建筑结构设计方法分析
建筑结构承载力分析与设计方法

建筑结构承载力分析与设计方法建筑结构的承载力是指结构在受力情况下所能承受的最大力量。
在建筑设计和施工过程中,准确分析和合理设计结构的承载力至关重要,因为它关系到建筑的安全性和稳定性。
本文将探讨建筑结构承载力分析与设计方法,并介绍几种常用的设计方法。
一、静力分析法静力分析法是最基础且常用的建筑结构分析方法之一。
它基于力学定律,通过对结构的受力、平衡关系和内力分布进行分析,来确定结构的承载力。
该方法适用于简单的结构,如梁、柱和框架等。
在使用静力分析法时,需要根据结构的几何形状和材料性能,计算出结构的受力情况,并确定结构所能承受的最大荷载。
二、有限元分析法有限元分析法是一种常用的数值计算方法,它通过将结构划分为有限个小单元,然后用数学模型描述每个小单元的受力情况,最终通过求解大量方程组得到整体结构的力学性能。
与静力分析法相比,有限元分析法能够更准确地模拟结构的受力情况,尤其适用于复杂的结构和不规则形状的建筑。
然而,由于计算复杂度高和对材料参数的要求较高,有限元分析法在实际工程中的应用较为有限。
三、弹性分析法弹性分析法是一种基于弹性力学原理的计算方法。
该方法假设结构在受力过程中能够完全弹性变形,即结构在受力后能够恢复到受力前的形态,而不会出现永久变形。
通过考虑结构的刚度和强度等因素,利用弹性力学理论进行受力分析,从而得到结构的承载能力。
弹性分析法适用于大部分常规建筑结构,在实际工程中应用广泛。
四、抗震设计方法抗震设计是建筑结构设计的重要内容之一,特别适用于地震频繁地区。
抗震设计旨在使建筑能够在地震中保持稳定和安全,并减少地震所造成的破坏。
常见的抗震设计方法包括减震设备的应用、增加结构的刚度和强度、采用钢筋混凝土框架结构等。
抗震设计是结构设计的一项综合性任务,需要综合考虑建筑的地理环境、结构特点以及地震条件等因素。
综上所述,建筑结构的承载力分析与设计是建筑设计过程中不可或缺的一部分。
从静力分析法到有限元分析法,再到弹性分析法和抗震设计方法,每一种方法都有其适用的范围和优缺点。
建筑中的高层结构设计和分析方法

建筑中的高层结构设计和分析方法随着城市化进程的加速,高层建筑的数量不断增加,高层建筑的结构设计和分析成为了建筑领域中的重要课题。
高层建筑由于其建筑高度大、结构复杂,一旦发生事故后果严重,因此在高层建筑的结构设计和分析过程中应该非常谨慎,采用科学的方法。
本文将介绍建筑中的高层结构设计和分析方法。
1、高层建筑的结构特点高层建筑的结构设计和分析的前提是了解高层建筑的结构特点。
高层建筑的结构可分为两个部分:主体结构和外围结构。
主体结构为承受水平和竖直荷载的主要力学结构,外围结构承受风压和同心力的主要结构。
首先是高层建筑的主体结构。
高层建筑主体结构的最大特点是其高度大,楼体承受复杂多变的自重和外界荷载。
高层建筑主体结构索要承受水平和垂直荷载,如地震、风荷载等。
因此高层建筑主体结构设计应特别注意抗震抗风等问题。
其次,是高层建筑的外围结构。
高层建筑的外围结构主要是承受风压和同心力的主要结构,同时具有良好的隔热保温、防水、防火等能力。
通常,高层建筑外围结构的形式比较丰富,如幕墙、空气层、标准节、剪力墙等。
因此,高层建筑的外围结构设计应该结合建筑的整体风格、使用功能等要素进行综合考虑。
2、高层建筑的结构设计方法高层建筑的结构设计方法有多种,包括传统经验法、试验模拟法、强度设计法和有限元分析法等。
先说传统经验法。
传统经验法是传统建筑价值传承的重要方式之一。
