电涡流传感器及高精度测量电路
传感器与检测技术电涡流式传感器

08 电涡流探雷器——电涡流式传感器的测试项目描述•为排除地表下埋入的地雷,战士们常用便携式探雷器来探测地表,当探雷器探测到地表下的地雷时就会发出报警提示信号,然后进行排除地雷,如图8-1 所示。
•便携式探雷器是利用电涡流效应原理来工作的,所以又叫电涡流探雷器。
这种探测器除了用于探测地雷,还被广泛运用在机场安检用的金属安检门、探钉器、手持金属探测器、考古用的地下金属探测器等,虽然这些探测器并不叫探雷器,但是它的工作原理和用途都跟探雷器是一样的。
•通过本项目的学习,主要给大家介绍电涡流式探测器(电涡流式传感器)的工作原理及相关传感器。
4知识准备•(一)电涡流传感器工作原理• 1.电涡流效应•根据法拉第电磁感应原理, 块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时, 导体内将产生呈涡旋状的感应电流, 此电流叫电涡流, 以上现象称为电涡流效应。
——电涡流在我们日常生活中应用干净、高效的电磁炉电磁炉内部的励磁线圈电磁炉的工作原理图高频电流通过励磁线圈,产生交变磁场,在铁质锅底会产生无数的电涡流,使锅底自行发热,烧开锅内的食物。
»2.电涡流传感器的等效电路和工作原理•(1)等效电路•(2)工作原理•电涡流效应既与被测体的电阻率ρ、磁导率μ以及几何形状有关,又与线圈几何参数、线圈中激磁电流频率ω有关,还与线圈与导体间的距离x有关。
因此,传感器线圈受电涡流影响时的等效阻抗Z的函数关系式为•Z=F(ρ, μ, R,ω, x)•如果保持上式中其他参数不变,而只改变其中一个参数,传感器线圈阻抗Z就仅仅是这个参数的单值函数。
通过与传感器配用的测量电路测出阻抗Z的变化量,即可实现对该参数的测量。
(二)电涡流基本特性• 1. 电涡流的径向形成范围•当x一定时, 电涡流密度J与半径r的关系曲线•由图可知:•电涡流径向形成的范围大约在传感器线圈外径r as 的1.8~2.5 倍范围内, 且分布不均匀。
•电涡流密度在短路环半径r =0处为零。
电涡流传感器(位移)

Your company slogan
1 电涡流式传感器原理
电涡流探头结构
1—电涡流线圈 2—探头壳体 3—壳体上的位置调节螺纹 4—印制线路 板 5—夹持螺母 6—电源指示灯 7—阈值指示灯 8—输出屏蔽电缆线 9—电缆插头
Your company slogan
2 电涡流传感器测量电路
电桥测量电路 在进行测量时,由于传感器线圈的阻抗发生变化,使电桥 失去平衡,将电桥不平衡造成的输出信号进行放大并检波, 就可得到与被测量成正比的输出。 谐振法 谐振法主要有调幅式电路和调频式电路两种基本形式。调 幅式由于采用了石英晶体振荡器,因此稳定性较高,而调 频式结构简单,便于遥测和数字显示。
Your company slogan
Your company slogan
1 电涡流式传感器原理
高频反射电涡流传感器等效电路
R
M
R
1
U
·
1
I
·
1
I
L
1
·
2
L
2
Z1=R+jωL1 RI1+jωL1I1-jωMI2=U1 -jωMI1+R1I2+jωL2I2=0
Your company slogan
1 电涡流式传感器原理
传感器线圈的等效阻抗
Your company slogan
1 电涡流式传感器原理
电涡流传感器分类 涡流传感器在金属体上产生的电涡流, 涡流传感器在金属体上产生的电涡流,其渗透深度从传感器线圈自身 原因来讲主要与励磁电流的频率有关, 原因来讲主要与励磁电流的频率有关,所以涡流传感器主要可分高频 反射的低频投射两类。 反射的低频投射两类。
电涡 传感 (
电涡流传感器位移实验报告

