17.电涡流传感器轴心轨迹测量实验

合集下载

电涡流传感器实验报告

电涡流传感器实验报告

电涡流传感器实验报告电涡流传感器实验报告摘要:本实验旨在研究电涡流传感器的原理和应用。

通过实验,我们探索了电涡流传感器的工作原理、特性以及在工业领域的应用。

实验结果表明,电涡流传感器具有高灵敏度、快速响应和广泛的应用前景。

引言:电涡流传感器是一种常用的非接触式传感器,广泛应用于工业领域。

它通过感应电磁场中的涡流来检测目标物体的位置、形状、材料和表面缺陷等信息。

本实验旨在深入了解电涡流传感器的原理和特性,并通过实验验证其性能。

一、电涡流传感器的原理电涡流传感器利用法拉第电磁感应原理,当导体在变化的磁场中运动或受到变化的磁场作用时,会在其内部产生涡流。

电涡流传感器通过检测涡流的变化来获取目标物体的信息。

涡流的强度与目标物体的导电性、形状、运动速度等因素有关。

二、电涡流传感器的特性1. 高灵敏度:电涡流传感器可以检测微小的涡流变化,对目标物体的微小变化有很高的响应能力。

2. 快速响应:电涡流传感器的响应时间较短,可以实时检测目标物体的变化。

3. 非接触式:电涡流传感器无需与目标物体直接接触,减少了磨损和损坏的风险。

4. 宽频率范围:电涡流传感器可以适应不同频率范围内的磁场变化,具有较广泛的应用范围。

三、实验方法1. 实验器材:电涡流传感器、交流电源、信号发生器、示波器等。

2. 实验步骤:a. 将电涡流传感器连接到交流电源和信号发生器上。

b. 调节信号发生器的频率和幅度,观察示波器上的涡流信号变化。

c. 改变目标物体的材料、形状和距离等参数,观察涡流信号的变化。

四、实验结果与分析通过实验,我们观察到了不同频率和幅度下涡流信号的变化。

当频率较高时,涡流信号的幅度减小,响应时间变短。

当目标物体的材料为导体时,涡流信号较强;当目标物体的材料为绝缘体时,涡流信号几乎消失。

此外,目标物体的形状和距离也会对涡流信号产生影响。

五、电涡流传感器的应用电涡流传感器具有广泛的应用前景,主要应用于以下领域:1. 金属材料检测:电涡流传感器可以检测金属材料中的缺陷、裂纹和变形等问题,用于质量控制和安全检测。

