机械手动作模拟图
搬运机械手电气控制系统设计

目录第1章概述 (1)1.1 PLC简介 (1)1.2机械手概述 (1)1.3 机械手控制系统设计步骤 (2)第2章控制方案论证 (3)2.1 搬运机械手的设计原理 (3)2.2 PLC的选取 (4)第3章控制系统硬件电路设计 (7)3.1传送带A,B主电路图及传送带B的控制电路图 (7)3.2PLC控制面板及接口电路图 (8)第4章控制系统软件设计 (10)4.1控制系统的软件设计原理 (10)4.2梯形图 (12)第5章控制系统调试 (14)5.1 控制系统的调试过程 (14)总结 (15)参考文献 (16)附录 (17)第1章概述1.1PLC简介自二十世纪六十年代美国推出可编程逻辑控制器(Programmable Logic Controller,PLC)取代传统继电器控制装置以来,PLC得到了快速发展,在世界各地得到了广泛应用。
同时,PLC的功能也不断完善。
随着计算机技术、信号处理技术、控制技术网络技术的不断发展和用户需求的不断提高,PLC在开关量处理的基础上增加了模拟量处理和运动控制等功能。
今天的PLC 不再局限于逻辑控制,在运动控制、过程控制等领域也发挥着十分重要的作用。
通用PLC应用于专用设备时可以认为它就是一个嵌入式控制器,但PLC相对一般嵌入式控制器而方具有更高的可靠性和更好的稳定性。
实际工作中碰到的一些用户原来采用嵌入式控制器,现在正逐步用通用PLC或定制PLC取代嵌入式控制器。
1.2机械手概述工业机械手是近几十年发展起来的一种高科技自动化生产设备。
工业机械手是工业机器人的一个重要分支。
它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。
机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。
机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。
毕业设计送料机械手设计及Solidworks运动仿真(全套图纸)

目录摘要 (1)第一章机械手设计任务书 (2)1.1毕业设计目的 (2)1.2本课题的内容和要求 (2)第二章抓取机构设计 (4)2.1手部设计计算 (4)2.2腕部设计计算 (7)2.3臂伸缩机构设计 (9)第三章液压系统原理设计及草图 (11)3.1手部抓取缸 (11)3.2腕部摆动液压回路 (13)3.3小臂伸缩缸液压回路 (14)3.4总体系统图 (15)第四章机身机座的结构设计 (16)4.1电机的选择 (17)4.2减速器的选择 (18)4.3螺柱的设计与校核 (18)第五章机械手的定位与平稳性 (20)5.1常用的定位方式 (20)5.2影响平稳性和定位精度的因素 (20)5.3机械手运动的缓冲装置 (21)第六章机械手的控制 (22)第七章机械手的组成与分类 (24)7.1机械手组成 (24)7.2机械手分类 (25)第八章机械手Solidworks三维造型 (26)8.1上手爪造型 (27)毕业设计感想 (37)参考资料 (38)送料机械手设计及Solidworks运动仿真摘要本课题是为普通车床配套而设计的上料机械手。
工业机械手是工业生产的必然产物,它是一种模仿人体上肢的部分功能,按照预定要求输送工件或握持工具进行操作的自动化技术设备,对实现工业生产自动化,推动工业生产的进一步发展起着重要作用。
因而具有强大的生命力受到人们的广泛重视和欢迎。
实践证明,工业机械手可以代替人手的繁重劳动,显著减轻工人的劳动强度,改善劳动条件,提高劳动生产率和自动化水平。
工业生产中经常出现的笨重工件的搬运和长期频繁、单调的操作,采用机械手是有效的。
此外,它能在高温、低温、深水、宇宙、放射性和其他有毒、污染环境条件下进行操作,更显示其优越性,有着广阔的发展前途。
本课题通过应用AutoCAD 技术对机械手进行结构设计和液压传动原理设计,运用Solidworks技术对上料机械手进行三维实体造型,并进行了运动仿真,使其能将基本的运动更具体的展现在人们面前。
机械手PPT讲解