电涡流传感器位移实验报告背景电涡流传感器是一种非接触式位移传感器,广泛应用于工业领域中的位移测量。
它基于涡流效应,通过感应涡流的变化来测量目标物体的位移。
在实验中,我们使用了一种常见的电涡流传感器,将其应用于位移测量,并对其性能进行了评估和分析。
实验目的本实验旨在通过测量电涡流传感器对不同位移的响应,评估其性能指标(如灵敏度、线性度等),并提出相应的改进建议,以提高位移测量的精确性和稳定性。
实验装置与方法实验装置•电涡流传感器:型号ABC-123,频率范围0-10kHz•信号发生器:频率范围0-10kHz,可调幅度•示波器:带宽100MHz,采样率1GS/s•电压表:精度0.1mV实验步骤1.准备实验装置,保证电涡流传感器与信号发生器、示波器的连接正确。
2.设置信号发生器的频率为2kHz,并将幅度调至适当水平。
3.将电涡流传感器固定在实验台上,使其与目标物体相对静止并平行。
4.使用示波器测量电涡流传感器输出的电压信号,并记录数据。
5.调整信号发生器的频率和幅度,重复步骤4,以获得不同位移下的电压信号。
数据分析与结果实验数据我们通过实验获得了电涡流传感器在不同位移下的电压信号数据,如下所示:位移 (mm) 电压 (mV)0 1.21 1.52 1.83 2.14 2.45 2.7曲线拟合与性能评估我们将实验数据进行曲线拟合,以评估电涡流传感器的性能指标。
首先,我们使用最小二乘法对数据进行线性拟合。
得到的拟合直线的方程为:V = 0.3d + 1.2其中V表示电压(mV),d表示位移(mm)。
通过拟合直线,我们可以计算出电涡流传感器的灵敏度为0.3 mV/mm,表示单位位移引起的电压变化量。
其次,我们计算了电涡流传感器的线性度。
线性度是衡量传感器输出与输入之间线性关系程度的指标,通常以百分比表示。
通过计算每个数据点与拟合直线之间的残差,并将其转化为线性度,我们得到了电涡流传感器的线性度为95%。
结果分析与建议通过对实验数据的分析和性能评估,我们得到了以下结论:1.电涡流传感器表现出良好的线性关系,其灵敏度为0.3 mV/mm。
电涡流传感器电路设计

电涡流传感器电路设计作者:汪晓凌杜嘉文来源:《硅谷》2013年第01期摘要:在无损测量当中,电涡流传感器测量因为能够实现工件在线非接触测量,测量精度高、无污染、制作价格低廉等优点,一直被作为一种重要的检测设备,在涡流技术高速发展的今天,电涡流的优势越来越明显应用也越来越广泛。
电涡流传感器是电涡流测量淬火层厚度的核心部分,传感器的测量精度直接影响整个测厚设备的精度,传统的电涡流传感器包括测量探头、整流滤波电路的设计、放大器的设计等,电涡流传感器的精确测量也离不开位移测厚标定器,这里主要研究电涡流测厚核心电路的设计。
关键词:无损测量;电涡流;测厚;电路0 引言电涡流无损检测具有很悠久的历史,从Michael Faradays总结出电磁感应定律,即变化的磁场能产生电场以来,电磁感应相关技术取得了巨大的发展。
后来Foster提出的通过分析系统的阻抗变化来分析涡流检测仪的干扰因素,为涡流检测提供了很好的理论依据,大大推动了电涡流无损检测技术的发展。
通过对阻抗分析法的有效运用,电涡流测量技术已经渗透到我们工业测量的方方面面,包括了航空航天、核工业、机械、冶金、石油、化工、机械、汽车等部门,电涡流无损技术的快速发展,相关研究和运用也越来越广泛,其中传感器的电路设计和测量精度的控制都是研究的焦点。
1 涡流检测原理图涡流检测是无损检测的一个分支,是运用电磁感应原理,将一半径为r的线圈通过正弦波电流后,线圈周围就会产生一交变磁场H1;若在距线圈x处有一电导率为a,磁导率为u厚度为d的金属板,线圈周围的交变磁场会在金属表面产生感应电流,也称作涡流。
金属表面也产生一个与原磁场方向相反的相同的相同频率的磁场H2,反射到探头线圈,导致载流线圈的阻抗和电感的变化,改变了线圈的电流大小及相位,原理图如图1所示。
图1 电涡流测厚原理图2 测厚探头的设计图2 电涡流测量电路整体设计图电涡流测量电路的整体测量电路设计图如图2所示,涡流探头测量物体厚度后引起阻抗的变化,通过电桥电路转化成电流信号输出,也由于信号很微弱,需要经过放大器进行功率放大输出,经过整波电路,把交流信号转化为直流信号,然后把那些高频的还有低频的号过滤掉,得到干扰较小的电流信号,经过放大器尽心比例放大后接入ARM7的A/D转换接口,把模拟信号转化为数字信号,对信号进行控制然后接入数字示波器,观察波形输出,把结果通过PC 机显示出来[1]。
传感器原理及工程应用_(第三版)_((郁有文))_(西安电子科技大学出版)_详细答案 (1)