电涡流传感器位移实验报告

电涡流传感器位移实验报告

电涡流传感器位移实验报告电涡流传感器位移实验报告摘要:本实验旨在通过电涡流传感器测量物体的位移,并分析其原理和应用。

通过实验发现,电涡流传感器具有高灵敏度、快速响应和非接触式等特点,适用于工业自动化、机械加工和材料测试等领域。

本实验结果可为电涡流传感器的实际应用提供参考。

引言:电涡流传感器是一种利用电磁感应原理测量物体位移的传感器。

其工作原理是通过感应线圈产生的交变磁场诱发物体表面的涡流,进而测量物体位移。

电涡流传感器具有高灵敏度、快速响应和非接触式等特点,广泛应用于工业自动化、机械加工和材料测试等领域。

实验方法:本实验使用一台电涡流传感器和一块金属板进行位移测量。

首先,将金属板固定在实验台上,使其与传感器平行。

然后,将传感器的感应线圈靠近金属板表面,并连接到示波器上。

最后,通过调节传感器与金属板的距离,观察示波器上的波形变化。

实验结果:实验中,我们发现当传感器与金属板的距离逐渐减小时,示波器上的波形幅度逐渐增大。

当传感器与金属板的距离为零时,波形幅度达到最大值。

这说明传感器能够感应到金属板表面的涡流,并随着距离的减小而增强。

讨论:根据实验结果,我们可以得出结论:电涡流传感器的灵敏度与物体与传感器的距离成反比。

当物体与传感器的距离越近,感应到的涡流越强,波形幅度也越大。

这是因为当物体靠近传感器时,感应线圈产生的磁场能够更好地诱发物体表面的涡流。

电涡流传感器的应用十分广泛。

在工业自动化领域,它可以用于测量机械零件的位移和变形,以及监测设备的运行状态。

在机械加工领域,电涡流传感器可以用于检测工件的尺寸和表面质量,提高加工精度。

在材料测试领域,电涡流传感器可以用于评估材料的导电性和磁导率等特性。

然而,电涡流传感器也存在一些限制。

首先,它只适用于导电性材料的位移测量,对于非导电性材料无法工作。

其次,传感器与物体之间的距离需要保持一定范围,过大或过小都会影响测量结果。

此外,传感器的价格相对较高,对于一些应用场景来说可能不太经济实用。

电涡流式位移传感器实验报告

电涡流式位移传感器实验报告

电涡流式位移传感器实验报告电涡流式位移传感器是一种能够测量目标物体相对于传感器的位移的设备。

它利用了电涡流效应,通过感应电磁场的变化来获取目标物体的位移信息。

电涡流效应是指当导体材料处于变化的磁场中时,会产生涡流。

这种涡流会导致导体内部的能量损耗,并产生一个反向的电磁场。

根据这个原理,电涡流式位移传感器通过测量涡流的大小和方向来确定目标物体的位移情况。

电涡流式位移传感器由传感器头和信号处理电路组成。

传感器头通常由导体线圈制成,将其安装在测量物体附近。

当目标物体发生位移时,导体线圈中的磁场也会发生变化,从而引起涡流的产生。

信号处理电路会对涡流信号进行采集和处理,最终输出位移的数值。

电涡流式位移传感器具有许多优点。

首先,它可以实时、精确地测量目标物体的位移,具有很高的测量精度。

其次,它不需要与测量目标物体直接接触,可以在非接触的情况下进行测量,避免了由于接触导致的误差和磨损。

此外,电涡流式位移传感器还具有响应速度快、抗干扰能力强等特点。

在实际应用中,电涡流式位移传感器被广泛应用于各种领域。

例如,在机械制造行业中,它可以用于测量机械零件的位移和变形,以确保机械设备的正常运行。

在航空航天领域,电涡流式位移传感器可以用于测量飞机结构的变形情况,以保证飞机的安全。

此外,它还可以应用于汽车制造、电子设备、医疗器械等领域。

然而,电涡流式位移传感器也存在一些局限性。

首先,它对目标物体的材料有一定的要求,只有导电性较好的材料才能产生涡流效应。

其次,传感器的测量范围相对较小,对于大范围的位移测量可能不适用。

此外,电涡流式位移传感器的成本较高,不适合用于一些低成本的应用场景。

电涡流式位移传感器是一种能够实时、精确地测量目标物体位移的设备。

它通过利用电涡流效应来感应目标物体的位移,并将其转化为电信号输出。

电涡流式位移传感器在各个领域有着广泛的应用,但也存在一些局限性。

随着科技的不断进步,电涡流式位移传感器将会得到更广泛的应用和发展。

电涡流传感器实验报告

电涡流传感器实验报告

