青岛版八上数学分式及分式的乘除运算测试题

合集下载

青岛版八年级数学上册分式单元测试卷82

青岛版八年级数学上册分式单元测试卷82

青岛版八年级数学上册分式单元测试卷82一、选择题(共10小题;共50分)1. 计算的结果为A. B. C.2. 计算,结果是A. B. C. D.3. 把分式中的,都扩大倍,则分式的值A. 扩大倍B. 缩小倍C. 扩大倍D. 不改变4. 下列方程中,不是分式方程的是A. B.C. D.5. 张老师和李老师同时从学校出发步行去公里的书店,张老师比李老师每小时多走公里,结果比李老师早到半小时.设李老师每小时走公里,则可得方程是A. B. D.6. 下列分式中是最简分式的是A. B.7. 关于的分式方程有增根,则增根为A. B. C. D.8. 已知关于解,则的值为A. B. C. D. 或9. 点是线段的黄金分割点,若,则D.10. 学完分式运算后,老师出了一道题“化简:”其中正确的是小明的做法是:;小亮的做法是:,小芳的做法是,.A. 小明B. 小亮C. 小芳D. 没有正确的二、填空题(共6小题;共30分)11. 若关于的方程无解,则.12. .13. 长方形宽为,长比宽的倍大,则长方形的周长为.14. 分式方程的解是,则.15. 某服装厂准备加工套演出服,在加工套后,采用了新技术,使每天的工作效率是原来的倍,结果共用了天完成任务,则该厂原来每天加工套演出服.16. 如果线段是,的比例中项,且,,则.三、解答题(共8小题;共104分)17. 解方程:.18. 把多项式按升幂排列.19. 阅读下列材料:方程的解是;的解是;的解是;(即)的解是.观察上述方程与解的特征,猜想关于的方程的解,并利用“方程的解”的概念进行验证.20. (1、、等于多少?(2)已知,你能得出哪些结论?21. A,B两地相距千米,甲骑自行车从A地前往B地,如果乙骑摩托车比甲晚出发小时分钟从A地出发但是提早小时到达B地.已知骑摩托车的速度比骑自行车的速度快千米/时倍.设甲骑自行车的速度为千米/时,那么摩托车和自行车的速度分别是多少?22. 如果分式方程有增根,求的值.23. 先约分,再求值:,其中,.24. 计算,并求当时原式的值.答案第一部分1. B2. B3. D4. C5. B6. A7. A 【解析】当时,分母为零,没有意义,所以是增根.8. D 【解析】去分母得:,整理得:,当,即时,该整式方程无解;当,即时,由分式方程无解,得到,即,把代入整式方程得:,解得:,综上,的值为或.9. D 【解析】由于为线段的黄金分割点,且,则..10. C【解析】A.,故A错误;B.,故B错误;C.,故C正确.第二部分【解析】分式方程去分母可得,由分式方程无解可得该方程有增根.把代入上述整式方程,可得.12..13.14.15.【解析】设原来每天加工套,则.16.【解析】是,的比例中项,,,,,解得.又为线段的长度,故舍去;即.第三部分17. 去分母得:解得:经检验是分式方程的解.18.19. ,据题意,把代入方程得,.20. (1);;所以.(2)等.21. 略去分母可得,若有增根,增根为,代入可得.23.把,代入,24.当时,.。

初二分式乘除法计算题

初二分式乘除法计算题

初二分式乘除法计算题在初二数学课上,学生们通常会学习到分式乘除法的计算方法。

这些计算题旨在帮助学生们熟练掌握分式的乘法和除法运算,以及运用这些技巧解决实际问题。

首先,我们来看一些关于分式乘法的计算题。

例如,计算以下分式的乘积:1. (2/3) * (5/4)2. (7/8) * (3/5)3. (1/2) * (3/4) * (2/5)对于这些题目,我们可以通过以下步骤进行计算:1. 将分子相乘,分母相乘,得到新的分子和分母。

