高浓度氨氮废水处理方案
高浓度氨氮废水处理方案

高浓度氨氮废水处理方案1. 引言高浓度氨氮废水是一种常见的工业废水,其中含有较高浓度的氨氮物质。
氨氮的高浓度废水对环境造成严重的污染,需要采取适当的处理方法来降低其对环境的影响。
本文将介绍一种针对高浓度氨氮废水的处理方案。
2. 处理原理高浓度氨氮废水处理方案主要依靠氨氧化反应降解氨氮物质。
氨氧化反应是将氨氮氧化为亚硝酸盐和硝酸盐的过程,从而将高浓度氨氮废水转化为低浓度的氨氮废水。
该反应通常依靠合适的菌群来实现,例如:硝化菌和反硝化菌。
3. 处理步骤高浓度氨氮废水处理方案包括以下几个步骤:3.1 氨氮预处理首先,对高浓度氨氮废水进行预处理。
预处理的目的是去除废水中的杂质和颗粒物,以确保后续处理步骤的顺利进行。
预处理可以采用物理方法(如筛网、沉淀等)和化学方法(如中和、氧化等)。
3.2 硝化反应将预处理后的废水送入硝化反应池进行处理。
硝化反应池中加入适量的硝化菌,并提供合适的环境条件,如适宜的温度、氧气供应等。
硝化菌能够将废水中的氨氮氧化为亚硝酸盐和硝酸盐,从而将废水中的氨氮转化为低浓度的氨氮。
3.3 反硝化反应硝化反应后的废水将进入反硝化反应池进行处理。
反硝化反应池中加入适量的反硝化菌,并提供合适的环境条件。
反硝化菌能够利用亚硝酸盐和硝酸盐来进行呼吸代谢,并将其还原为氮气释放到空气中,从而进一步降低废水中的氨氮浓度。
3.4 氨氮浓度监测在处理过程中,需要定期监测废水中的氨氮浓度。
可以使用适当的检测方法,如纳氏反应、电极法等,来确定氨氮的浓度。
监测结果可以用于调整处理过程中的操作参数,以达到更好的处理效果。
4. 处理效果评估处理高浓度氨氮废水的最终目标是将其转化为低浓度的氨氮废水,从而满足相关的排放标准。
处理效果的评估可以通过监测废水中氨氮的浓度来确定。
另外,还可以对处理后的废水进行其他指标的检测,如悬浮物浓度、pH 值等,以评估处理效果的综合情况。
5. 结论针对高浓度氨氮废水的处理,我们可以采用氨氧化反应的方法,通过硝化和反硝化反应将废水中的氨氮转化为低浓度的氨氮。
高浓度氨氮废水处理方法

高浓度氨氮废水处理方法氨氮质量浓度大于500mg/L 的废水称为高浓度氨氮废水。
工业废水和城市生活污水中氨氮的含量急剧上升,呈现氨氮污染源多、排放量大,并且排放的浓度增大的特点。
针对高氨氮废水的处理技术主要使用吹脱法、化学沉淀法等。
一、吹脱法将空气通入废水中,使废水中溶解性气体和易挥发性溶质由液相转入气相,使废水得到处理的过程称为吹脱,常见的工艺流程见图1。
吹脱法的基本原理是气液相平衡和传质速度理论。
将氨氮废水pH 调节至碱性,此时,铵离子转化为氨分子,再向水中通入气体,使其与液体充分接触,废水中溶解的气体和挥发性氨分子穿过气液界面,转至气相,从而达到去除氨氮的目的。
常用空气或水蒸气作载气,前者称为空气吹脱,后者称为蒸汽吹脱。
蒸汽吹脱法效率较高,氨氮去除率能达到90%以上,但能耗较大,一般应用在炼钢、化肥、石油化工等行业,其优点是可回收利用氨,经过吹脱处理后可回收到氨质量分数达30%以上的氨水。
空气吹脱法的效率虽比蒸汽法的低,但能耗低、设备简单、操作方便。
在氨氮总量不高的情况下,采用空气吹脱法比较经济,同时可用硫酸作吸收剂吸收吹脱出的氨氮,生成的硫酸铵可制成化肥。
但是在大规模的氨吹脱-汽提塔生产过程中,产生水垢是较棘手的问题。
通过安装喷淋水系统可有效解决软质水垢问题,可是对于硬质水垢,喷淋装置也无法消除。
此外,低温时氨氮去除率低,吹脱的气体形成二次污染。
因此,吹脱法一般与其他氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水进行预处理。