电涡流传感器实验报告电涡流传感器实验报告引言电涡流传感器是一种常见的非接触式传感器,广泛应用于工业领域。

本实验旨在通过实际操作和数据分析,深入了解电涡流传感器的原理、特点和应用。

实验目的1. 理解电涡流传感器的工作原理;2. 掌握电涡流传感器的基本操作方法;3. 分析电涡流传感器在不同应用场景下的性能表现。

实验装置与方法本实验使用了一台电涡流传感器测试仪和一组标准试样。

首先,将试样固定在传感器上,然后通过测试仪的操作面板设置相应的参数,如频率、电流等。

随后,观察传感器输出的电压信号,并记录下相应的数据。

实验结果与分析通过实验操作,我们得到了一系列关于电涡流传感器的数据。

首先,我们观察到传感器输出信号的幅值与试样的导电性质有关。

当试样的导电性越好时,传感器输出的电压信号幅值越大,反之亦然。

这是因为电涡流传感器通过感应试样中的涡流产生电磁场变化,并通过电感耦合原理转换为电压信号。

其次,我们发现传感器输出信号的频率对试样的尺寸和形状有一定的敏感性。

当试样的尺寸较大或形状复杂时,传感器输出信号的频率会有所变化。

这是由于试样的尺寸和形状会影响涡流的形成和消散过程,从而影响到传感器的工作频率。

此外,我们还测试了传感器在不同环境条件下的性能表现。

实验结果显示,传感器对温度和湿度的变化具有一定的抗干扰能力。

然而,在极端环境条件下,如高温和高湿度下,传感器的性能可能会受到影响。

因此,在实际应用中,需要根据具体情况选择合适的传感器型号和工作条件。

讨论与展望电涡流传感器作为一种非接触式传感器,具有许多优点,如高灵敏度、快速响应和无磨损等。

在工业领域,电涡流传感器被广泛应用于材料检测、无损检测和精密测量等领域。

然而,目前电涡流传感器的应用还存在一些局限性,如对试样尺寸和形状的限制以及对环境条件的敏感性。

因此,未来的研究可以致力于改进传感器的性能,拓展其应用范围。

结论通过本实验,我们深入了解了电涡流传感器的工作原理、特点和应用。

试验十七电涡流传感器测量振动试验

试验十七电涡流传感器测量振动试验

传感器与机电检测技术实验指导书主审:孙艳红主编:毛春昱王宏志张小奇二O一二年四月目录CSY-2000型传感器与检测技术实验台 (1)实验一应变片单臂电桥性能实验 (4)实验二应变片半桥性能实验 (10)实验三应变片全桥性能实验 (11)实验四应变片直流全桥的应用—电子秤实验 (13)实验五移相器、相敏检波器实验 (14)实验六应变片交流全桥的应用(应变仪)—振动测量实验 (18)实验七压阻式压力传感器测量压力特性实验 (21)实验八差动变压器的性能实验 (23)实验九差动变压器测位移实验 (27)实验十差动变压器的应用—振动测量实验 (30)实验十一电容式传感器的位移实验 (31)实验十二线性霍尔传感器位移特性实验 (34)实验十三开关式霍尔传感器测转速实验 (36)实验十四磁电式传感器测转速实验 (38)实验十五压电式传感器测振动实验 (39)实验十六电涡流传感器位移实验 (43)实验十七电涡流传感器测量振动实验 (47)实验十八光纤位移传感器测位移特性实验 (48)实验十九光电传感器测转速实验 (51)实验二十Pt100铂电阻测温特性实验 (52)实验二十一Cu50铜热电阻测温特性实验 (58)实验二十二集成温度传感器(AD590)温度特性实验 (59)实验二十三气敏传感器实验 (62)实验二十四湿敏传感器实验 (63)实验二十五光电传感器控制电机转速实验 (65)实验二十六温度源的温度调节控制实验 (73)综合性设计性实验 (77)实验一电子称设计实验 (78)实验二压力计设计实验 (80)CSY-2000型传感器与检测技术实验台说明书一、实验台的组成CSY-2000型传感器与检测技术实验台由主机箱、传感器、实验电路(实验模板)、转动源、振动源、温度源、数据采集卡及处理软件、实验桌等组成。

1、主机箱:提供高稳定的±15V、±5V、+5V、±2V~±10V(步进可调)、+2V~+24V (连续可调)直流稳压电源;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);传感器信号调理电路;智能调节仪;计算机通信口;主机箱上装有电压、气压等相关数显表。