在传统建筑的设计中,主要以工匠传统经验和流传下来的规范方法为主要参考,如普通钢筋混凝土、框架吊顶结构等。
传统经验法方便快捷,但不足之处是不能满足复杂高层建筑设计的需求。
试验模拟法通常使用电子计算机在综合考虑一些设计因素的条件下,通过模拟实验得出模型的力学行为和应力分布。
因此试验模拟法不依赖于任何具体结构,并且实现了全球优化设计,从而使得设计更加优化,更加科学。
强度设计法是一种经典的设计方法,是建筑领域的主流设计方法之一。
强度设计法适用于结构计算较为简单的建筑,强调结构的强度和刚度,是保证结构安全的必要手段。
建筑工程中的结构分析方法

建筑工程中的结构分析方法建筑工程是一个复杂而庞大的系统,而结构分析则是保证建筑物稳定性和安全性的关键。
在建筑工程中,结构分析方法起着至关重要的作用,它能够准确评估建筑物的结构性能,帮助工程师设计出更安全、更可靠的建筑结构。
本文将介绍几种常用的结构分析方法,包括有限元分析、框架分析和刚度矩阵法。
有限元分析是一种被广泛应用于结构分析的数值计算方法。
它将建筑结构划分为许多小的单元,通过对每个单元进行力学分析并最终得到整个结构的力学性能。
有限元分析具有高精度、高灵活性和适用范围广等优点,因此在建筑工程中得到广泛应用。
通过有限元分析,工程师可以准确预测建筑结构在承受载荷时的应力分布、变形情况,从而判断结构的稳定性和安全性。
框架分析是一种简化模型的结构分析方法。
它将建筑结构简化为一系列由直线杆件组成的框架,通过对框架的力学分析来评估整个结构的稳定性。
框架分析在建筑工程中应用广泛,特别适用于简单的结构,如平房、小型桥梁等。
通过框架分析,工程师能够快速、简便地评估建筑物在不同载荷下的变形和应力情况,为结构设计提供指导。
刚度矩阵法是一种基于刚度矩阵计算的结构分析方法。
它将建筑结构表示为由节点和单元组成的网络,通过计算每个节点和单元的刚度矩阵,最终得到整个结构的刚度矩阵。
刚度矩阵法具有较高的精度和稳定性,适用于复杂的结构分析。
通过刚度矩阵法,工程师可以准确计算建筑结构在不同载荷下的位移、应力等重要参数,为结构的设计和优化提供基础。
除了上述提到的方法,结构分析中还有许多其他有效的技术,如位移法、弹性稳定性分析等。
这些方法在不同的应用场景中发挥着重要的作用,通过综合运用这些方法,工程师能够更全面地评估建筑结构的性能,确保其安全可靠。
综上所述,建筑工程中的结构分析方法是确保建筑物稳定性和安全性的关键。
有限元分析、框架分析和刚度矩阵法等方法在实际工程中得到广泛应用,并通过各自的特点和优势为工程师提供了准确、可靠的结构性能评估手段。
解读建筑设计中的结构分析方法

解读建筑设计中的结构分析方法建筑设计中的结构分析方法解读在建筑设计中,结构分析是至关重要的一个环节。
它涉及到对建筑物的整体结构进行全面、细致的分析,以确保建筑物的安全性和稳定性。
本文将为您解读建筑设计中的结构分析方法。
一、结构分析的目的结构分析的目的是为了确定建筑物的结构在各种外力和内力作用下的响应,以及结构的承载能力和稳定性。
通过结构分析,可以有效地预测和控制结构的安全性能,以满足建筑规范和设计要求。
二、结构分析的基本方法1. 有限元法有限元法是一种数值分析方法,它将复杂的结构分解为若干个简单的子结构,并对每个子结构进行单独的分析。
这种方法可以处理复杂的几何形状和边界条件,并能够考虑各种非线性因素,因此在建筑结构分析中广泛应用。
2. 有限差分法有限差分法也是一种数值分析方法,它通过离散化的方式将连续的物理场转换为离散的网格系统。