吹脱法处理氨氮技术参数:(1)吹脱法普遍适宜的pH 在11 附近;(2)考虑经济因素,温度在30~40 ℃附近较为可行,且处理率高;(3)吹脱时间为3 h左右;(4)气液比在5 000∶1 左右效果较好,且吹脱温度越高,气液比越小;(5)吹脱后废水的浓度可降低到中低浓度;(6)脱氮率基本保持90%以上。
尽管吹脱法可以将大部分氨氮脱除,但处理后的废水中氨氮仍然高达100 mg/L 以上,无法直接排放,还需要后续深度处理。
氨氮过高处理方法

氨氮过高处理方法氨氮是水体中的一种常见污染物,主要来源于农业、工业和城市生活污水等。
当水体中氨氮浓度过高时,会对水生生物产生毒害作用,破坏水生态平衡,甚至威胁人类健康。
因此,寻求有效的氨氮过高处理方法至关重要。
一、物理处理方法1. 吹脱法:利用氨氮在水中的溶解度随pH值升高而降低的特性,通过向废水中通入空气或蒸汽,使废水中氨氮由液相转移至气相,从而达到去除氨氮的目的。
吹脱法适用于处理高浓度氨氮废水,但能耗较高,且易产生二次污染。
2. 膜分离技术:包括反渗透、纳滤、超滤等,通过膜的选择性透过性,将氨氮与水分子分离。
膜分离技术具有高效、节能、无二次污染等优点,但膜材料成本较高,且易受污染和堵塞。
二、化学处理方法1. 折点氯化法:将氯气或次氯酸钠通入废水中,使氨氮氧化为氮气逸出。
折点氯化法处理效果稳定,适用于处理低浓度氨氮废水,但药剂费用较高,且可能产生有毒副产物。
2. 离子交换法:利用离子交换树脂上的可交换离子与废水中的氨氮进行交换,从而达到去除氨氮的目的。
离子交换法具有处理效果好、可回收氨氮等优点,但树脂再生费用较高,且易受其他离子干扰。
三、生物处理方法1. 传统生物硝化反硝化技术:通过硝化细菌将氨氮氧化为硝酸盐,再通过反硝化细菌将硝酸盐还原为氮气逸出。
传统生物硝化反硝化技术具有成本低、无二次污染等优点,但处理周期较长,且易受温度、pH值等环境因素影响。
2. 新型生物脱氮技术:包括短程硝化反硝化、厌氧氨氧化等,通过优化微生物种群结构和反应条件,提高氨氮去除效率。
新型生物脱氮技术具有处理效果好、节能等优点,但对操作和管理要求较高。
四、复合处理方法为了克服单一处理方法的局限性,实际工程中常采用多种方法组合使用,形成复合处理方法。
例如,可以先采用物理或化学方法预处理废水,降低氨氮浓度和毒性,再采用生物方法进行深度处理。
复合处理方法可以充分发挥各种方法的优势,提高氨氮去除效率和处理效果稳定性。
五、实际应用案例1. 某化工厂废水处理:该化工厂废水氨氮浓度高达500mg/L以上,采用吹脱法预处理后,氨氮浓度降至200mg/L以下;再采用A/O(厌氧/好氧)生物处理工艺进行深度处理,最终出水氨氮浓度稳定在10mg/L以下,达到国家排放标准。
氨氮废水排放的解决方案之碳酸钠沉淀

氨氮废水排放的解决方案之碳酸钠沉淀氨氮废水是指含有高浓度氨氮的废水。
氨氮污染是一种常见的工业废水污染问题,对水体和环境造成很大影响。
因此,寻找有效的氨氮废水处理方法是非常重要的。
其中,碳酸钠沉淀法是一种常用的氨氮废水处理方法之一碳酸钠沉淀法是指在氨氮废水中加入适量的碳酸钠溶液,通过与废水中的离子反应,生成一种不能溶解的沉淀物。
这种方法可以有效地去除氨氮,降低废水中氨氮的浓度,达到废水排放标准。
碳酸钠沉淀法的具体步骤如下:1.PH调节:将酸性的废水调节为碱性,pH值控制在9-11之间,以利于氨氮的沉淀反应的进行。
2.加入碳酸钠溶液:在废水中缓慢加入适量碳酸钠溶液,通过与废水中的氯化物离子反应,生成氯化钠和碳酸根离子。
3.沉淀反应:随着碳酸钠的加入,废水中的氨氮与碳酸根离子反应生成固体沉淀物氨基碳酸盐。
氨基碳酸盐是一种不能溶解的化合物,能够有效地将氨氮从废水中沉淀下来。