电涡流式位移传感器实验报告

电涡流式位移传感器实验报告

电涡流式位移传感器实验报告引言:电涡流式位移传感器是一种常用于测量物体位移的传感器。

它通过感应物体表面的涡流引起的感应电磁场变化来实现位移测量。

本实验旨在通过实验验证电涡流式位移传感器的工作原理,并探究其在位移测量中的应用。

实验目的:1. 了解电涡流式位移传感器的工作原理;2. 学习使用电涡流式位移传感器进行位移测量;3. 分析位移测量结果的准确性和稳定性。

实验仪器和材料:1. 电涡流式位移传感器;2. 示波器;3. 可调直流电源;4. 待测物体。

实验步骤:1. 将待测物体固定在实验台上,并将电涡流式位移传感器的感应头靠近物体表面;2. 连接电涡流式位移传感器和示波器,并调节示波器的参数以观察信号波形;3. 通过调节可调直流电源的电压,改变电涡流式位移传感器的工作距离,记录不同工作距离下的信号波形;4. 根据示波器上的信号波形,计算出不同工作距离下的位移值;5. 重复上述步骤,以获得多组位移测量数据。

实验结果和分析:根据实验记录的信号波形和位移测量数据,可以得出以下结论:1. 电涡流式位移传感器的工作距离与信号波形的变化呈反比关系,即工作距离越小,信号波形的振幅越大;2. 通过对信号波形的观察和分析,可以较准确地计算出位移值;3. 在一定范围内,电涡流式位移传感器的测量结果具有较高的准确性和稳定性。

实验结论:通过本实验,验证了电涡流式位移传感器的工作原理,并探究了其在位移测量中的应用。

实验结果表明,电涡流式位移传感器具有较高的测量精度和稳定性,在工业自动化控制和机械加工等领域有着广泛的应用前景。

参考文献:[1] Xie Y, Zhang H, Fu C, et al. Design and fabrication of an eddy current displacement sensor[J]. Sensors, 2018, 18(10): 3243.[2] Wei D, Zhao J, Yan Y. Design and evaluation of a noveleddy current displacement sensor for in-situ monitoring of turbine blades[J]. IEEE Sensors Journal, 2019, 19(13): 5284-5291.。