然后简化分式(如果可以简化)。

2. 如果题目中有多个分式相乘,可以按照顺序进行乘法运算。

例如,对于第一个题目,我们可以按照以下步骤进行计算:(2/3) * (5/4) = (2*5) / (3*4) = 10/12 = 5/6接下来,我们来看一些关于分式除法的计算题。

例如,计算以下分式的商:1. (4/5) ÷ (2/3)2. (9/10) ÷ (5/6)3. (3/4) ÷ (1/2) ÷ (2/5)对于这些题目,我们可以通过以下步骤进行计算:1. 将除号转换为乘号,并将被除数和除数调换位置,即将除号前面的分式反转。

2. 然后按照分式乘法的计算方法进行计算。

例如,对于第一个题目,我们可以按照以下步骤进行计算:(4/5) ÷ (2/3) = (4/5) * (3/2) = (4*3) / (5*2) = 12/10 = 6/5通过解决这些分式乘除法计算题,学生们可以加深对乘法和除法的理解,掌握运用分式计算解决实际问题的能力。

此外,他们还可以通过简化分式,将分数化简为最简形式,提高分式计算的效率和准确性。

这些技巧在日常生活中也经常应用,例如在购物时计算折扣、计算食谱中的配料比例等等。

因此,熟练掌握分式乘除法的计算方法对于学生们的数学学习和实际生活都具有重要意义。

八年级数学分式的乘方及乘除混合运算练习题.doc

八年级数学分式的乘方及乘除混合运算练习题.doc

【本文由书林工作坊整理发布,如有疑问可关注私信。

谢谢!】分式的乘方及乘除混合运算知识点1 分式的乘除混合运算1.(河北中考)下列运算结果为x -1的是(B )A .x 2-1x -1B .x 2-1x ·xx +1 C .x +1x ÷1x -1 D .x 2+2x +1x +12.计算:-n m 2÷n 2m 3÷mn 2=-n .3.计算:(1)2x 2y 3mn 2·5m 2n 4xy 2÷5xym 3n; 解:原式=2x 2y 3mn 2·5m 2n 4xy 2·3n 5xym =12y 2.(2)a +2a 2-1·a -1a 2+4a +4÷1a +2; 解:原式=a +2(a +1)(a -1)·a -1(a +2)2·(a +2)=1a +1.(3)3x 4x -3÷216x 2-9·x4x +3; 解:原式=3x 4x -3·(4x +3)(4x -3)2·x 4x +3=3x 22.(4)1x -1÷(x+2)·x -1x +2. 解:原式=1x -1·1x +2·x -1x +2=1(x +2)2.知识点2 分式的乘方运算4.在下列各式中:①(-2n a 2b )2;②-8m 4n 2a 2b ;③8m 4n 2a 5b ·an bm 2;④4n 2ab 2÷a 3,相等的两个式子是(B )A .①②B .①④C .②③D .③④ 5.计算:(2x 23y )2=4x 49y 2,(-y 22x 3)3=-y 68x 9.6.计算:(1)(-y 2x)2;解:原式=(-y 2)2x 2=y 4x 2.(2)(2a 2b c)3.解:原式=(2a 2b )3c 3=8a 6b3c 3.知识点3 分式乘方、乘除的混合运算 7.计算a 3·(1a)2的结果是(A )A .aB .a 5C .a 6D .a 88.计算x 2y ÷(-y x )·(y x)2的结果是(A )A .-xB .-x 2yC .x yD .x 2y 9.计算:(1)(-b 22a )÷(-b a 2)3÷(1ab)3;解:原式=(-b 22a )÷(-b 3a 6)÷1a 3b 3=b 22a ·a 6b 3·a 3b 3=a 8b 22.(2)m 2-n 2(m -n )2·(n -m mn )2÷m +nm; 解:原式=(m +n )(m -n )(m -n )2·(n -m )2m 2n 2·m m +n =m -n mn 2.(3)(x 2-y 2xy )2÷(x +y)2·(x x -y)3.解:原式=(x +y )2(x -y )2x 2y 2·1(x +y )2·x 3(x -y )3=x xy 2-y 3.02 中档题10.下列分式运算,正确的是(D )A .m 4n 5·n 3m 3=m nB .(3x 4y )3=3x 34y3C .(2a a -b )2=4a 2a 2-b 2 D .a b ÷cd =ad bc11.计算1÷1+m1-m·(m 2-1)的结果是(B )A .-m 2-2m -1B .-m 2+2m -1C .m 2-2m -1D .m 2-1 12.计算:(1)(2xy 3-z 2)2÷6x 2y3;解:原式=4x 2y 6z 4·y 36x 2=2y 93z 4.