这种方法可以模拟各种复杂的物理现象,如地震波的传播、结构的振动等。
3. 离散元法离散元法是一种模拟颗粒物质行为的数值方法。
在建筑设计中,离散元法可以用于模拟混凝土、土体等颗粒物质的行为,预测结构的整体稳定性,以及结构的破坏模式。
三、结构分析的具体步骤1. 建立模型首先,需要对建筑物的整体结构和设计要求进行详细的分析和理解,并在此基础上建立相应的数学模型。
模型的建立需要考虑结构的几何形状、材料属性、边界条件等因素。
2. 加载和分析在模型建立完成后,需要对模型进行加载和分析。
加载包括施加各种外力和内力,如重力、风载、地震作用等。
分析则包括对结构的响应、承载能力和稳定性进行计算和评估。
3. 结果评估和优化根据分析结果,需要对建筑物的结构进行评估和优化。
评估包括对结构的强度、刚度和稳定性进行评估,以确保结构的安全性能。
优化则包括对结构的几何形状、材料分布等进行优化,以提高结构的经济性和效率。
总之,结构分析是建筑设计中的重要环节,它涉及到对建筑物的整体结构和性能进行全面、细致的分析和评估。
建筑结构的设计与分析

建筑结构的设计与分析建筑结构是建筑物的骨架,它承担着支撑、传力和抗震等重要功能。
建筑结构的设计与分析是建筑工程中极为重要的环节,它决定着建筑物的安全性、稳定性和经济性。
本文将从设计理念、结构分析方法、材料选择等方面进行探讨。
一、设计理念建筑结构的设计理念是指在满足建筑功能、安全性和美观性的基础上,合理运用结构力学和材料力学原理,采用合适的结构形式,实现结构的高效性和经济性。
1.1 功能性要求建筑结构的设计首先要满足建筑物的功能性要求,即能够满足建筑物的使用需求。
例如,住宅建筑需要提供安全、舒适的居住空间;办公建筑要满足工作环境的需求;商业建筑要具有良好的展示和销售功能等。
1.2 安全性要求在设计建筑结构时,安全是首要考虑的因素。
建筑结构要能够承受自重、荷载和地震等外力的作用,保证建筑物在使用阶段的稳定性和安全性。
设计过程中需要考虑结构的强度、刚度和稳定性。
1.3 美观性要求建筑结构的美观性是指在满足功能和安全性要求的同时,结构形式整体上要与建筑风格、外观形象相协调,形成统一的建筑艺术效果。
二、结构分析方法结构分析是建筑结构设计的核心环节,通过数学模型和计算手段,对结构的受力、变形等进行分析和计算,以确定结构的合理性和安全性。
2.1 静力分析静力分析是最基本的结构分析方法,它根据结构受力平衡的原理,通过平衡方程计算结构的受力和变形情况。
静力分析适用于结构受力平衡的情况,如简支梁、柱子等。
2.2 动力分析动力分析是在结构受到地震、风荷载等动力荷载作用下,通过运用动力学原理,分析结构的动力响应和抗震性能。
动力分析适用于高层建筑、大跨度桥梁等结构。
2.3 有限元分析有限元分析是一种数值计算方法,将结构离散为有限个的单元,通过单元间相互关联和边界条件的约束,求解结构的受力和变形情况。
有限元分析可以模拟结构受力和变形的状况,对于复杂结构的分析具有较高的精度。
三、材料选择材料的选择是建筑结构设计中的关键环节,直接影响着结构的稳定性和经济性。
建筑结构设计的优化方法及应用分析

建筑结构设计的优化方法及应用分析
随着建筑工程技术的不断发展,建筑结构设计正变得越来越重要。
而建筑结构设计的优化可以有效地提高建筑物的性能,并减少其成本。
本文将介绍一些常用的建筑结构设计优化方法,并分析其应用。
1. 最小重量优化方法
最小重量优化方法是建筑结构设计中最常见的一种优化方法。
其基本原理是通过改变结构的某些参数,使得结构在承受载荷的重量最小。
