2 节
两独立样本非参数检验
问题
例:检验两种工艺下产品的使用寿命 是否存在显著差异
非参数检验
非参数检验特点
(1)不要求总体分布已知或对总体分布作任 何限制性假定; (2)不以估计总体参数为目的; (3)能用于定性变量(即定类变量和定序 变量); (4)方法直观,易于理解,运算比较简单。 (5)缺点是检验的功效不如参数检验方法。
本章内容
单样本非参数检验 两独立样本非参数检验 多独立样本非参数检验 两相关样本非参数检验 多相关样本非参数检验
k 2 i
ni
2
i 1 j 1
3 H 0 成立, H值偏小 , n较大时, H ~ 2 ( K 1)
Jonkheere-Terpstra检验
基本思想与Mann-Whitney U检验 类似
基本操作 Analyze==>Nonparametic test ==>K Independent Samples Test Variable List:待检验变量 Grouping Variable:选入分组变量 Define Range :分组变量范围 Test Type:检验方法

spss-06-非参数检验

spss-06-非参数检验
【例 6.4】 8只鼠在注射某种药物后,分别在 4 个不同时间 采血检测其白细胞数(表6.3),试分析不同时间对白细胞 数是否有影响。
受试者编号 1 2 3 4 5 6 7 8
10 min 10.1 7.0 8.1 6.5 10.4 7.4 9.4 16.4
2h 9.9 7.1 7.9 6.8 10.9 7.4 9.3 17.1
7. 5 9 10. 5 13 15 19 74
0. 50 1. 20 1. 40 2. 00 2. 20 2. 20
5. 5 7. 5 10. 5 16 17 18 74. 5
1. 50 1. 50 2. 50 2. 50
13 13 20 21
67
数据录入:
四、 多个相关样本的(Friedman)秩和检验
【例6.3】 4组大白鼠分别注射不同剂量的某种激素后,测得耻骨间隙 宽度增加量(mm)数据如表。试检验4个不同剂量总体有无差异。
剂量1 秩号 剂量2 秩号 剂量3 秩号 剂量4 秩号
0. 15 0. 30 0. 40 0. 40 0. 50 Ri
1 2 3 4 5. 5 15. 5
1. 20 1. 35 1. 40 1. 50 1. 90 2. 30
【例6.1】 某研究测定了噪声刺激前后15 头猪的心率 ,结果见表6.1。问噪声对猪的心率 有无影响?
表6.1
猪 号
刺激前
猪噪声刺激前后的心率(次/分钟)
3 4 5 6
81
1
61
2
70
7
65
8
62
9
72
10 11
84 76
12
60
13
80
14
79

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验SPSS是一种非常常用的统计分析软件,可以用于参数检验和非参数检验。

参数检验是假设检验的一种方法,用于判断统计样本是否代表总体。

而非参数检验则是用于检验数据是否满足一些分布假设,或判断两个或多个群体是否具有差异。

参数检验主要有t检验、方差分析和回归分析等。

其中,t检验用于比较两个样本均值是否有显著差异,包括独立样本t检验和相关样本t检验。

方差分析用于比较三个或更多样本均值是否有显著差异,可以进行单因素方差分析或多因素方差分析。

回归分析用于建立预测模型,可以通过线性回归或多项式回归进行。

非参数检验通常适用于数据不满足正态分布或方差齐性的情况,如Wilcoxon符号秩检验、Kruskal-Wallis H检验、Mann-Whitney U检验等。

Wilcoxon符号秩检验用于比较两个配对样本的差异是否有显著差异,Kruskal-Wallis H检验用于比较三个或更多独立样本的差异是否有显著差异,Mann-Whitney U检验用于比较两个独立样本的差异是否有显著差异。