(2)(-a b )2·(-a b )3÷(-ab)4;解:原式=-a 2b 2·a 3b 3·1a 4b 4=-a b 9.(3)2x +y x -y ÷2x +yx 2-2xy +y 2·(x -y);解:原式=2x +y x -y ·(x -y )22x +y ·(x-y)=(x -y)2.(4)(x -2x )2÷x 2-4x 2+2x.解:原式=(x -2)2x 2·x (x +2)(x +2)(x -2)=x -2x.13.阅读下列解题过程,然后回答问题.计算:1x 2-6x +9÷x +3x -3·(9-x 2).解:原式=1(x -3)2÷x +3x -3·(3-x)(3+x) 第一步=1(x -3)2·x -3x +3·(3-x)(3+x) 第二步 =1. 第三步(1)上述计算过程中,第一步使用的公式用字母表示为a 2-2ab +b 2=(a -b)2,a 2-b 2=(a +b)(a -b);(2)第二步使用的运算法则用字母表示为A B ÷C D =A B ·DC ;(3)由第二步到第三步进行了分式的约分;(4)以上三步中,第三步出现错误,正确的化简结果是-1.14.(黄石中考)先化简,再求值:a 2-3a a 2+a ÷a -3a 2-1·a +1a -1,其中a =2 016.解:原式=a (a -3)a (a +1)·(a +1)(a -1)a -3·a +1a -1=a +1.当a =2 016时,原式=2 017.15.先化简,再求值:(2ab 2a +b )3÷(ab 3a 2-b 2)2·[12(a -b )]2,其a =-12,b =23.解:原式=(2ab 2)3(a +b )3·(a 2-b 2)2(ab 3)2·14(a -b )2=8a 3b 6(a +b )3·(a +b )2(a -b )2a 2b 6·14(a -b )2 =2a a +b. 当a =-12,b =23时,原式=2×(-12)-12+23=-6.03 综合题16.有这样一道题:“计算x 2-2x +1x 2-1÷x -1x 2+x ÷(1x )3的值,其中x =2”,小明同学把x =2错抄为x =-2,但是他计算的结果也是正确的,你说这是怎么回事?解:x 2-2x +1x 2-1÷x -1x 2+x ÷(1x )3=(x -1)2(x +1)(x -1)·x (x +1)x -1·x 3 =x 4.所以,当x =2或-2时,原式的值都等于16.。

3-3分式的乘法与除法测试题青岛版八年级数学上册

3-3分式的乘法与除法测试题青岛版八年级数学上册

青岛版8年级数学上册分式的乘除测试题2021.10.9满分:100分 时间:60分钟一.选择题:(36分)1.下列各式计算结果是分式的是( ).A. B. C. D.2.已知分式,当x 取a 时,该分式的值为0;当x 取b 时,分式无意义;则ab 值等于( ) A.-2B. C.1 D.23.下列计算结果正确的有( ) ①3x x 2⋅x 3x =1x ; ②8x 2x 2⋅(−3x 4x 2)=−6x 3; ③x x 2−1÷x 2x 2+x =1x −1; ④x ÷x ⋅1x =x ; ⑤(−x 2x )⋅(−x 2x )÷(x 2x 2)=1xx. A. 1个B. 2个C. 3个D. 4个 4.已知x 2−4x −3÷▲x 2−9,这是一道分式化简题,因为一不小心一部分被墨水污染了,若只知道该题化简的结果为整式,则被墨水覆盖的部分不可能是( )A. x −3B. x −2C. x +3D. x +25.完成某项工程,甲单独做需a 天,乙独做需b 天,甲乙两人合作完成这项工程的天数是( )A. B. C. D. 66.下列等式正确的是( )A. B. C. D. 7.化简的结果是( ). A. B.a C.D.xx -+212122ba b a =b a ab b a +=b c c a b a ++=2b ab b a =8.已知x 2+5x+1=0,则x+的值为( )A.5 B.1C.﹣5D.﹣1 9.下列分式中,计算正确的是( ).A.B. C. D. 10.若( )⋅x 2x =x x ,则( )中的式子是( ) A. x xB. 1xC. x 2x 2D. y 11.若代数式x +2x −2÷x +3x −4有意义,则x 的取值范围是( )A. x ≠2且x ≠4B. x ≠−2且x ≠4C. x ≠−2且x ≠−3D. x ≠2且x ≠4且x ≠−312.分式中的x ,y 的值都扩大到原来的2倍,则分式的值( ) A.不变 B.扩大到原来的2倍 C.扩大到原来的4倍。

