初二数学分式练习题汇总完整版

合集下载

初二分式练习题及答案

初二分式练习题及答案

初二分式练习题及答案在初二阶段,分式是一个重要的数学概念。

掌握分式的运算方法对学生的数学学习至关重要。

下面是几道初二分式练习题及其答案,希望能帮助同学们巩固和加深对分式的理解和运用能力。

练习题一:计算下列分式的值,并将结果化简到最简形式:1. $\frac{3}{4} + \frac{5}{8}$2. $\frac{2}{3} - \frac{1}{6}$3. $\frac{3}{2} + \frac{1}{4} - \frac{1}{8}$4. $\frac{a}{2} - \frac{2a}{3}$5. $\frac{x-1}{5} - \frac{x+2}{3}$练习题二:将下列分数改写为带分数,并化简到最简形式:1. $\frac{11}{4}$2. $\frac{8}{3}$3. $\frac{12}{5}$4. $\frac{25}{6}$5. $\frac{10a}{3}$练习题三:将下列带分数改写为分数,并化简到最简形式:1. $1\frac{1}{2}$2. $2\frac{2}{3}$3. $5\frac{1}{4}$4. $3\frac{5}{6}$5. $4\frac{2a}{3}$练习题四:计算下列表达式的值,并将结果化简到最简形式:1. $\frac{2}{3} \times \frac{6}{5}$2. $\frac{3}{4} \div \frac{2}{5}$3. $\frac{1}{2} \times \frac{4}{7} \div \frac{2}{5}$4. $\frac{a}{2} \times \frac{3a}{4}$5. $\frac{x-1}{5} \times \left(\frac{x+2}{3}+\frac{3}{2}\right)$练习题五:解下列方程:1. $\frac{2x-1}{3} = \frac{x+4}{2}$2. $\frac{1}{x} + \frac{1}{2x} = \frac{3}{4}$3. $\frac{1}{2a} - \frac{1}{3a} = \frac{1}{6}$4. $\frac{3}{x-1} - \frac{1}{3} = \frac{2}{x}$5. $\frac{1}{x+2} + \frac{1}{2} = \frac{x}{2} - \frac{1}{x+2}$答案如下:练习题一:1. $\frac{13}{8}$2. $\frac{1}{2}$3. $\frac{21}{8}$4. $\frac{a}{6}$5. $\frac{-3x-3}{15}$练习题二:1. $2\frac{3}{4}$2. $2\frac{2}{3}$3. $2\frac{2}{5}$4. $4\frac{1}{6}$5. $\frac{10a}{3}$练习题三:1. $\frac{3}{2}$2. $\frac{8}{3}$3. $\frac{21}{4}$4. $\frac{23}{6}$5. $\frac{10a+8}{3}$练习题四:1. $\frac{4}{5}$2. $\frac{15}{8}$3. $\frac{2}{7}$4. $\frac{3a^2}{8}$5. $\frac{x^2+x-3}{10}$练习题五:1. $x = \frac{5}{2}$2. $x = \frac{2}{3}$3. $a = \frac{1}{4}$4. $x = \frac{5 \pm \sqrt{37}}{2}$5. 方程无解以上是初二分式练习题及答案,通过做题的过程,希望同学们能够熟练掌握分式的运算规则,提高数学解题能力。

初二数学分式练习题及答案

初二数学分式练习题及答案

初二数学分式练习题及答案分式是数学中的重要概念,也是初中数学的基础知识之一。

在初中数学学习中,分式的运算是一个关键的内容。

为了帮助同学们更好地掌握分式的运算,以下将提供一些初二数学分式练习题及答案。

一、基础练习题1. 计算下列分式的值:(1) $\frac{2}{3}+\frac{1}{6}$(2) $\frac{5}{7}-\frac{2}{7}$(3) $\frac{3}{4}\times\frac{2}{5}$(4) $\frac{6}{13}\div\frac{2}{3}$2. 按照要求变换下列分式:(1) 化简:$\frac{4x^2-2x}{2x}$(2) 分解:$\frac{5}{xy}-\frac{7}{yx}$(3) 合并:$\frac{a}{b}\times\frac{b}{c}$(4) 变形:$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$3. 求解方程:(1) $\frac{7}{10}x=\frac{35}{4}$(2) $\frac{5}{6}+\frac{x}{4}=\frac{7}{8}$(3) $\frac{3}{x}-\frac{2}{x-1}=\frac{5}{x(x-1)}$二、提高练习题1. 小明在旅行中用一辆摩托车以每小时40千米的速度行驶,计划经过$\frac{2}{5}$小时后休息10分钟,然后以每小时50千米的速度行驶到终点。