电涡流式传感器实验报告

电涡流式传感器实验报告

电涡流式传感器实验报告电涡流式传感器实验报告引言:电涡流式传感器是一种广泛应用于工业领域的非接触式传感器,它利用了涡流的原理来检测金属材料中的缺陷和变化。

本实验旨在探究电涡流式传感器的工作原理、应用领域以及实验结果的可靠性。

一、工作原理电涡流式传感器利用了电磁感应的原理,当电磁场通过金属材料时,会在材料内部产生电涡流。

这些电涡流会改变电磁场的分布,从而反映出材料的性质和状态。

传感器通过测量电涡流的变化来判断材料的缺陷和变化。

二、应用领域1. 材料缺陷检测:电涡流式传感器可以用于检测金属材料中的裂纹、疲劳和腐蚀等缺陷。

通过测量电涡流的变化,可以精确地定位和评估材料中的缺陷程度,为后续的修复和保养提供依据。

2. 金属排序:由于不同材料的电导率和磁导率不同,电涡流式传感器可以用于对金属进行分类和排序。

通过测量电涡流的强度和频率,可以快速准确地区分不同种类的金属材料。

3. 无损检测:电涡流式传感器是一种非接触式的检测方法,可以在不破坏材料表面的情况下进行检测。

因此,它被广泛应用于对复杂结构和精密零件的无损检测,如航空航天、汽车制造和电子设备等领域。

三、实验设计与结果在本实验中,我们选择了一块铝合金板作为被测材料,利用电涡流式传感器对其进行了缺陷检测。

实验过程中,我们将传感器靠近铝合金板表面,并通过测量电涡流的变化来判断板材中是否存在缺陷。

实验结果显示,当传感器靠近板材表面时,电涡流的强度和频率发生了明显的变化。

在板材表面平滑的区域,电涡流强度较弱,频率较高;而在存在缺陷的区域,电涡流强度增强,频率降低。

通过对实验结果的分析,我们可以准确地定位和评估板材中的缺陷。

四、实验结果的可靠性在实验过程中,我们注意到实验结果的可靠性受到多种因素的影响。

首先,传感器与被测材料的距离和角度会对测量结果产生影响。

因此,在实际应用中,需要根据具体情况进行传感器的位置和角度调整。

其次,被测材料的性质和状态也会对实验结果产生影响。

电涡流传感器系列实验

电涡流传感器系列实验

电涡流传感器系列实验电涡流传感器是用来检测金属零件表面及内部缺陷、裂纹、腐蚀程度、变形等信息的一种非接触式电磁传感器。

本次实验室课程将分为三个部分,分别为电涡流传感器原理的介绍、实验步骤以及实验数据的分析处理。

一、原理介绍电涡流传感器是利用电磁感应的原理来检测金属零件表面及内部缺陷、裂纹、腐蚀程度、变形等信息的一种传感器。

它是将激励信号通过探头送入被测件表面,经过被测件表面和内部微小变形后,产生涡流和磁场,利用敏感元件检测产生的电磁信号,从而检测出被测件的变形情况。

二、实验步骤1. 实验器材(1)y 波示波器;(2)电源;(3)电容式电压表;(4)电涡流传感器;(5)接线器件。

2. 实验步骤(1)将电涡流传感器连接在信号发生器上,设定信号发生器输出频率为 100kHz;(2)将电涡流传感器沿着被测件轮廓轻轻地刷过,实验人员可根据实验需求自行选择角度和方向;(3)将信号输出到 y 波示波器,观察并记录不同条件下的波形;(4)通过记录的数据进行分析和图表绘制。

三、实验数据的分析处理通过实验,我们可以得到电涡流传感器的检测结果。

这些结果包括了被测件表面质量、材料状态、表面裂纹等的信息。

我们可以将这些信息度量出来,并绘制成图表,描绘出被测件产生的涡流磁场。

通过这些图表,我们可以比较出不同被测件的质量差异,可以帮助我们进行一些维护和修理工作。

总的来说,电涡流传感器是一种重要的非接触式电磁传感器,它可以帮助我们了解被测件表面质量、材料状态、表面裂纹等信息。

这些信息可以帮助我们进行更好的维护和修理工作,确保零件的有效性和长期安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十七电涡流传感器轴心轨迹测量实验
一. 实验目的
通过本实验了解和掌握电涡流传感器测量的原理和方法。

二. 实验原理
电涡流传感器就是能静态和动态地非接触,高线性度,高分辨力地测量被测金属导体距探头表面的距离。

它是一种非接触的线性化计量工具。

电涡流位移传感器能准确测量被测体(必须是金属导体)与探头端面之间的静态和动态距离及其变化。

探头、(延伸电缆)、前置器以及被测体构成基本工作系统。

前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。

如果在这一交变磁场的有效范围内没有金属材料靠近,则这一磁场能量会全部损失;当有被测金属体靠近这一磁场,则在此金属表面产生感应电流,电磁学上称之为电涡流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。

通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离d、电流强度i和频率ω参数来描述。

则线圈特征阻抗可用z=f(τ, ξ, б, d, i, ω)函数来表示。

通常我们能做到控制τ, ξ, б, i, ω这几个参数在一定范围内不变,则线圈的特征阻抗z就成为距离d的单值函数,虽然它整个函数是一非线性的,其函数特征为"s"型曲线,但可以选取它近似为线性的一段。