4.分离沉淀物:将产生的沉淀物与废水进行分离,可以通过沉淀、过滤等方法进行分离。
分离后的沉淀物可以经过处理后作为肥料等再利用。
碳酸钠沉淀法的优点包括简单、易操作、成本低、处理效果好等。
1.沉淀条件选择:碳酸钠沉淀法适用于处理低浓度的氨氮废水。
对于高浓度的氨氮废水,则需要进行稀释处理或者采用其他方法进行处理。
2.沉淀物的处理:产生的沉淀物需要进行处理,不能简单地进行随意排放。
可以选择进行固化处理后再进行处置,或者进行资源化再利用。
3.碳酸钠用量的控制:碳酸钠的加入量需要控制在适当的范围内,过量的碳酸钠会导致废水中的其他离子沉淀,从而使处理效果下降。
总的来说,碳酸钠沉淀法是一种简单且有效的氨氮废水处理方法。
但是,在实际应用过程中,还需要综合考虑废水的具体情况、处理量、处理成本等因素,结合其他废水处理方法,综合采用,以达到最佳的处理效果。
高氨氮废水处理方法

高氨氮废水处理方法
高氨氮废水处理方法可以采用以下几种方法:
1. 生物处理:利用生物菌群降解氨氮。
常用的生物处理方法有曝气法、厌氧法和序批式生物反应器法。
曝气法通过供氧促进氨氮的细菌降解;厌氧法则在无氧条件下降解氨氮;序批式生物反应器法则通过有氧、无氧和静止等不同阶段的操作进行处理。
2. 化学处理:可以使用化学药剂与氨氮发生反应,将其转化为不溶于水的物质沉淀或析出。
常用的化学处理方法有硫酸亚铁法、氯化法、碱法等。
3. 膜分离技术:利用膜过滤、膜生物反应器等膜分离技术将氨氮与其他物质分离。
常见的膜分离技术包括逆渗透、纳滤和超滤。
4. 离子交换:通过离子交换树脂将废水中的氨氮吸附、去除。
离子交换方法适用于氨氮浓度较高的废水处理。
5. 蒸发浓缩:将废水中的氨氮用蒸发浓缩的方式进行处理。
这种方法适用于氨氮含量较高、体积较小的废水。
需要根据具体情况选择合适的方法进行处理,也可以组合使用多种方法进行高氨氮废水的处理。
同时,注意控制处理过程中的氨氮浓度,以避免对环境造成进一
步污染。
氨氮废水处理

氨氮废水处理氨氮废水是指含有高浓度氨氮的废水。
它的排放对环境产生了严重的污染,并对水体生态系统造成了很大的破坏。
因此,氨氮废水处理成为了当前研究的热点之一。
氨氮废水主要来自于农业、化工、制药、电镀等行业的生产过程中的废水排放,尤其是畜禽养殖过程中排放的污水。
这些废水中氨氮含量高,对水质造成了很大的威胁。
氨氮的存在会使水质变得浑浊、有时还会产生异味。
同时,氨氮对水生生物也具有一定的毒性,长期积蓄会对河流、湖泊等水体的生态平衡产生不可逆的影响。
为了有效处理氨氮废水,需要采用适当的处理方法。
常见的氨氮废水处理方法包括生物法、物理化学法和吸附法。
生物法是目前最为常用的处理方法之一。
该方法通过添加适量的微生物,使其在废水中进行降解反应,将氨氮转化为无毒的氮气。
这种方法操作简单、成本低廉,同时对环境没有大的影响。
然而,这种方法对废水中的其他有机物和重金属的处理效果较差。
物理化学法是另一种常见的处理方法。
该方法主要通过调整废水的pH值、温度和氧化还原条件,将氨氮转化为氮气或沉淀为无毒的沉淀物。
这种方法的处理效果稳定,适用于高浓度氨氮废水的处理,但其对废水的要求较高,处理成本较高。
吸附法是一种相对较新的氨氮废水处理方法。
该方法通过将废水通过吸附剂进行处理,使其与氨氮发生吸附反应,从而使氨氮被吸附在吸附剂表面。
常用的吸附剂包括活性炭、沸石和离子交换树脂等。
这种方法适用于废水中氨氮浓度较低的情况,但对吸附剂的选择和再生过程有一定的要求。
除了以上三种常用的处理方法外,还有一些其他的处理方法,如电化学方法、光催化方法和膜分离方法等。
这些方法在氨氮废水处理中也有一定的应用,但其技术成熟度和经济性需要进一步提高。