求小明旅行一段的总时间。

2. 甲,乙两个工程队共同进行一项工程,甲队完成全工程的$\frac{2}{5}$,乙队完成剩下的部分。

如果两队同时施工,还需6天可以完成全工程;如果只由甲队自行施工,需要10天完成全工程。

请问乙队自行施工需要多少天才能完成全工程?3. 甲、乙两人一起做一件工作,甲独立完成全工作需要8小时,乙独立完成全工作需要12小时。

他们两人合作完成全工作,需要多少小时?三、答案基础练习题答案:1.(1) $\frac{2}{3}+\frac{1}{6}=\frac{4}{6}+\frac{1}{6}=\frac{5}{6}$(2) $\frac{5}{7}-\frac{2}{7}=\frac{3}{7}$(3)$\frac{3}{4}\times\frac{2}{5}=\frac{3\times2}{4\times5}=\frac{3}{10}$(4)$\frac{6}{13}\div\frac{2}{3}=\frac{6}{13}\times\frac{3}{2}=\frac{6}{13 }\times\frac{3}{2}=\frac{9}{13}$2.(1) 化简:$\frac{4x^2-2x}{2x} = \frac{2x(2x-1)}{2x}=2x-1$(2) 分解:$\frac{5}{xy}-\frac{7}{yx}=\frac{5}{xy}-\frac{7}{xy}=\frac{5-7}{xy}=-\frac{2}{xy}$(3) 合并:$\frac{a}{b}\times\frac{b}{c}=\frac{a\times b}{b\timesc}=\frac{a}{c}$(4) 变形:$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$ 通过分数的通分,两边同乘以$xy$得到等式$\frac{xy}{x}+\frac{xy}{y}=x+y$,化简得到$x+y=x+y$3.(1) $\frac{7}{10}x=\frac{35}{4}$,两边同乘以$\frac{10}{7}$得到等式$x=\frac{35}{4}\times\frac{10}{7}=\frac{25}{2}$(2) $\frac{5}{6}+\frac{x}{4}=\frac{7}{8}$,先通分得到等式$\frac{10}{12}+\frac{3x}{12}=\frac{7}{8}$,化简得到$\frac{10+3x}{12}=\frac{7}{8}$,两边同乘以12得到$10+3x=12\times\frac{7}{8}$,解方程得到$x=\frac{63}{8}$(3) $\frac{3}{x}-\frac{2}{x-1}=\frac{5}{x(x-1)}$,先通分得到等式$\frac{3(x-1)-2x}{x(x-1)}=\frac{5}{x(x-1)}$,化简得到$\frac{3x-3-2x}{x(x-1)}=\frac{5}{x(x-1)}$,整理得到$\frac{x-3}{x(x-1)}=\frac{5}{x(x-1)}$,可以得到方程$x-3=5$,解方程得到$x=8$。