最小重量优化方法可以应用于各种建筑结构,如楼板、框架、柱子等。
该方法的主要优点是简单易行,且能够显著减少结构的重量,降低建筑成本。
2. 最小挠度优化方法
最小挠度优化方法是在满足一定约束条件的前提下,使结构的挠度最小。
挠度是建筑结构的一个重要性能指标,能够反映结构的刚度和稳定性。
通过优化设计,可以减小结构的挠度,提高其刚度和稳定性。
最小挠度优化方法在高层建筑的设计中得到广泛应用,能够有效避免结构的振动问题。
4. 多目标优化方法
多目标优化方法是指在优化设计时,同时考虑多个目标函数。
通过权衡不同目标之间的关系,可以得到一个全局最优解。
多目标优化方法在建筑结构设计中的应用非常广泛,能够在不同的设计要求之间进行平衡,提高结构的综合性能。
建筑结构设计的优化方法包括最小重量优化方法、最小挠度优化方法、最小成本优化方法和多目标优化方法。
这些方法在建筑结构设计中得到了广泛应用,能够提高建筑物的性能,并降低其成本。
优化设计不仅需要考虑结构的性能和经济性,还需要考虑结构的施工可行性、可维护性和环境友好性等因素。
在实际工程中,应根据具体情况选择合适的优化方法,并兼顾各种设计要求。
建筑行业中的建筑结构设计与分析方法

建筑行业中的建筑结构设计与分析方法在建筑行业中,建筑结构设计与分析是非常重要的环节。
只有确保建筑结构的安全性和稳定性,才能确保建筑物的可持续使用。
本文将介绍建筑行业中常用的建筑结构设计与分析方法,包括静力分析、有限元分析和结构优化等。
一、静力分析静力分析是建筑结构设计的基本方法之一。
在静力分析中,结构被认为是静止不动的,只考虑静力平衡。
通过计算结构受力和变形情况,确定结构的安全性。
静力分析可以分为刚性体系分析和柔性体系分析。
1. 刚性体系分析:刚性体系分析假设结构的刚度非常大,结构在受力作用下只产生很小的变形。
在刚性体系分析中,常用的方法有杆件法和板壳法。
杆件法适用于直线构件,如梁和柱;板壳法适用于平面和曲面构件,如板和壳体。
2. 柔性体系分析:柔性体系分析考虑结构的变形,结构被看作是弹性体系。
在柔性体系分析中,常用的方法有位移法和能量法。
位移法根据结构的变形和位移来计算结构的受力情况;能量法通过计算系统的能量及其变化来确定结构的变形和受力。
二、有限元分析有限元分析是一种数值计算方法,广泛应用于建筑结构的设计与分析中。
有限元分析将复杂的结构问题离散化为有限个简单的子问题,通过求解这些子问题得到整个结构的解。
有限元分析可以考虑结构的非线性变形和材料的非线性力学性质。
有限元分析的基本步骤包括建立模型、离散化、确定边界条件、求解方程和后处理。
在建立模型时,将结构分割成有限个单元,并根据不同单元的特性来选择适当的数学模型。
然后,根据结构的几何和材料特性,确定每个单元的初始条件和受力情况。
最后,通过求解各个单元的方程,得到整个结构的受力和变形情况。
三、结构优化结构优化是一种通过调整结构形状和尺寸来提高结构性能的方法。
结构优化可以帮助设计师减少材料的使用、改善结构的刚度和稳定性,并满足特定的设计要求。
常见的结构优化方法包括拓扑优化、形状优化和尺寸优化。
1. 拓扑优化:拓扑优化是通过改变结构的拓扑形态来提高结构的性能。
建筑结构设计的优化方法及应用分析

建筑结构设计的优化方法及应用分析一、引言建筑结构设计是指按照建筑物的功能、使用寿命、经济效益和安全要求,对建筑结构的形式、尺寸、材料和连接方式等进行技术规划和设计。
随着科技的不断发展和人们对建筑品质的不断追求,建筑结构设计也越来越受到重视。