4-12 电涡流传感器常用的测量电路有哪几种?其测量原理如何?各有什么特点?1、用于电涡流传感器的测量电路主要有:调频式、调幅式电路两种。
2、测量原理(1)调频式测量原理传感器线圈接入LC振荡回路,当传感器与被测导体距离x改变时,在涡流影响下,传感器的电感变化,将导致振荡频率的变化,该变化的频率是距离x 的函数,即f=L(x), 该频率可由数字频率计直接测量,或者通过f-V变换,用数字电压表测量对应的电压。
图4-6调频式测量原理图(2)调幅式测量原理由传感器线圈L、电容器C和石英晶体组成的石英晶体振荡电路。
石英晶体振荡器起恒流源的作用,给谐振回路提供一个频率(f0)稳定的激励电流i o。
当金属导体远离或去掉时,LC并联谐振回路谐振频率即为石英振荡频率f o,回路呈现的阻抗最大,谐振回路上的输出电压也最大;当金属导体靠近传感器线圈时,线圈的等效电感L发生变化,导致回路失谐,从而使输出电压降低,L的数值随距离x的变化而变化。
因此,输出电压也随x而变化。
输出电压经放大、检波后,由指示仪表直接显示出x的大小。
图4-7调幅式测量原理图除此之外,交流电桥也是常用的测量电路。
3、特点✧调频式测量电路除结构简单、成本较低外,还具有灵敏度高、线性范围宽等优点。
✧调幅式测量电路线路较复杂,装调较困难,线性范围也不够宽。
4-13 利用电涡流式传感器测板材厚度,已知激励电源频率f =1MHz,被测材料相对磁导率μr=1,电阻率ρ=2.9×10-6ΩCm,被测板材厚度为=(1+0.2)mm。
试求:(1)计算采用高频反射法测量时,涡流透射深度h为多大?(2)能否采用低频透射法测板材厚度?若可以需采取什么措施?画出检测示意图。
【解】1、为了克服带材不够平整或运行过程中上下波动的影响,在带材的上、下两侧对称地设置了两个特性完全相同的涡流传感器S1和S2。
S1和S2与被测带材表面之间的距离分别为x1和x2。
若带材厚度不变,则被测带材上、下表面之间的距离总有x1+x2=常数的关系存在。
电涡流传感器转速测量实验

电涡流传感器V-n 曲线图
U/V
转速n /r p m 电涡流传感器转速测量实验报告
一、实验目的:
了解电涡流传感器测量转速的原理与方法。
二、实验仪器:
电涡流传感器、转动源、+5V 、+4、±6、±8、±10V 直流电源、电涡流传感器模块
三、实验原理:
根据电涡流传感器对不同材质的被测物输出不同和静态位移特性,选择合适的工作点即可测量转速。
四、实验内容与步骤
1、将电涡流传感器安装到转动源传感器支架上,引出线接电涡流传感器实验模块。
2、合上主控台电源,选择不同电源+4V 、+6V 、+8V 、+10V 、12V (±6)、16V (±8)、20V (±
10)、24V 驱动转动源,可以观察到转动源转速的变化,待转速稳定后,记录驱动电压对应的转速,也可用示波器观测磁电传感器输出的波形。
五、数据分析与记录
1、数据记录表格
2、用matlab 绘制的V -n 曲线图如下图所示
3、电涡流传感器传感器测量转速原理
传感器线圈由信号激励,使它产生一个交变磁场,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流,而此电涡流又将产生一交变磁场阻碍外
磁场的变化。
因此当被测体与传感器间的距离改变时,传感器的Q值和等效阻抗Z、电感L 均发生变化,于是把位移量转换成电量。
六、实验报告
1.分析电涡流传感器传感器测量转速原理。
2.根据记录的驱动电压和转速,作V-n曲线。
涡流测量电路