(完整版)初二数学《分式》练习题及答案.doc

(完整版)初二数学《分式》练习题及答案.doc

分式练习题一、选择题 (共 8 题,每题有四个选项,其中只有一项符合题意。

每题3 分,共 24 分 ):1. 下列运算正确的是 ( )A.x 10÷ x 5=x 2B.x-4· x=x -3 C.x3· x 2 =x 6 D.(2x -2 ) -3=-8x62. 一件工作 , 甲独做 a 小时完成 , 乙独做 b 小时完成 , 则甲、乙两人合作完成需要 ( )小时 .A.11 B. 1 C. a b ab 3. 化简a b 等于( )1aba b D.a ba b a bA.a 2b 2 B.(a b) 2 C.a 2b 2D.( a b)2a 2b 2a 2b 2a 2b 2a 2b 24. 若分式x 2 4的值为零 , 则 x 的值是 ( )x 2x 2A.2 或 -2B.2C.-2D.42x 5 y5. 不改变分式2 x 2 的值 , 把分子、分母中各项系数化为整数 ,结果是()y 3A.2 x15 yB.4 x5 y C.6x 15 y D. 12x 15 y4x y2 x3 y4 x 2 y 4 x 6 y6. 分式 : ①a2 , ② ab , ③ 4a , ④ 1 中, 最简分式有 ( )a 23a 2b 2 12( a b) x 2A.1 个B.2个C.3 个D.4个7. 计算x x x x4x 的结果是 ( )2 2 2 xA. -1 B.1 C.-1D.12x 2x8. 若关于 x 的方程xac有解 , 则必须满足条件 ( )b x dA. a ≠ b ,c ≠ dB. a ≠b , c ≠ -dC.a ≠ -b , c≠d C.a ≠-b , c≠-d9. 若关于 x 的方程 ax=3x-5 有负数解 , 则 a 的取值范围是 ( )A.a<3B.a>3C.a≥ 3D.a≤ 310. 解分式方程2 3 6x 1 x 1 x 2, 分以下四步 , 其中 , 错误的一步是 ( )1A. 方程两边分式的最简公分母是 (x-1)(x+1)B. 方程两边都乘以 (x-1)(x+1), 得整式方程 2(x-1)+3(x+1)=6C. 解这个整式方程 , 得 x=1D. 原方程的解为 x=1二、填空题 : ( 每小题 4 分, 共 20分)11. 把下列有理式中是分式的代号填在横线上.(1) - 3x ;(2) x ;(3) 2 x 2 y 7xy 2;(4) - 1x ;(5)5 ; (6) x 21 ;(7) - m2 1 ; (8) 3m 2 .y38y 3x 1 0.512. 当 a时,分式a1有意义.2a313. 若 x= 2 -1, 则 x+x -1 =__________.14. 某农场原计划用 m 天完成 A 公顷的播种任务 , 如果要提前 a 天结束 , 那么平均每天比原计划要多播种 _________公顷 .115. 计算 ( 1)21 5 (2004) 0 的结果是 _________.216. 已知 u=s 1 s 2(u ≠ 0), 则 t=___________.t1xm17. 当 m=______时 , 方程2 会产生增根 .x 3 x 318. 用科学记数法表示 :12.5 毫克 =________吨 .19. 当 x 时,分式3 x的值为负数.2 x20. 计算 (x+y) ·x 2 y 2x 2 y 2=____________.y x三、计算题 : ( 每小题 6 分, 共 12分)36x 5xy 2x 4 yx 221.;22.yx 2 .x 1 x x2xx y x y x 4 4 y 2四、解方程 :(6 分 )23.1 2 12 。

初二分式乘除练习题50道

初二分式乘除练习题50道

初二分式乘除练习题50道1. 计算下列分式的乘积:a) $\frac{2}{3} \times \frac{4}{5}$b) $\frac{3}{4} \times \frac{5}{6}$c) $\frac{1}{2} \times \frac{3}{4}$d) $\frac{5}{6} \times \frac{7}{8}$e) $\frac{2}{5} \times \frac{3}{7}$2. 计算下列分式的商:a) $\frac{2}{3} ÷ \frac{4}{5}$b) $\frac{3}{4} ÷ \frac{5}{6}$c) $\frac{1}{2} ÷ \frac{3}{4}$d) $\frac{5}{6} ÷ \frac{7}{8}$e) $\frac{2}{5} ÷ \frac{3}{7}$3. 计算下列分式的乘积或商:a) $\frac{2}{3} \times \frac{4}{5} ÷ \frac{1}{2}$b) $\frac{3}{4} ÷ \frac{5}{6} \times \frac{4}{5}$c) $\frac{1}{2} \times \frac{3}{4} \div \frac{2}{3}$d) $\frac{5}{6} \div \frac{7}{8} \times \frac{6}{7}$e) $\frac{2}{5} \times \frac{3}{7} \div \frac{4}{5}$4. 将下列分式化简,使分母为正数:a) $\frac{-2}{3}$b) $\frac{3}{-4}$c) $\frac{-5}{-6}$d) $\frac{4}{-7}$e) $\frac{-6}{8}$5. 计算下列表达式的值:a) $3 \times \left(\frac{2}{5} - \frac{1}{3}\right)$b) $\frac{2}{9} + \frac{3}{7} - \frac{5}{21}$c) $\frac{3}{4} \div \left(\frac{2}{5} + \frac{1}{3}\right)$d) $\left(\frac{4}{5} + \frac{1}{6}\right) \div \left(\frac{2}{3} -\frac{1}{4}\right)$e) $\frac{2}{3} \times \left(\frac{3}{4} - \frac{1}{6}\right) +\frac{1}{2}$6. 用分式表示下列问题,并计算:a) Tom做了$\frac{2}{5}$小时的作业,占他学习时间的$\frac{3}{4}$,他学习了多久?b) 如果$\frac{1}{8}$块蛋糕可以给一个人吃,那么12个人可以吃多少块蛋糕?c) 一个学生做数学作业花费$\frac{4}{9}$小时,然后又花费$\frac{5}{8}$小时做英语作业,一共花了多久?d) $\frac{3}{4}$米绳子被剪成了$\frac{2}{3}$米和剩下的部分,剩下的部分有多长?e) 如果一个邮箱的容量是$\frac{7}{10}$倍于另一个邮箱,容量较大的邮箱可以放几个较小邮箱的邮件?7. 将下列百分数转换为分数或小数:a) $50\%$b) $75\%$c) $25\%$d) $20\%$e) $80\%$8. 将下列分数转换为百分数或小数:a) $\frac{3}{5}$b) $\frac{2}{10}$c) $\frac{1}{4}$d) $\frac{3}{8}$e) $\frac{5}{6}$9. 在下列方程中解出未知数的值:b) $\frac{5}{2}y + \frac{1}{4} = \frac{11}{4}$c) $\frac{1}{3}z - \frac{4}{5} = -\frac{11}{15}$d) $\frac{3}{4}w + \frac{2}{3} = \frac{17}{12}$e) $4a - \frac{1}{5} = 5$10. 解下列方程组,给出未知数的值:a)$\begin{cases}2x - y = 5 \\x + 3y = 1\end{cases}$b)$\begin{cases}3x - 2y = 8 \\2x + y = 4\end{cases}$c)$\begin{cases}5x - 4y = 6 \\\end{cases}$d)$\begin{cases}\frac{x}{2} - \frac{y}{3} = 1 \\\frac{x}{4} + \frac{y}{5} = \frac{3}{10}\end{cases}$e)$\begin{cases}2x + 3y = 7 \\4x - 5y = 1\end{cases}$通过以上50道分式乘除练习题,相信你对初二阶段的分式乘除运算有了更深入的理解。