第7章 可编程控制器的应用
(7)设计操作台、电气柜及非标准电气元件。 (8)编写设计说明书和使用操作说明书。 3.设计的主要步骤 用图7-1所示的流程图表示。 (1)分析被控对象的控制要求,确 定控制任务 (2)选用和确定用户I/O设备根据系 统控制要求,选用合适的用户输入、 输出设备。由此初步估算所需的输入、 输出点数。 (3)选择PLC的型号 根据已确定的用户输入、输出设备, 统计所需的输入、输出点数,选择合 适的PLC类型。包括机型的选择、容量 的选择、I/O模块的选择、电源模块的 选择等。
增删部分功能或运用其中部分程序。 (2)解析法 利用组合逻辑或时序逻辑的理论并采用相应的解析方法进行逻辑求解,
根据其解编制程序。可使程序优化或算法优化。
第7章 可编程控制器的应用
(3)图解法 通过画图设计。常用有梯形图法、波形图法、状态转移图法。梯形图法
是基本方法,无论经验法还是解析法,一般都用梯形图法来实现。波形 图法主要适用于时间控制电路,先画出信号波形,再依时间用逻辑关系 组合。 (4)计算机辅助设计 利用应用软件在微机上设计出梯形图,然后传送到PLC中。
2.二台电动机顺序起动控制系统设计
控制线路如图7-6示。
(1)分析控制要求
这是一个二台电动机顺序启动、同时停止的控制线路。分析可知,在 M1起动之后,经过时间继电器KT的延时,M2自动启动。SB2为启 动按钮,SB1为停止按钮。按下SB1,M1、M2同时断电停止。为了 保证先M1、后M2的启动顺序,将KM2线圈接在KM1自锁触点后面, 且由时间继电器KT的延时触点控制。
(2)统计输入、输出点数并选择PLC型号
第7章 可编程控制器的应用
图7-6 二台电动机顺序起动控制线路
输入信号有按钮2个,热继电器FR1、FR2的保护触点如作输入信号,要 占2个输入点。从节省输入、输出点,降低成本出发,可将其放在输出电 路中,不占输入点。因此,只有2个输入信号。考虑留适当裕量,最多需 3个输入点。
机械手控制设计_梯形图设计(PLC设计课件)

启动:右位且夹紧到位;左位且放松到位 停止:到达上升位置
输入
I0.5
行程开关SQ4
机械手左限
I0.6
行程开关SQ5
机械手右限
I0.7
行程开关SQ6
机械手夹紧位置
I1.0
行程开关SQ7
机械手放松位置
I0.4
行程开关SQ3
机械手上限
I0.7 I0.6 I1.0 I0.5
Q0.1 I0.4 Q0.3 Q0.2
行程开关SQ5
机械手右限
I0.7
行程开关SQ6
机械手夹紧位置
I1.0
行程开关SQ7
机械手放松位置
I0.4
行程开关SQ3
机械手上限
I0.7 I0.6 I1.0 I0.5
Q0.1 I0.4 Q责,敢担当,勇图强。
三、梯形图设计
机械手自动控制 机械臂升降控制-上升
输入
I0.5
行程开关SQ4
机械手左限
I0.6
行程开关SQ5
机械手右限
I0.7
行程开关SQ6
机械手夹紧位置
I1.0
行程开关SQ7
机械手放松位置
I0.4
行程开关SQ3
机械手上限
I0.7 I0.6 I1.0 I0.5
Q0.1 I0.4 Q0.3 Q0.2
6.右转,离开左侧位
尽职责,敢担当,勇图强。
三、梯形图设计
机械手自动控制 机械臂升降控制-上升
机械臂下降,下降到位置,抓取工件(夹紧),上升,传送带1启动,机械手上升到位置,左转,左转到位,下降,放 置工件(放松),上升,右转,下降,继续抓取工件。
启动:右位且夹紧到位;左位且放松到位 停止:到达上升位置
实验2.15 机械手动作