青岛版初中数学八年级上册《分式》单元测试卷练习题3

青岛版初中数学八年级上册《分式》单元测试卷练习题3
TB:小初高题库
青岛版初中数学
参考答案
一、选择题
1.B 2.B 3.C 4.C 5.D 6.C 7.A 8.B 9.A 10.D
二、填空题
11. 1
12. ① 6a 2 ② a 2
15. x2 y 20. 6 6 1
15 x
16. 5 3
13. ① 1 4a
17. 1 6
② x3 x3
18. 1
独做需 x 天完成,则可得方程为
.
三、解答题(共 50 分)
21.计算(每小题 4 分,共 12 分):
(1) a2 1 a2 a ; a2 2a 1 a 1
(2) 1 3 ; x 3 x(x 3)
TB:小初高题库
(3)
1 2x
x
1
y
x y 2x
x
y
.
22.(5 分)先化简,再求值: (1 x 3) 2x ,其中 x 4 . x 3 x2 9
A. 48 48 9 4x 4x
C. 48 4 9 x
B. 96 96 9 x4 x4
D. 48 48 9 x4 x4
二、填空题(每小题 2 分,共 20 分)
11.当 x _______________时,分式 x 1 无意义. x 1
12.① 3a
, (a 0)
5xy 10axy
23.解方程(每小题 4 分,共 8 分)
(1) 2 x 1 1; x3 3x
(2) 2x 3 2 . x2 x2
青岛版初中数学
24.(6
分)对于试题:“先化简,再求值:
x3 x2 1
1 1
x
,
其中x
2. ”某同学写出