综上所述,氨氮废水处理是一项具有挑战性的任务。
有效处理氨氮废水不仅可以减轻对水体环境的污染,还可以提高水资源的利用率。
未来,随着技术的不断进步和创新,相信能够开发出更加高效、低成本的氨氮废水处理方法,为环境保护和可持续发展做出更大的贡献。
氨氮去除办法

高浓度氨氮废水处理办法过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。
因此,废水脱氮处理受到人们的广泛关注。
目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。
消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。
高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。
1 物化法1.1 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。
一般认为吹脱效率与温度、pH、气液比有关。
王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。
在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。
吹脱法在低温时氨氮去除效率不高。
王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。
最佳工艺条件为pH =11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。
为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。
同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。
Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。
含重金属高浓度氨氮废水资源化处理技术

含重金属高浓度氨氮废水资源化处理技术适用范围钒、钨钼、镍钴、三元电池、稀土、锆、铌钽等有色行业及焦化、石化等产生的高浓度氨氮废水基本原理该技术基于氨与水分子相对挥发度的差异,通过氨-水的气液平衡、金属-氨的络合-解络合反应平衡、金属氢氧化物的沉淀溶解平衡的热力学计算,通过在汽提精馏脱氨塔内将氨氮以分子氨的形式从水中分离,然后以氨水或液氨的形式从塔顶排出,并被冷凝器冷却到常温成为高纯氨水进行回收。
工艺流程通过在含重金属的高浓度氨氮废水中加入碱,使铵离子转化为氨分子,并存在多余的氢氧根离子。
经过pH调节并换热后的废水进入汽提精馏塔内,通过控制输入汽提塔内的蒸汽流量与蒸汽压力来控制汽提塔的温度分布,使液体在汽提塔内一定的温度区域保持一定的停留时间,使得重金属-氨络合物在高温区域吸收能量,配位键被破坏,实现重金属与氨的分离。
氨气在高温下挥发,实现气液分离,同时溶液中的过量氢氧根与重金属反应生成沉淀使化学平衡向右移动,如此反复经过多级反应平衡之后,最终实现氨的彻底脱除。
此步骤的化学反应为:挥发出的氨至塔顶冷凝器采用药剂进行吸收,形成高纯氨水(浓度16%以上)或铵盐产品,可直接回用于生产工艺或进行销售。
废水由进水口至塔底的过程中氨氮浓度逐渐降低,至塔底出水口时降至10mg/L以下,塔底出水经与进塔废水换热后可达标排放或回用,也可以根据重金属含量情况进入金属回收系统对其中重金属进行回收。
关键技术或设计特征采用重金属-氨氮-水的药剂强化热解络合-分子精馏分离技术,实现氨氮污染物削减率大于99%,同时全过程无废水、废气、废渣等二次污染产生。