初二50道分式方程练习题

初二50道分式方程练习题

初二50道分式方程练习题1. 解方程:(3x + 2)/(5 - x) = 7/92. 解方程:(2x - 1)/(x + 3) = 4/53. 解方程:(5x + 1)/(2x - 3) = 3/44. 解方程:(4 - 2x)/(7x + 1) = 2/35. 解方程:(3x - 4)/(4 - x) = 2/56. 解方程:(x + 1)/(2x - 3) = 5/87. 解方程:(3x - 2)/(x + 5) = 1/28. 解方程:(2x - 5)/(x + 1) = 3/49. 解方程:(4x - 3)/(7x + 2) = 2/510. 解方程:(3x + 1)/(2 - x) = 7/911. 解方程:(5x - 4)/(3x - 2) = 1/212. 解方程:(x - 2)/(4x + 3) = 3/513. 解方程:(3 - 4x)/(5x + 2) = 2/714. 解方程:(2x - 3)/(x + 4) = 1/215. 解方程:(4x + 1)/(3 - 2x) = 5/716. 解方程:(9 - 2x)/(6x - 1) = 3/418. 解方程:(3x + 4)/(5 + x) = 1/319. 解方程:(2x - 5)/(3x + 1) = 4/920. 解方程:(4x + 3)/(7 - x) = 2/521. 解方程:(7x - 1)/(x - 3) = 5/922. 解方程:(3x + 2)/(4 - 2x) = 1/323. 解方程:(x - 1)/(2x + 3) = 2/524. 解方程:(4 - 3x)/(x + 2) = 1/425. 解方程:(5x + 1)/(3x - 4) = 7/826. 解方程:(3 - 5x)/(x + 2) = 2/327. 解方程:(2x + 1)/(3 - 4x) = 1/528. 解方程:(4 - 3x)/(2 + x) = 5/729. 解方程:(5x + 2)/(7x - 3) = 3/430. 解方程:(3x - 2)/(5x + 1) = 5/731. 解方程:(6 - 2x)/(5x - 3) = 1/232. 解方程:(3x + 2)/(2 - 4x) = 1/733. 解方程:(x - 3)/(4x - 1) = 3/535. 解方程:(2x + 1)/(3 - 5x) = 7/836. 解方程:(4 - 2x)/(3x + 1) = 3/537. 解方程:(3x - 1)/(2x + 5) = 1/238. 解方程:(2x + 3)/(x - 4) = 7/939. 解方程:(3 - 2x)/(x + 3) = 4/540. 解方程:(4x - 1)/(2x + 3) = 3/441. 解方程:(5 - 3x)/(x + 4) = 2/542. 解方程:(2x + 1)/(5x - 2) = 3/743. 解方程:(3x - 2)/(4x + 1) = 1/344. 解方程:(x + 3)/(2 - 3x) = 2/545. 解方程:(5x - 1)/(2x + 3) = 4/946. 解方程:(4 - 3x)/(3x - 2) = 1/247. 解方程:(2x - 1)/(7x + 3) = 5/948. 解方程:(3x + 4)/(5 - x) = 7/849. 解方程:(x + 2)/(3x - 5) = 4/750. 解方程:(5x - 2)/(4 + 3x) = 1/2以上是初二50道分式方程练习题,请根据题目逐一解答,求出每道题的x值。