在建筑结构设计过程中,如何优化设计方法、提高设计效率和确保设计质量成为了工程师们需要解决的重要问题。
本文将对建筑结构设计的优化方法进行分析,并探讨其在实际应用中的意义和作用。
二、建筑结构设计的优化方法1. 多目标优化方法在建筑结构设计中通常存在多个设计目标,如结构的安全性、经济性和环境友好性等。
多目标优化方法通过建立多个设计目标的数学模型,并运用多目标优化算法进行求解,找到多个设计目标之间的最佳平衡点。
这种方法可以有效提高设计的综合效益,是当前建筑结构设计中比较常用的优化方法之一。
2. 参数化设计方法参数化设计方法是指通过建立参数化模型,将建筑结构的形式、尺寸、材料等设计参数与设计目标进行耦合,通过对设计参数进行调整和优化,来实现对建筑结构设计的优化。
参数化设计方法借助计算机辅助设计软件,可以实现对大量设计方案的自动化生成和快速比较,具有较高的设计效率和灵活性。
智能优化方法是指基于人工智能技术的优化方法,如遗传算法、粒子群算法、人工神经网络等。
这些智能优化方法具有一定的优化搜索能力和全局寻优能力,能够克服传统优化方法在高维空间中搜索效率低、易陷入局部最优等问题,对于复杂的建筑结构设计问题具有很好的适用性。
1. 提高设计效率传统的建筑结构设计方法主要依靠设计师的经验和直觉,设计过程比较复杂和耗时。
而采用优化方法可以通过数学模型和计算机算法,实现对设计参数的自动化调整和优化,提高了设计的效率和精度,减少了设计周期和人力成本。
采用优化方法可以充分考虑到结构的多个设计目标,找到最优的设计方案,提高了结构在安全性、稳定性、经济性等方面的综合性能,确保了设计质量和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关系式g(S,R)=R-S=0 称为极限状态方程。
按承载能力极限状态设计的实用表达式
0S R
0 —结构构件重要性系数 一级=1.1、二级=1.0、三级=0.9
实际工程中,可能出现以下三种情况
第2章 建筑结构设计方法 2.3 建筑结构概率极限状态设计法
1)由可变荷载效应控制的组合
按永久荷载标准值 计算的荷载效应值
(1)礼堂、剧场、影院、有固定座位的
3
看台
(2)公共洗衣房
(1)商店、展览厅、车站、港口、机场
4
大厅及其旅客等候室
(2)无固定座位的看台
标准值
(kN/m2)
2.0
2.5 3.0 3.0
3.5 3.5
组合 值系 Ψc
0.7
0.7 0.7 0.7
0.7 0.7
频偶 值系 Ψf
准永久 值系数
Ψq
0.5
0.4
其预定目的使用的时期。
结构的设计使用年限分类
建筑结构的安全等级
安全等级 破坏后果 建筑物类型
设计 使用年限
示例
5
临时性结构
一级
很严重 重要的房屋
25
易于替换的结构构件
二级 三级
严重 不严重
一般的房屋 次要的房屋
50
普通房屋和构筑物
100
纪念性建筑和 特别重要的建筑结构
第2章 建筑结构设计方法 2.3 建筑结构概率极限状态设计法
可变荷载效应 中的最大值
可变荷载的 组合值系数
n
S G S Gk Q1 S Q1k Qi ci S Qik
i2
永久荷载分项系数
按可变荷载标准值 计算的荷载效应值
第1个可变荷载 的分项系数
第i个可变荷载 的分项系数
第2章 建筑结构设计方法
2.3 建筑结构概恒率荷载极限状态设计法活荷载
2)由永久荷载效效应应设控计制值的组合 效应设计值
第2章 建筑结构设计方法 2.3 建筑结构概率极限状态设计法