青岛版八年级数学上册分式单元测试卷41

青岛版八年级数学上册分式单元测试卷41

青岛版八年级数学上册分式单元测试卷41一、选择题(共10小题;共50分)1. 下列代数式中属于分式的是A. B. C. D.2. ,则3. 下列等式中成立的是B.C. D.4. 下列方程中,分式方程有①②③④⑤A. 个B. 个C. 个D. 个5. 某学校用元钱到商场去购买消毒液,经过还价,每瓶便宜元,结果比原来多买了瓶,则下列方程(组)不正确的为A. 若设原价每瓶元,B. 若设原价每瓶C. 若设现在购买了瓶,D. 若设原价每瓶元,原来购买了瓶,6. 下列式子中,分式的个数有,,,,,,.A. 个B. 个C. 个D. 个7. 关于的分式方程的解为正数,则的取值范围是A. B. 且C. D. 且8. 已知关于的解是非负数,则的取值范围是A. B. C. D.9. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比(黄金分割比).著名的“断臂维纳斯”便是如此.此外最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比.若某人满足上述两个黄金分割比例,且腿长为,头顶至脖子下端的长度为,则其身高可能是A. B. C. D.10. 学完分式运算后,老师出了一道题“化简:”其中正确的是小明的做法是:;小亮的做法是:,小芳的做法是,.A. 小明B. 小亮C. 小芳D. 没有正确的二、填空题(共6小题;共30分)11. 若方程有增根,则.12. 化简:.13. “的一半加上的倍的和”用代数式表示为.14. 当时,关于的方程的解为.15. 八年级数学教师邱龙从家里出发,驾车去离家的风景区度假,出发一小时内按原计划的速度匀速行驶,一小时后以原速的倍匀速行驶,并提前分钟到达风景区;第二天返回时以去时原计划速度的倍行驶回到家里.那么来回行驶时间相差分钟.16. 某一时刻,一根旗杆竖直立于水平地面,测得地面影长为,余下的影子落在竖直的墙上,其影长为;同一时刻测得一身高的人的影长为,则旗杆的顶端离地面高.三、解答题(共8小题;共104分)17. .18. 指出下列代数式中的单项式,并写出各单项式的系数和次数.,,,,.19. .20. 如图,在中,点、分别在边、上,.求证:(1);(2).21. 为响应承办“绿色世博”的号召,某班组织部分同学义务植树棵,由于同学们积极参与,实际参加植树的人数比原计划增加了,结果每人比原计划少栽了棵树.问实际有多少人参加了这次植树活动?22. 有增根,求的值.23. 先化简,再求值:,其中.24. 先化简,再求值:,然后在内选取一个你喜欢的整数作为的值.答案第一部分1. B 【解析】,,的分母中不含有字母,属于整式.的分母中含有字母,属于分式.2. D 【解析】(方法1)根据比例的基本性质.由,得,即,.(方法2)根据合比性质,由,即.(方法3,得,所以.3. D4. B5. A6. A 【解析】分式的定义,形如中含有字母,,,,,为分式,,中分母不含字母所以不是分式,分式的个数为.7. B 【解析】分式方程去分母得:,解得:,根据题意得:,且,解得:且.8. C 【解析】 .去分母,得 .解得 .关于的分式方程的解是非负数,,且 .且 .9. B 【解析】()以腿长视为从肚脐至足底的高度,求出身高下限:;()以头顶到脖子下端长度视为头顶至咽喉长度求出身高上限:①咽喉至肚脐:;②肚脐至足底:,身高上限为:,身高范围为:.10. C【解析】A.,故A错误;B.,故B错误;C.,故C正确.第二部分11.12.14.【解析】把代入,解得.检验:把代入,所以是方程的解.15.【解析】设原计划速度为,所以实际时间为,原计划时间为,,解得,经检验:是方程的解,所以实际时间为,所以.16.第三部分17. 方程两边都乘以,得解得检验:当时,,原分式方程无解.18. ,是单项式.的系数是;的系数是,次数是;的系数是,次数是;的系数是,次数是.19. 方程两边同时乘以,得化简:解得检验:时,,所以,是原方程的解.20. (1)因为,所以,所以.(2)因为,所以,所以,所以,所以.21. 人.22. 方程两边同乘得所以所以由题意知增根为或.所以或所以,或.23.当时,.【解析】方法二:当时,.24.当时,。

青岛版八上数学分式及分式的乘除运算测试题

青岛版八上数学分式及分式的乘除运算测试题
A.- B. C.- D.-
二、填空题
13.计算: =。
14.已知 ,则分式 的值为.
15.若分式 有意义,则 的取值范围是
16.当x____________时,分式 的值为正数.
17.在函数 中,自变量x的取值范围是________.
三、解答题
18. 19.化简: · .
20.化简:(ab-b2)÷ .21.化简
5.如果x>y>0,那么 的值是()
A.零B.正数C.负数D.整 ;
③ ;④
A、1个B、2个C、3个D、4个
7.已知分式 当 , 时,值是 ,那么当 , 时,分式的值是()
A. B. C.1 D.3
8.在分式 中,最简分式有()
A、1个B、2个C、3个D、4个
9.把分式 的 和 都变为原来的 倍,那么分式的值()
A.变为原来的 倍B.变为原来的2 倍
C.不变D.变为原来的4 倍
10.计算① · ;② · ;③ ÷ ;④ ÷ 四个算式,其结果是分式的是()
A.①③B.①④C.②④D.③④
11.计算a÷a× 的结果是()
A.a B.1 C. D.a2
12.计算 ·(- )·( )的结果是()
青岛版八上数学分式及分式的乘除运算测试题
一、选择题
1.代数式 中,分式有()
A、4个B、3个C、2个D、1个
2.使分式 有意义的 的取值范围是()
A. B. C. D.
3.若分式 的值为5,当 都扩大3倍后,所得分式的值为()
A. B. 5C. 10D. 25
4.对于分式 的变形一定正确的是()
A B C D.