资源回收率高,将废水中分离出的氨氮回收为高纯氨水,重金属回收为金属氢氧化物,可回用于生产工艺或直接出售。
通过专用塔内件设计技术实现传质效率提高,漏液降低,拓宽设备弹性负荷。
动态集成控制技术实现操作安全性,保证出水合格率为100%。
典型规模原水氨氮浓度:1-70g/L;原水重金属浓度:10-200mg/L;处理规模:50-3000吨废水/天。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高浓度氨氮废水处理项目设计方案******设备有限公司目录第一章工程概况 (3)1.1概述 (3)1.2项目名称 (3)第二章设计依据、设计原则及设计范围 (3)2.1设计依据 (3)2.2设计原则 (4)2.3设计范围 (4)第三章污水来源、设计规模、排放标准及出口 (4)3.1设计规模的确定 (4)3.2设计进水水质及排放要求 (4)第四章设计处理工艺 (5)4.1废水的水质特性 (5)4.2废水处理工艺方案的选择原则 (5)4.3工艺流程 (6)4.4工艺说明 (7)4.5工艺设施 (7)4.6工艺特点 (16)4.7工艺设备介绍 (17)第五章、各单元设施处理效果分析表 (21)第六章、项目投资 .................................................... 错误!未定义书签。
第一章工程概况1.1概述该废水排放量为100m3/d,氨氮浓度高,达5000mg/L,废水PH 值6-7,呈中性。
COD值较低,≤40mg/L,废水SS含量低,≤20mg/L。
现单独对该股废水进行处理,设计处理水量120m3/d,24小时运行,小时处理水量5M3/H。
经处理降低氨氮浓度后(设计氨氮废水排放浓度NH3-N≤80mg/L),与厂区其他废水混合后达标排放。
(NH3-N ≤15mg/L)在本方案编制过程中存在一些不足之处,请评审领导提出宝贵意见和建议。
1.2项目名称120m3/d高浓度氨氮废水处理项目第二章设计依据、设计原则及设计范围2.1设计依据《污水综合排放标准》 GB8978-1996《地表水环境质量标准》 GB3838-2002《室外排水设计规范》 GB50014-2006《给水排水工程构筑物结构设计规范》 GB50069-2002《给水排水工程结构设计规范》 GB50069-2002《供配电系统设计规范》 GB50052-95《低压配电设计规范》 GB50054-95业主提供的废水水质、水量以及出水要求我公司所完成同类工程所取得的实际经验和实际工程参数。
2.2设计原则1、严格执行国家现行的环保技术标准、规范,遵守当地环保的有关法律、法规;2、选用先进、合理、可靠的处理工艺,在确保处理排放达标的前提下,做到操作简单、管理方便、占地小、投资省、运行费用低;3、设计提高污水处理的自动化程度,降低操作人员的劳动强度;4、系统具有调节峰谷流量的功能。
2.3设计范围1)从污水处理调节池开始到处理设备的排放口为止。
2)污水工程的工艺流程,工艺设备选型,工艺设备的结构布置,电气控制说明和土建构筑物的工艺等设计工作。
3)污水处理工程的设备的施工、安装、调试等工作。
4)污水工程的动力配线,由业主将主电引至污水设施的配电控制箱,配电分配箱至各电器使用点将由我公司负责。
第三章污水来源、设计规模、排放标准及出口3.1设计规模的确定根据业主提供的资料,废水处理设施的进水水量如下:综合废水排放量:120m3/d,设计进水量:Q=5m3/h,一天3班运行(24h/d)3.2设计进水水质及排放要求第四章设计处理工艺4.1废水的水质特性废水主要有以下几个特性:1.废水中氨氮浓度较高,需要进行预处理,在调节池鼓入压缩空气进行预吹脱。