在SPSS中进行参数检验和非参数检验一般需要进行以下步骤:1.导入数据:将数据导入SPSS软件,可以通过选择文件-导入功能进行操作。

2.设定分析变量:定义需要进行分析的变量,并将其添加到分析列表中。

3.选择统计方法:根据实验设计和数据分布情况,选择合适的参数检验或非参数检验方法。

4.执行分析:点击运行按钮进行分析,在分析结果中可以查看得到显著性水平、均数、方差等指标。

5.结果解释:根据分析结果进行假设检验,判断是否存在显著差异,并解释其结果。

无论是参数检验还是非参数检验,在进行分析前需要注意数据的合理性、样本的选择和实验设计的合理性等,以保证分析结果的可靠性。

同时,还应根据不同的研究目的和数据特点选择适当的方法,并合理解释分析结果。

在SPSS软件中,可以通过图表、表格和描述性统计等形式展示和解释结果,并通过结果进行科学判断和相关推断。

SPSS学习笔记-图文

SPSS学习笔记-图文

SPSS学习笔记---------------------------------------1. SPSS学习笔记之——常用统计方法的选择汇总2. SPSS学习笔记之——多因素方差分析3. SPSS学习笔记之——协方差分析4. SPSS学习笔记之——重复测量的多因素方差分析5.SPSS学习笔记之——二项Logistic回归分析6.SPSS学习笔记之——两配对样本的非参数检验(Wilcoxon符号秩检验)7.SPSS学习笔记之——两独立样本的非参数检验(Mann-Whitney U秩和检验)8.SPSS学习笔记之——多个独立样本的非参数检验(Cruskal-Wallis秩和检验)9.SPSS学习笔记之——生存分析的Cox回归模型(比例风险模型)10.SPSS学习笔记之——相关分析(Pearson、Spearman、卡方检验)11.SPSS学习笔记之——配对logistic回归分析12.SPSS学习笔记之——单样本非参数检验13.SPSS学习笔记之——ROC曲线14.SPSS学习笔记之——Kaplan-Meier生存分析15.SPSS学习笔记之——多相关样本的非参数检验(Friedman检验)16.R×C列联表(分类数据)的统计分析方法选择与SPSS实现17.SPSS学习笔记之——OR值与RR值----------------------------------------价SPSS学习笔记之——多因素方差分析问题:对小白鼠喂以三种不同的营养素,目的是了解不同营养素增重的效果。

采用随机区组设计方法,以窝别作为划分区组的特征,以消除遗传因素对体重增长的影响。

现将同品系同体重的24只小白鼠分为8个区组,每个区组3只小白鼠。

三周后体重增量结果(克)列于下表,问小白鼠经三种不同营养素喂养后所增体重有无差别?区组号营养素1营养素2营养素3150.1058.2064.50247.8048.5062.40353.1053.8058.60463.5064.2072.50571.2068.4079.30641.4045.7038.40761.9053.0051.20842.2039.8046.20SPSS软件版本:18.0中文版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习必备欢迎下载
总体分布未知,不会涉及有关总体分布的参数
1.单样本非参数检验:卡方分布,二项分布,K-S检验,变量值随机性检验
2.两独立样本非参数检验:两独立样本所来自的总体分布是否存在显著差异
3.两配对样本非参数检验
4.多独立样本非参数检验
5.多配对样本非参数检验
得到样本数据后,判断总体分布:直方图、P-P图、Q-Q图,或非参数检验
1.1 卡方检验:
根据样本数据,推断总体分布于期望分布或某一理论分布是否存在显著性差异,是一种吻合性检验,离散型数据。

原假设:样本来自总体的分布与期望分布或某一理论分布无显著性差异。

Eg:心脏病猝死人数与日期。

1.2二项分布检验:
检验总体是否服从指定概率为P的二项分布,
原假设:样本来自的总体与指定的二项分布无显著差异。

用于:二值型数据,性别,是否合格,是否为三好学生,硬币正反面等,用01表示。

注:检验概率值(检验比例)
1.3单样本K-S检验:
样本来自的总体是否与某一理论分布有显著差异,是一种拟合优度的检验方法。

用于:探索连续性变量的分布。

正态分布(normal)、均匀分布(uniform)、指数分布(ex.)、泊松分布。

原假设:样本来自的总体与指定的理论分布无显著差异。

另外,对于数据量很大的连续型变量,可以用图形直观判断。

P-P图:数据与理论分布一致时,各个数据点应落在对角线上。

Q-Q图:如果数据与理论分布无显著差异,点应分布在0横线附近。

(没找到啊?)
2 Test type:
Mann-Whitney: 秩:变量值排序的名次或位置
K-S检验:
游程检验Wald-wolfwitz Runs
极端反应检验Moses Extreme Reactions:踢出极端值前后P值变化情况,是否踢出。

注:不同分析方法对同批数据的分析,结论可能不相同,要反复进行探索性分析,还要注意方法本身侧重点上的差异性。

4 中位数检验强调位置,Kruskal-Wallis检验侧重分析平均秩,Jonckheere比较同相对数。

~~~~不懂~
5 mean rank 平均秩
P值说明平均秩是否存在显著差异
Kendall检验中,W协同系数接近于1时,说明是一致的。

相关文档
最新文档