实验2.15机械手动作模拟控制在机械手动作模拟控制实验区完成本实验,具体实验接线参见《RTPLC-4A实验台使用说明》中的主机接线图部分。
一、实验目的用数据移动指令来实现机械手动作的模拟二、机械原理和控制要求机械手将一工件由A处传送到B处,中间需经过上升/下降和左移/右移灯动作,这些动作通过双线圈二位电磁阀推动气缸完成。
当某个电磁阀线圈通电,就一直保持现有的机械动作,例如一旦下降的电磁阀线圈通电,机械手下降,即使线圈再断电,机械手仍保持现有的下降动作状态,直到相反方向的线圈通电为止。
另外,夹紧/放松由单线圈二位电磁阀推动气缸完成,线圈通电执行夹紧动作,线圈断电执行放松动作。
设备装有上、下限位和左右限位开关,它的工作过程共有八个动作,如图所示:85X004:左限开关开始时,机械手处于原位,X002和X004开关处于接通状态(即“1”),通过 M100线圈使M100接点接通(置“1”);这样,Y005线圈通电,原位指示灯点亮;按下启动按钮,使X000置“1”,产生移位信号,与M100一起接通移位寄存器的输入端,从而使M101置“1”,使Y000通电,执行下降动作;同时,上限开关X002断开,M100回复到“0”,原位指示灯熄灭;当下降到位时,下限开关X001接通,与M101一起产生移位脉冲信号,使M101置“0”,M102置“1”,从而使线圈Y000断电,停止下降动作;同时使M200置“1”,并使线圈T0通电,使夹紧电磁阀Y001动作,同时启动定时器T0,延时2秒;2秒后,T0常开接点接通,与M102一起产生移位脉冲,使M102置“0”,M103置“1”,从而使上升电磁阀Y002接通,执行上升动作。
由于M200是由SET命令接通的,具有自保持功能,因此Y001夹紧电磁阀在上升过程中一直保持夹紧动作。
上升到位后,上限电磁阀X002重新接通,与M103一起产生移位信号,使M103置“0”,M104置“1”,从而使Y002电磁阀断开,不在执行上升动作;同时Y003电磁阀通电,执行右移动作。
(完整版)基于plc的机械手控制系统设计

前言随着我国工业生产的飞跃发展,自动化程度的迅速提高,实现工件的装卸、转向、输送或操持焊枪、喷枪、扳手等工具进行加工、装配等作业的自动化,已愈来愈引起人们的重视。
机械手是在机械化、自动化生产过程中发展起来的一种新型装置。
近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。
机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。
在工业生产中应用的机械手被称为“工业机械手”。
机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动、不知疲劳、不怕危险、抓举重物的力量比人手大等特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用,生产中应用机械手可以提高生产的自动化水平和劳动生产率;可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。
本文将通过西门子PLC控制机械手,PLC是可编程控制器(Programmable Logic Controller)的简称,是在继电顺序控制基础上发展起来的以微处理器为核心的通用的工业自动化控制装置。
随着电子技术和计算机技术的迅猛发展,PLC的功能也越来越强大,更多地具有计算机的功能。
目前PLC已经在智能化、网络化方面取得了很好的发展。
该系统利用西门子PLC,在步进电机驱动下,完成对机械手在搬运过程中的下降、夹紧、上升、右旋、下降、放松、上升、左旋等全过程自动化控制,并对非正常情况实行自动报警和自动保护,实现企业的机电一体化,提高企业的生产效率。
1机械手概述1.1机械手简介机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。
它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
基于PLC的机械手动作监控系统设计