于此,通过前置器电子线路的处理,将线圈阻抗z的变化,即头部体线圈与金属导体的距离d的变化转化成电压或电流的变化。

输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。

涡流检测不需要改变试件的形状,也不会影响试件的使用性能,因此,是一种无损地评定试件有关性能和发现试件有无缺陷等的检测方法。

涡流检测只适用于能产生涡流的导电材料。

同时,由于涡流是电磁感应产生的,在检测时,不必要求线圈与试件紧密接触,也不必在线圈和试件之间充填满合剂,从而容易实现自动化检验。

对管、棒、丝材表面缺陷,涡流检查法有很高的速度和效率。

涡流及其反作用磁场对代表金属试件物理和工艺性能的多种参数有反应,因此是一种多用途的试验方法。

然而,正是由于对多种试验参数有敏感反应,也就会给试验结果带来干扰信息,影响检测的正确进行。

涡流检测设备用于各种金属管、棒、线、丝材的在线、离线探伤。

在探伤过程中,能同时兼顾长通伤、缓变伤等长缺陷和短小缺陷(如通孔);能够有效抑制管道在线、离线检测时的某些干扰信号(如材质不均、晃动等),对金属管道内外壁缺陷检测都具有较高的灵敏度;还可用于机械零部件混料分选,渗碳深度和热处理状态评价,硬度测量等。

三. 实验仪器和设备
1. 计算机n台
2. drvi快速可重组虚拟仪器平台1套
3. 转子实验台1套
4. 开关电源(ldy-a)1台
5. 并口数据采集仪(lepp-daq2)1台
6. 电涡流传感器2套
四. 实验步骤及内容
1. 将数据采集仪,电源与计算机正确连接,在转子实验台支架上安装电涡流传感器探头(x、y 向互成90度),将输出电缆与前置器相连,信号经前置器处理后再经过信号采集仪最终输入到计算机中。

图17.1 电涡流传感器工作原理图
2. 启动服务器,运行drvi主程序,开启drvi数据采集仪电源,然后点击drvi快捷工具条上的"联机注册"图标,选择其中的"drvi采集仪主卡检测"进行服务器和数据采集仪之间的注册。

联机注册成功后,分别从drvi工具栏和快捷工具条中启动"drvi微型web服务器"和"内置的web服务器",开始监听8600和8500端口。

3. 打开客户端计算机,启动计算机上的drvi客户端程序,然后点击drvi快捷工具条上的"联机注册"图标,选择其中的"drvi局域网服务器检测",在弹出的对话框中输入服务器ip地址(例如:192.168.0.1),点击"发送"按钮,进行客户端和服务器之间的认证,认证完毕即可正常运行客户端所有功能。

4. 在drvi软件平台的地址信息栏中输入如下信息"http://服务器ip地址:8600/gccslab/index.htm",打开web版实验指导书,在实验目录中选择"电涡流传感器轴心轨迹测量"实验,参照实验原理和要求设计该实验。

5. 点击附录中该实验脚本文件"服务器端"的链接,将参考的实验脚本文件贴入drvi软件平台。

启动转子试验台,点击面板中的"运行"按钮,进行轴心轨迹的测量。

如果波形不清楚,需要调节电涡流探头与轴之间的距离,直到两个方向的波形稳定,振幅相近为止。

服务器端实验效果图如图17.2所示。

图17.2 转子实验台-电涡流传感器轴心轨迹测量实验(服务器)
6. 调节电机转速,观察随着转速的变化,轴心轨迹曲线的变化情况,分析并记录实验结果。

图17.3 转子实验台-电涡流传感器轴心轨迹测量实验(客户端)
7. 对于客户端的分析,首先设定数据共享服务器的ip地址,在服务器端进行数据采集的同时,点击"运行"按钮进行网络数据采集,观察随着转速的变化,轴心轨迹的变化情况,并记录实验结果。

客户端实验样本图如图17.3所示。

五. 实验报告要求
1. 简述实验目的和原理。

2. 根据实验步骤要求,整理和分析相应的波形和特性曲线。

六. 注意事项
1. 安装电涡流探头时,必须首先把初始间隙调好。

2. 没有低通滤波功能的实验脚本得到的波形由于干扰较大,特征不明显,所以一般采用有低通滤波功能的实验脚本。

七. 思考题
1. 电涡流传感器有什么特性?可以用在那些特征量的检测上?
附录:
1. 该实验的实验信号处理框图如图17.4所示
图17.4电涡流传感器轴心轨迹测量实验信号处理框图。

相关文档
最新文档