《建筑结构可靠度设计统一标准》GB50068-2001(以下简称《统一标 准》)规定,建筑结构设计时,应根据结构破坏可能产生的后果(危及人 的生命、造成经济损失、产生社会影响等)的严重性,采用不同的安全等 级。
设计使用年限,是指设计规定的结构或结构构件不需进行大修即可按
2)正常使用极限状态 —— 正常使用极限状 态对应于结构或结构构件达到正常使用或耐久性 能的某项规定限值。这一状态对应于适用性或耐 久性的功能。
当结构或结构构件出现下列状态之一时,即认 为超过了正常使用极限状态:
●影响正常使用或外观的变形; ●影响正常使用或耐久性能的局部损坏(包括裂缝); ●影响正常使用的振动; ●影响正常使用的其他特定状态等。
极限状态
承载力极限状态 正常使用极限状态
(2)分类 1)承载能力极限状态 —— 这种极限状态对
应于结构或结构构件达到最大承载能力或不适于 继续承载的变形。承载能力极限状态主要考虑关 于结构安全性的功能。
当结构或结构构件出现下列状态之一时,即认为超过了 承载能力极限状态:
●结构构件或连接因材料 强度不够而破坏; ●整个结构或结构的一部 分作为刚体失去平衡(如 倾覆等); ●结构转变为机动体系; ●结构或结构构件丧失稳 定(如柱子被压曲等)。
例如,一简支梁梁长为l0,承受的垂直均布线荷载为q (已包括梁自重),梁的抗弯刚度为B。则梁跨中由荷 载q产生的弯矩为M=1/8ql02,跨中挠度f=5ql04/(384B), 支座处剪力V=1/2ql0。
2.2.2 结构抗力
结构抗力 —— 结构或构件承受作用效应的能力,如构件的 承载力、刚度、抗裂度等,用R表示。结构抗力是结构内部固 有的,其大小主要取决于材料性能、构件几何参数及计算模式 的精确性等。
注:①本表所列各项活荷载适用于一般使用条件,当使用荷载大时,应按实际情况采用。 ②本表各项荷载不包括隔墙自重和二次装修荷载。
2.2.2 作用效应
作用效应—— 结构上的各种作用,在结构内产生的内 力(轴力、弯矩、剪力、扭矩等)和变形(如挠度、转角、
裂缝等)的总称,用S 表示。由直接作用产生的效应,通 常称为荷载效应。荷载效应可由力学方法求得。
结构的功能函数
(1)作用效应 S
作用(荷载)对结构产生的各种效应, 如弯矩、剪力、轴力、变形、裂缝等
MV N f w
(2)结构抗力 R
结构构件抵抗各种作用效应的能力。 如抗弯、抗剪、抗压、抗拉、抗扭承载力 以及抗变形、抗裂缝的能力。
第2章 建筑结构设计方法 2.3 建筑结构概率极限状态设计法
挑担子与结构功能函数
结构的可靠度是结构可靠性的概率度量,即对结构可靠性 的定量描述。
当结构的使用年限超过设计使用年限后,并不意味着结构 就要报废,但其可靠度将逐渐降低。
2.1.2 建筑结构极限状态
(1)定义
整个结构或结构的一部份,超过某一特定状态就不能满 足设计规定的某一功能(安全性、适用性、耐久性)要求, 该特定状态称为该功能的极限状态。
3.偶然荷载 在结构使用期间不一定出现,而一旦出现,其量值
很大且持续时间很短的荷载称为偶然荷载,如爆炸力、撞 击力等。
2.2.1 荷载分类及荷载代表值
荷载标准值
按构件尺寸和构件单位体积自重
(1)永久荷载标准值 的标准值来确定。
常用材料单位体积的自重(单位kN/m3) 混凝土22~24, 钢筋混凝土24~25, 水泥砂浆20, 石灰砂浆、混合砂浆17, 普通砖18, 普通砖(机器制)19, 浆砌普通砖砌体18, 浆砌机砖砌体19。
第2章 建筑结构设计方法
本章主要内容
1 . 荷载分类; 2 . 荷载代表值; 3 . 结构功能的极限状态; 4 . 结构上的作用、作用效应和结构抗力; 5. 概率极限状态设计法实用设计表达式。