终输出的直流电压Uo反映了金属体对电涡流线圈的影响(例如 两者之间的距离等参数)。
a
14
部分常用材料对振荡器振幅的衰减系数
人的手、泥土或装满水的玻璃杯能
对振荡器的振幅产生明显的衰减吗?为什
么?
a
15
(二)调频(FM)式电路(100kHz~1MHz)
当电涡流线圈与被测体的距离x 改变时, 电涡流线圈的电感量L 也随之改变,引起LC 振荡器的输出频率变化,此频率可直接用计算 机测量。如果要用模拟仪表进行显示或记录时, 必须使用鉴频器,将f转a 换为电压Uo 。 16
a
6
R1
M
·
·
I1
U1
L1
R2
·
I2
L2
其等效电路如上图所示,R1、L1为传感器线圈的电
阻和电感。短路环可以认为是一匝短路线圈,其电阻 为R2、电感为L2。线圈与导体间存在一个互感M,它随 线圈与导体间距的减小而增大。
线圈与金属导体系统的阻抗、电感都是该系统互 感平方的函数。而互感是随线圈与金属导体间距离的 变化而改变的。
并联谐振回路的谐振频率
f 1
2 LC0
4-3
设电涡流线圈的电感量
L=0.8mH,微调电容C0=200pF,求 振荡器的频率f 。
a
17
交变磁场
电涡流探头外形
a
18
电涡流探头内部结构
1—电涡流线圈 2—探头壳体 3—壳体上的位置调节螺纹 4—印制线路板 5—夹持螺母 6—电源指示灯
7—阈值指示灯 8—输出屏蔽电缆线 9—电缆插头
a
19
4.3.3 典型应用
电涡流传感器系统广泛应用于电力、石油、 化工、冶金等行业和一些科研单位。对汽轮机、 水轮机、鼓风机、压缩机、空分机、齿轮箱、 大型冷却泵等大型旋转机械轴的径向振动、轴 向位移、键相器、轴转速、胀差、偏心、以及 转子动力学研究和零件尺寸检验等进行在线测 量和保护。
新型电涡流传感器测量电路设计分析

新型电涡流传感器测量电路设计分析摘要:在新型电涡流传感器测量电路设计上,应该分析多点技术内容,例如基于传统接触式测量技术在实际应用中的缺陷,即可建立一种全新的测量电路实验平台,分析其设计技术方法,并对电路设计实验结果进行了阐述。
关键词:新型电涡流传感器;测量电路设计;实验平台;设计方法;实验结果工程检验施工中需要对多种物理量检测数据进行分析,最终归结转化获得机械位移量,如此对监控提高检测仪器性能是很有帮助的。
例如针对新型电涡流传感器的测量电路设计分析需要提高测量灵敏度与准确度,优化测量电路设计动态范围,要结合传感器测量电路的稳定运行性能与运行恶劣环境进行分析。
1.新型电涡流传感器的工作原理分析新型电涡流传感器的基本构成包括了延伸电缆、探头线圈、信号处理模块以及被测体四大部分。
在设备运行过程中,需要分析交变磁场变化,对其有效运行范围进行分析,了解被测体靠近过程中磁场能量的损失变化。
此时被测体中会产生电涡流产生交变磁场,其中磁场反作用可确保线圈电流大小与相位变化,分析线圈阻抗变化情况,并对新型电涡流传感器的涡流场反作用问题进行分析,如图1[1]。
图1新型电涡流传感器的基本构成结构示意图如图1,在线圈阻抗变化过程中,需要分析被测体电导率、线圈几何参数、线圈被测体之间的相互控制距离进行分析,深入了解被测体的电阻率、磁导率以及厚度变化情况。
如此可建立高频放射式测距涡流传感器,并对低频透射测厚涡流传感器内容进行分析,提出相关技术解决方案。
简言之,它所建立的是围绕被测体、输入电流、线圈、磁场能量耦合、电涡流所共同构建的新型电涡流传感器系统技术体系[2]。
1.新型电涡流传感器测量电路的设计流程与设计方法1.设计流程1建立布线图在新型电涡流传感器测量电路设计流程中,需要首先采用印制板并设计电源线与地线,它可为电路正常工作提供不竭电源动力,同时配置导线内容,建立影响电路板电磁兼容的导线部分。
在设计过程中,需要对地线组合所形成的电容部分进行分析,建立地线电路基准,确保多个电路都能提供0V参考电压,分析朱电磁干扰情况,结合底线对PCB到点面积分布均匀性进行分析,建立新型电涡流传感器测量电路机制,避免出现串扰问题。