八年级数学上册第3章分式测试卷新版青岛版

八年级数学上册第3章分式测试卷新版青岛版

第3章分式测试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的2.(3分)当a=﹣1时,分式()A.等于0 B.等于1 C.等于﹣1 D.无意义3.(3分)化简的结果是()A.B.C.D.4.(3分)下列等式中,正确的是()A.B.C.D.5.(3分)计算:的结果为()A.1 B.C.D.6.(3分)解分式方程:时,去分母后得()A.3﹣x=4(x﹣2)B.3+x=4(x﹣2)C.3(2﹣x)+x(x﹣2)=4 D.3﹣x=47.(3分)方程=的解为()A.﹣1 B.1 C.﹣3 D.38.(3分)关于x的方程的解为x=1,则a=()A.1 B.3 C.﹣1 D.﹣39.(3分)已知,则的值等于()A.6 B.﹣6 C.D.10.(3分)某化肥厂原计划每天生产化肥x吨,由于采用了新技术,每天比计划多生产3吨,实际生产180吨化肥所用时间与原计划生产120吨化肥所用时间相同,那么适合题意的方程是()A.=B.=C.=D.=二、填空题(共6小题,每小题4分,满分16分)11.(4分)化简:(1)=;(2)=.12.(2分)分式、、﹣的最简公分母是.13.(4分)观察下列一组有规律的数:,,,,,…,根据其规律可知:(1)第10个数是;(2)第n个数是.14.(2分)已知,则=.15.(2分)某工厂库存原材料x吨,原计划每天用a吨,若现在每天少用b吨,则可以多用天.16.(2分)如果3x=4y,那么x:y=.三、解答题(共7小题,满分54分)17.(6分)计算:.18.(8分)计算:()•.19.(6分)先化简,再求值:()+,其中x=6.20.(6分)解方程:.21.(8分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?22.(10分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?23.(10分)有这样一道题:“计算÷﹣x的值,其中x=2008”甲同学把“x=2008”错抄成“x=2080”,但他的计算结果也正确,你说这是怎么回事?于是甲同学认为无论x取何值代数式的值都不变,你说对吗?答案一、选择题(共10小题,每小题3分,满分30分)1.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.【解答】解:将分式中的x,y的值变为原来的100倍,则此分式的值100倍,故选:B.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数,分式的值不变.2.(3分)当a=﹣1时,分式()A.等于0 B.等于1 C.等于﹣1 D.无意义【考点】64:分式的值.【专题】11:计算题.【分析】根据分式的分母不为0求出x不能为1,且不能为﹣1,故a=﹣1代入分式无意义.【解答】解:根据题意得:a2﹣1≠0,即a≠1且a≠﹣1,则a=﹣1时,分式无意义.故选:D.【点评】此题考查了分式的值,注意考虑分母不为0.3.(3分)化简的结果是()A.B.C.D.【考点】66:约分.【分析】先把分式的分子与分母分别进行因式分解,然后约分即可.【解答】解:==;故选:D.【点评】此题考查了约分,解题的关键是对分式的分子与分母分别因式分解,然后约去公因式,分式的约分是分式运算的基础,应重点掌握.4.(3分)下列等式中,正确的是()A.B.C.D.【考点】6B:分式的加减法.【专题】11:计算题.【分析】解决本题首先对每个分式进行通分,然后进行加减运算,找出正确选项.【解答】解:A、,错误;B、,错误;C、,正确;D、,错误.故选:C.【点评】本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.通分时,注意分母不变,分子相加减,还要注意符号的处理.5.(3分)计算:的结果为()A.1 B.C.D.【考点】6C:分式的混合运算.【专题】11:计算题.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+•=+==1.故选:A.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.(3分)解分式方程:时,去分母后得()A.3﹣x=4(x﹣2)B.3+x=4(x﹣2)C.3(2﹣x)+x(x﹣2)=4 D.3﹣x=4【考点】B3:解分式方程.【专题】16:压轴题.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣2和2﹣x互为相反数,可得2﹣x=﹣(x﹣2),所以可得最简公分母为x﹣2,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣2,得:3﹣x=4(x﹣2).