教学目标:
1. 了解掌握荷载分类、荷载代表值的概念及种类; 2. 理解结构的功能及其极限状态的含义; 3. 能确定永久荷载、可变荷载的代表值。
2.2.1 荷载分类及荷载代表值
1.永久荷载 永久荷载亦称恒荷载,是指在结构使用期间,其值
不随时间变化,或者其变化与平均值相比可忽略不计的荷 载,如结构自重、土压力、预应力等。
2.可变荷载 可变荷载也称为活荷载,是指在结构使用期间,其
值随时间变化,且其变化值与平均值相比不可忽略的荷载, 如楼面活荷载、屋面活荷载、风荷载、雪荷载、吊车荷载 等。
n
S 0 ( G S Gk Qi ci S Qik ) i 1
荷载分项系数的取值
荷载特性
分项系数
永久荷载效应 由可变荷载效应控制的组合
1.2
永久 对结构不利
由永久荷载效应控制的组合
1.35
荷载 永久荷载效应对结构有利
1.0
倾覆、滑移或飘浮验算
0.9
可变 一般情况
1.4
荷载 对标准值大于4kN/m2的工业房屋楼面结构的活荷载取
能力极限状态设计时的跨中弯矩设计值。
•
树立质量法制观念、提高全员质量意 识。20.10.2520.10.25Sunday, October 25, 2020
•
人生得意须尽欢,莫使金樽空对月。05:49:5705:49:5705:4910/25/2020 5:49:57 AM
•
安全象只弓,不拉它就松,要想保安 全,常 把弓弦 绷。20.10.2505:49:5705:49Oc t-2025- Oct-20
0.6
0.5
0.6
0.5
0.5
0.3
0.6
0.5
0.6
0.5
0.5
0.3
2.2.1荷载分类及荷载代表值
(1)可变荷载标准值 (民用楼面均布活荷载标准值按下表采用)
(1)健身房、演出舞台 5 (2)舞厅
4.0
0.7 0.6 0.5
4.0
0.7 0.6 0.3
(1)书库、档案室、储藏室 6 (2)密集柜书库
混凝土强度设计值=
混凝土强度标准值÷砼材料分项系数γc
钢 筋强度设计值=
钢 筋 强度标准值÷钢筋材料分项系数γs
第一章 建筑结构计算基本原则
小组协作思考题:
2.1什么是荷载代表值?永久荷载、可变荷载的代表值分别是什么? 2.2建筑结构应满足哪些功能要求?其中最重要的一项是什么? 2.3什么是结构功能的极限状态?承载能力极限状态和正常使用极 限状态的含义分别是什么? 2.4 试用结构功能函数描述结构所处的状态。
走廊、门厅、楼梯:
(1)宿舍、旅馆、医院病房、托儿所、幼 2.0
11 儿园、住宅
2.5
(2)办公楼、教室、餐厅、医院门诊部
3.5
(3)消防疏散楼梯、其他民用建筑
阳台:
12 (1)一般情况 (2)当人群有可能密集时
2.5 3.5
0.7 0.5 0.4 0.7 0.6 0.5 0.7 0.5 0.3
0.7 0.6 0.5
*耐久性 在正常使用及维护下,具有足够的耐久性能,
不发生锈蚀和风化现象。
例如,结构材料不致出现影响功能的损坏,钢筋混凝土构件的钢筋不致因保 护层过薄或裂缝过宽而锈蚀等。
结构的安全性、适用性和耐久性是结构可靠的标志,总称 为结构的可靠性。
结构可靠性的定义是,结构在规定时间内,规定条件下, 完成预定功能的能力。
5.0 12.0
0.9
0.9
0.8
7 通风机房、电梯机房
7.0
0.9 0.9 0.8
汽车通道及停车库
(1)单向板楼盖(板跨不小于2m)
客车
消防车
4.0
0.柱网尺寸 35.0
0.7
0.7
0.6
不小于6m×6m)
2.5