2.氨氮浓度较高,为提高吹脱效率,需对水进行加温,使废水温度≥30℃,保证出水中氨氮能达到设计要求。
3.废水的水质、水量时有变化:一日内有数次排放高峰期。
要求废水处理系统具有较高的调节适应水量、水质负荷变化的能力。
4.2废水处理工艺方案的选择原则采用物化废水净化技术,设计采用三段空气氨氮吹脱、氨气吸收和MAP沉淀、沸石吸附法,处理工艺充分去除氨氮等特征污染因子,使得各项指标均能达到排放要求。
充分考虑处理系统的效率,降低药剂的添加量,以达到降低运行成本目的。
采用稳定可靠的系列设备,降低工程运行维护工作量,以保证废水处理系统长期正常运行。
对系统工艺的关键参数和设备实施自动化控制,以保证处理系统的操作具有较高的可操作性和稳定性。
充分考虑废水水质、水量的波动性,设计废水处理系统具有很大程度的适应性和处理效果的稳定性,废水的水质变化,水量变化的波动程度在适当范围内,废水处理系统同样确保达标排放。
4.34.4工艺说明废水首先进入调节池,在调节池中投加NaOH溶液,调节废水的PH值≥12,同时通入压缩空气进行预吹脱,吹脱溢出的氨气用管道收集后高空排放。
调节池的出水通过管式换热器进行加热,利用温度自控仪调节,使水温加热到35℃-40℃之间,确保吹脱效果,经三级氨氮吹脱塔进行氨氮吹脱,夏天运行时可不使用换热器。
在每级吹脱塔底部的水箱中设置PH仪和液位控制仪。
吹脱塔吹脱的氨氮统一经过吸收塔采用10%的稀硫酸进行吸收,形成10%的的硫酸铵溶液,定期排放。
经三级吹脱后出水进入MAP反应沉淀池,采用PH自动控制系统调节PH在9.5-10.5之间,投加磷酸盐和镁盐,根据到反应池的废水中含有的氨氮具体浓度确定加药量,废水充分反应,与废水中残留的NH4+反应生成磷酸铵镁Mg(NH4)[PO4]·6H2O(MAP)沉淀,在沉降槽沉降下来。
出水进入中间水池,由提升泵提升到二级沸石过滤器过滤,沸石同时可以进一步出去废水中的氨氮及其他残余重金属离子后,出水进入排放水池,与厂区综合废水混合后排放。
方案设计时,整个系统尽可能的利用高低液位落差,以减少动力消耗。
4.5工艺设施一、调节池1、设置目的:污水进入调节池进行水量、水质的调节均化,保证系统水量、水质的均衡、去除部分污泥以提高整个系统的抗冲击性能和处理效果。
2、设计特点:设计地下式,为钢筋砼结构,采用FRP防腐。
3、设计尺寸:6000×5000×3000mm(有效水深2m)4、有效容积:60m35、调节池内经均量,均质的污水提升至后级处理。
6、调节池分2格便于调节PH。
相关设备:(1)真空引水缸:1.1型号:BZ-6001.2材质:PP1.3数量:1台(2)耐腐蚀自吸泵2.1型号:40FSZ-K-6-182.2流量:6m3/h2.3扬程:18m2.4功率:1.5Kw2.5材质:泵头氟塑料2.6生产厂家:宜兴宙斯2.7数量:2台(1用1备)(3)超声波液位计3.1型号:YEH-Z3.2有效距离:0-3m3.3工作温度:-20℃-+55℃3.4电源:24VDC3.5输出:4-20mA3.6防护等级:IP653.7数量:1套(4)PH在线自控仪4.1测量范围:0~14pH,0~±2000mV ;4.2精确度:±0.01PH,(±1mV)F.S ;4.3温度补偿:手动/自动0~100℃,补偿系数0~±10%可程式;4.4警报输出:两点继电器输出(220V/5A),全范围可调;4.5电流输出:范围4~20mA,可程式;4.6环境温度:-10~+55℃;4.7供电电源:AC110V/220V±10%,50/60Hz±10% ;4.8环境湿度:≤95%4.9外壳:DIN标准4.10厂家:台湾金点1.11数量:1套(5)萝茨风机5.1型号:SSR805.2流量:2.82m3/min5.3压力:0.035MPa5.4功率:4Kw5.5生产厂家:山东临沂5.7数量:2台(1用1备)(6)管道池内:UPVC, 池外:钢管废气收集管:UPVC二、氨氮吹脱塔设置目的:利用废水中的氨氮不稳定,在一定的条件下可以将废水中的游离铵转换成氨氮分子,通过喷淋时进行吹脱,可以大幅度去除废水中的氨氮气体,一级吹脱水箱内设置蒸汽加热装置,使水温继续保持在容易将铵离子脱稳的状态温度。