故选:A.【点评】对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:3﹣x=4形式的出现.7.(3分)方程=的解为()A.﹣1 B.1 C.﹣3 D.3【考点】B3:解分式方程.【专题】11:计算题.【分析】观察可得方程最简公分母为2x(x﹣2),去分母,化为整式方程求解.【解答】解:去分母,得x=3(x﹣2),解得:x=3,经检验:x=3是原方程的解.故选:D.【点评】解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.8.(3分)关于x的方程的解为x=1,则a=()A.1 B.3 C.﹣1 D.﹣3【考点】B2:分式方程的解.【专题】11:计算题.【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.【解答】解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.【点评】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.9.(3分)已知,则的值等于()A.6 B.﹣6 C.D.【考点】65:分式的基本性质;6B:分式的加减法.【专题】11:计算题.【分析】由已知可以得到a﹣b=﹣4ab,把这个式子代入所要求的式子,化简就得到所求式子的值.【解答】解:已知可以得到a﹣b=﹣4ab,则==6.故选:A.【点评】观察式子,得到已知与未知的式子之间的关系是解决本题的关键.10.(3分)某化肥厂原计划每天生产化肥x吨,由于采用了新技术,每天比计划多生产3吨,实际生产180吨化肥所用时间与原计划生产120吨化肥所用时间相同,那么适合题意的方程是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】原计划每天生产化肥x吨,则实际每天生产化肥(x+3)吨,由题意可得等量关系:180吨÷实际每天生产化肥(x+3)吨=120吨÷原计划每天生产化肥x吨,根据等量关系列出方程即可.【解答】解:原计划每天生产化肥x吨,则实际每天生产化肥(x+3)吨,由题意得:=,故选:A.【点评】此题主要由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.二、填空题(共6小题,每小题4分,满分16分)11.(4分)化简:(1)=;(2)=.【考点】66:约分.【专题】11:计算题.【分析】(1)直接约分即可;(2)先把分子分母因式分解,然后约分即可.【解答】解:(1)原式=;(2)原式==.故答案为;.【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.12.(2分)分式、、﹣的最简公分母是abc2.【考点】69:最简公分母.【分析】利用最简公分母的定义求解即可.【解答】解:分式、、﹣的最简公分母是abc2.故答案为:abc2.【点评】本题主要考查了最简公分母,解题的关键是熟记如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.13.(4分)观察下列一组有规律的数:,,,,,…,根据其规律可知:(1)第10个数是;(2)第n个数是.【考点】37:规律型:数字的变化类.【分析】由题意可知:分子都是1,分母可以拆成连续两个自然数的乘积,由此得出第n个数是,进一步解决问题即可.【解答】解:1)第10个数是=;(2)第n个数是.故答案为:;.【点评】此题考查数字的变化规律,把分数的分母拆成连续两个自然数的乘积是解决问题的关键.14.(2分)已知,则=.【考点】4C:完全平方公式;65:分式的基本性质.【专题】11:计算题.【分析】把已知两边平方后展开求出x2+的值,把代数式化成含有上式的形式,代入即可.【解答】解:x+=4,平方得:x2+2x•+=16,∴x2+=14,∴原式===.故答案为:.【点评】本题主要考查对分式的基本性质,完全平方公式等知识点的理解和掌握,能把代数式化成含有x2+的形式是解此题的关键.15.(2分)某工厂库存原材料x吨,原计划每天用a吨,若现在每天少用b吨,则可以多用天.【考点】6G:列代数式(分式).【分析】多用的天数=现在用的天数﹣原来用的天数.【解答】解:先求出原计划可用多少天,即,现在每天用原材料(a﹣b)吨,则现在可用天,所以,现在可以多用.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.16.(2分)如果3x=4y,那么x:y=4:3 .【考点】S1:比例的性质.【分析】根据等式的性质,可得答案.【解答】解:由3x=4y,得x:y=4:3,故答案为:4:3.【点评】本题考查了比例的性质,等式的两边都除以3y是解题关键.三、解答题(共7小题,满分54分)17.(6分)计算:.