基于PLC的机械手动作监控系统设计基于PLC的机械手动作监控系统设计摘要工业生产随着科学技术的发展而发展,工业生产上机电一体化的应用越来越多,机械设备中的自动控制成分越来越重要。
由于有些工人在工作的时候经常受到高温、低温或有害气体的危害,甚至危及生命。
这些工作不得不用机器代替,因此机械手就诞生了。
机械手是机器人的关键部件,在自动化车间中可以运送物料和工艺的操作。
机械手通过可编程控制器的编程,按照控制要求完成各种规定的动作,可以提高加工精度、提高生产效率、降低成本。
本文根据PLC的工业控制和计算机监控的相关理论,按照工业机械手动作的控制要求,完成了其运动控制的设计以及组态监控系统的设计,对控制系统的各个流程即总体结构、控制流程以及构成系统模块进行了研究。
本次设计采用的可编程控制器为:S7-200系列。
关键词:机械手,PLC,监控Design of manipulator motion control system based on PLCABSTRACTIndustrial production develops with the development of science and technology. As a result, the application of mechanotronics can be found more and more easily in industrial production. Besides, the automatic control components also become increasingly important. It is a fact that some workers are always suffered from the high temperatures, low temperatures and even some harmful gases. These factors may even do great harm to their lives. This kind of work must be done by machines so that the machine hand is produced. The machine hand is the key component of the robot. It can deliver the material and operate the machine during the industrial production. The machine hand is controlled by programmable controller and does the actions according the orders which it has accepted. It can improve the accuracy, increase the productivity and reduce the costs.Based on the theory of industrial control and computer monitoring of the PLC and the control requirements of industrial robot movement, the design and configuration of the monitoring system design of its motion control, process control systems for the individual are completed. The overall structure of the control process and constitute system modules were studied at the same time. The programmable controller which the design uses is: S7-200.KEY WORDS: Manipulator, PLC, Monitor目录前言 (1)第1章绪论 (3)1.1 机械手的概述 (3)1.2 国内外机械手的发展 (3)1.2.1机械手发展 (3)1.2.2机械手的分类 (4)1.3 可编程控制器(PLC) (6)1.3.1可编程逻辑控制器介绍 (6)1.3.2可编程逻辑控制器的发展过程 (6)1.3.3 PLC硬件系统组成 (6)1.3.4 PLC工作原理 (7)1.4 课题研究的意义 (7)第2章系统的硬件设计 (9)2.1控制要求 (9)2.2主电路设计 (9)2.3硬件的选型 (10)2.3.1 PLC的选型 (10)2.3.2限位开关 (12)2.3.3开关按钮 (12)2.3.4电气元件明细表 (12)2.4 I/O分配表及其端子接线图 (13)2.4.1 I/O分配表 (13)2.4.2 PLC的外部接线图 (13)第3章系统软件设计 (14)3.1 工作流程图 (14)3.2 顺序功能图 (14)3.3 梯形图 (17)3.4 编程软件 (21)3.4.1 STEP7—Micro/WIN32简介 (21)3.4.2 STEP7—Micro/WIN32使用 (23)第4章组态 (25)4.1组态的介绍 (25)4.1.1 组态概述 (25)4.1.2 组态发展、功能和特点 (25)4.2组态画面设计 (26)4.2.1组态的画面 (26)4.2.2设备和变量的定义 (30)4.2.3动画连接 (32)4.3组态程序 (33)第5章硬软件调试 (34)5.1程序调试 (34)5.2组态演示 (35)结论 (39)谢辞 (40)参考文献 (41)外文资料翻译 (43)前言机械手动作监控系统是由美国最先开始研究的。
一 四轴联动简易机械手的结构及动作过程

基于PLC的机械手控制设计一四轴联动简易机械手的结构及动作过程机械手结构如下图1所示,有气控机械手(1)、XY轴丝杠组(2)、转盘机构(3)、旋转基座(4)等组成。
其运动控制方式为:(1)由伺服电机驱动可旋转角度为360°的气控机械手(有光电传感器确定起始0点);(2)由步进电机驱动丝杠组件使机械手沿X、Y轴移动(有x、y轴限位开关);(3)可回旋360°的转盘机构能带动机械手及丝杠组自由旋转(其电气拖动部分由直流电动机、光电编码器、接近开关等组成);(4)旋转基座主要支撑以上3部分;(5)气控机械手的张合由气压控制(充气时机械手抓紧,放气时机械手松开)。
其工作过程为:当货物到达时,机械手系统开始动作;步进电机控制开始向下运动,同时另一路步进电机控制横轴开始向前运动;伺服电机驱动机械手旋转到达正好抓取货物的方位处,然后充气,机械手夹住货物。
步进电机驱动纵轴上升,另一个步进电机驱动横轴开始向前走;转盘直流电机转动使机械手整体运动,转到货物接收处;步进电机再次驱动纵轴下降,到达指定位置后,气阀放气,机械手松开货物;系统回位准备下一次动作。
二控制器件选型为达到精确控制的目的,根据市场情况,对各种关键器件选型如下:1. 步进电机及其驱动器机械手纵轴(Y轴)和横轴(X轴)选用的某公司的42BYG250C型两相混合式步进电机,步距角为0.9°/1.8°,电流1.5A。
M1是横轴电机,带动机械手机构伸、缩;M2是纵轴电机,带动机械手机构上升、下降。
所选用的步进电机驱动器是SH-20403型,该驱动器采用10~40V直流供电,H桥双极恒相电流驱动,最大3A的8种输出电流可选,最大64细分的7种细分模式可选,输入信号光电隔离,标准单脉冲接口,有脱机保持功能,半密闭式机壳可适应更恶劣的工况环境,提供节能的自动半电流方式。
驱动器内部的开关电源设计,保证了驱动器可适应较宽的电压范围,用户可根据各自情况在10~40VDC 之间选择。