设计材质:FRP(玻璃钢)气液比:2500:1塔内风速:2m/s设备尺寸:φ1600×5500mm填料层高:2000数量:3套相关设备:(1)风机2.1型号:BF4-72 NO.6C2.2风量:Q=13008m3/h2.3全压:P=1542Pa2.4功率:N=7.5Kw2.5厂家:本公司2.6材质:FRP2.7数量:3台(2)提升泵2.1型号:40FSB(L)-322.2流量:6.5m3/h2.3扬程:32m2.4功率:2.2Kw2.5材质:泵头氟塑料2.6生产厂家:宜兴宙斯2.7数量:6台(3用3备)三、氨气吸收塔设置目的:将氨氮吹脱塔吹脱出的氨气,采用10%的稀硫酸进行吸收,直至饱和。
设计材质:FRP(玻璃钢)设计特点:采用PH自动控制,PH如已经达到中性,则水中的硫酸铵已近基本饱和,可进行后续操作设计风量:40000m3/h设计风速:2m/s设备尺寸:φ2800×6500mm数量:1套相关设备:(1)稀硫酸循环泵1.1型号:100FSB(L)-301.2风量:Q=80m3/h1.3扬程:30m1.4功率:N=7.5Kw1.5厂家:宙斯泵业1.6材质:PE1.7数量:2台(1用1备)(2)PH在线自控仪2.1测量范围:0~14pH,0~±2000mV ;2.2精确度:±0.01PH,(±1mV)F.S ;2.3温度补偿:手动/自动0~100℃,补偿系数0~±10%可程式;2.4警报输出:两点继电器输出(220V/5A),全范围可调;2.5电流输出:范围4~20mA,可程式;2.6环境温度:-10~+55℃;2.7供电电源:AC110V/220V±10%,50/60Hz±10% ;2.8环境湿度:≤95%2.9外壳:DIN标准2.10厂家:台湾金点2.11数量:1套四、MAP反应沉淀池设置目的:向氨氮浓度较高的工业废水中投加MgCl2·6H2O和Na2HP04·12H20生成磷酸铵镁沉淀的方法,以去除其中的高浓度氨氮。
设计材质:碳钢衬FRP(玻璃钢)设计特点:需将废水PH调整到8.5-9.5之间,Mg2+,NH4+,P043-的摩尔比为1.25:1:1,反应温度保持为25 °尺寸:3000×2000×4000mm相关设备:(1)PH在线自控仪1.1测量范围:0~14pH,0~±2000mV ;1.2精确度:±0.01PH,(±1mV)F.S ;1.3温度补偿:手动/自动0~100℃,补偿系数0~±10%可程式;1.4警报输出:两点继电器输出(220V/5A),全范围可调;1.5电流输出:范围4~20mA,可程式;1.6环境温度:-10~+55℃;1.7供电电源:AC110V/220V±10%,50/60Hz±10% ;1.8环境湿度:≤95%1.9外壳:DIN标准1.10厂家:台湾金点1.11数量:2套(2)搅拌机2.1型号:JY-0.52.2搅拌桨长度:0.5m2.3减速机厂家:常州减速机厂2.4功率:0.75Kw2.5转速:120r/min2.6数量:2台(3)加药泵(磁力泵)3.1型号:16CQ-83.2流量:1800L/h3.3扬程:8m3.4功率:0.18Kw3.5厂家:上海长申3.6数量:3台(投加磷盐、镁盐、稀硫酸)五、中间水池设置目的:作为后续沸石过滤设备的蓄水池。