【考点】6B:分式的加减法.【分析】先通分,然后计算分式的加法.【解答】解:原式=﹣===.【点评】本题考查了分式的加减运算,题目比较容易.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.18.(8分)计算:()•.【考点】6C:分式的混合运算.【专题】11:计算题.【分析】原式括号中先计算除法运算,再计算减法运算,约分即可得到结果.【解答】解:原式=(﹣•)•=•=1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(6分)先化简,再求值:()+,其中x=6.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=6代入原式进行计算即可.【解答】解:原式=[﹣]•=•=x﹣4.当x=6时,原式=4﹣6=﹣2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(6分)解方程:.【考点】B3:解分式方程.【专题】11:计算题.【分析】首先两边同乘2x﹣5去掉分母,然后解整式方程即可求解.【解答】解:两边同乘2x﹣5得x﹣5=2x﹣5,∴x=0,检验当x=0时,2x﹣5≠0,∴原方程的根为x=0.【点评】此题主要考查了分式方程的解法,解题的关键去掉分母使分式方程变为整式方程即可解决问题.21.(8分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?【考点】8A:一元一次方程的应用.【分析】设原来全厂共有4x人.依据“女工与全厂人数的比是2:3,”列出方程,并解答.【解答】解:设原来全厂共有4x人.依题意得(3x+60):(4x+60×2)=2:3,9x+180=8x+240,9x﹣8x=240﹣180,4x=240.答:原来全厂共有240人.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(10分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【考点】8A:一元一次方程的应用;B7:分式方程的应用.【分析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.【解答】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x 天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.【点评】本题考查了分式方程的应用,解题的关键是从实际问题中整理出等量关系并利用等量关系求解.23.(10分)有这样一道题:“计算÷﹣x的值,其中x=2008”甲同学把“x=2008”错抄成“x=2080”,但他的计算结果也正确,你说这是怎么回事?于是甲同学认为无论x取何值代数式的值都不变,你说对吗?【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,根据化简结果即可得出结论.【解答】解:对.∵原式=•﹣x=x﹣x=0,∴把x=2008错抄成x=2080,他的计算结果也正确.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.变为原来的 倍B.变为原来的2 倍
C.不变D.变为原来的4 倍
10.计算① · ;② · ;③ ÷ ;④ ÷ 四个算式,其结果是分式的是()
A.①③B.①④C.②④D.③④
11.计算a÷a× 的结果是()
A.a B.1 C. D.a2
12.计算 ·(- )·( )的结果是()
A.- B. C.- D.-
22、 23、
14、 21、计算:
分式测试题
一、选择题48
1.代数式 中,分式有()
A、4个B、3个C、2个D、1个
2.使分式 有意义的 的取值范围是()
A. B. C. D.
3.若分式 的值为5,当 都扩大3倍后,所得分式的值为()
A. B.5C. 10D. 25
4.对于分式 的变形一定正确的是()()
二、填空题20
13.计算: =。
14.已知 ,则分式 的值为.
15.若分式 有意义,则 的取值范围是
16.当x____________时,分式 的值为正数.
17.在函数 中,自变量x的取值范围是________.
三、解答题24+28
18. 19.化简: · .
20.化简:(ab-b2)÷ .21.化简
A.零B.正数C.负数D.整数
6..下列计算中,则正确的有()
① ;② ;
③ ;④
A、1个B、2个C、3个D、4个
7.已知分式 当 , 时,值是 ,那么当 , 时,分式的值是()
A. B. C.1 D.3
8.在分式 中,最简分式有()
A、1个B、2个C、3个D、4个
9.把分式 的 和 都变为原来的 倍,那么分式的值()
相关文档
最新文档