初二分式考试题及答案

初二分式考试题及答案

初二分式考试题及答案一、选择题(每题3分,共30分)1. 下列分式中,分母为零的分式是()A. \frac{2}{x-1}B. \frac{3}{x+2}C. \frac{4}{0}D.\frac{5}{x}2. 计算分式 \frac{1}{x} + \frac{1}{y} 的结果为()A. \frac{y+x}{xy}B. \frac{x+y}{x}C. \frac{x+y}{xy}D.\frac{y-x}{xy}3. 若分式 \frac{2}{x} = \frac{3}{y},则x与y的关系是()A. x = \frac{2}{3}yB. x = 3yC. y = \frac{2}{3}xD. y = 3x4. 将分式 \frac{a+b}{c+d} 化简为最简形式,正确的做法是()A. 直接约分B. 先通分再约分C. 先约分再通分D. 不能约分5. 已知 \frac{1}{x} + \frac{1}{y} = \frac{1}{2},求\frac{2x+2y}{x+y} 的值是()A. 2B. 4C. 6D. 86. 计算分式 \frac{3x-2}{2x+1} \cdot \frac{2x-1}{3x+2} 的结果为()A. \frac{1}{2}B. \frac{1}{3}C. \frac{1}{4}D. \frac{1}{5}7. 将分式 \frac{a^2-1}{a^2-2a+1} 化简,正确的结果为()A. \frac{a+1}{a-1}B. \frac{a-1}{a+1}C. \frac{a+1}{a}D. \frac{a-1}{a}8. 已知 \frac{2}{x} + \frac{3}{y} = 5,求 \frac{x+y}{xy} 的值是()A. \frac{1}{5}B. \frac{1}{10}C. \frac{1}{15}D. \frac{1}{20}9. 计算分式 \frac{1}{x-1} - \frac{1}{x+1} 的结果为()A. \frac{2}{x^2-1}B. \frac{2}{x^2+1}C. \frac{2x}{x^2-1}D.\frac{2x}{x^2+1}10. 将分式 \frac{x^2-1}{x^2-4} 化简,正确的结果为()A. \frac{x+1}{x-2}B. \frac{x-1}{x-2}C. \frac{x+1}{x+2}D.\frac{x-1}{x+2}二、填空题(每题4分,共20分)1. 计算 \frac{2x}{3} \div \frac{x}{2} 的结果为\frac{4x}{3} 。

初二分式练习题及答案

初二分式练习题及答案

初二分式练习题及答案初二分式练习题及答案初二是学生们学习生涯中的一个重要阶段,也是他们逐渐进入高中阶段的过渡期。

为了帮助初二学生提高数学能力,下面将提供一些分式练习题及答案。

练习题一:1. 计算:$\frac{2}{3} + \frac{3}{4}$。

2. 计算:$\frac{5}{6} - \frac{1}{3}$。

3. 计算:$\frac{2}{5} \times \frac{3}{4}$。

4. 计算:$\frac{7}{8} \div \frac{2}{3}$。

5. 计算:$\frac{2}{3} + \frac{4}{5} - \frac{1}{2}$。

答案一:1. $\frac{17}{12}$2. $\frac{1}{2}$3. $\frac{3}{10}$4. $\frac{21}{16}$5. $\frac{11}{30}$练习题二:1. 计算:$\frac{3}{5} + \frac{2}{7}$。

2. 计算:$\frac{1}{2} - \frac{1}{4}$。

3. 计算:$\frac{2}{3} \times \frac{3}{4}$。

4. 计算:$\frac{5}{6} \div \frac{2}{3}$。

5. 计算:$\frac{1}{2} + \frac{3}{4} - \frac{1}{3}$。

答案二:1. $\frac{29}{35}$2. $\frac{1}{4}$3. $\frac{1}{2}$4. $\frac{5}{4}$5. $\frac{7}{12}$练习题三:1. 计算:$\frac{4}{5} + \frac{3}{8}$。

2. 计算:$\frac{2}{3} - \frac{1}{6}$。

3. 计算:$\frac{1}{4} \times \frac{3}{5}$。

4. 计算:$\frac{5}{6} \div \frac{1}{2}$。

5. 计算:$\frac{2}{3} + \frac{1}{4} - \frac{1}{6}$。

初二数学分式方程练习题(含答案)

初二数学分式方程练习题(含答案)

分式方程精华练习题(含答案)(一)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程xx x -=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14B.21280280++x x =14 C.21140140++x x =14D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-19.如果,0,1≠≠=b b a x 那么=+-ba b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二、填空题(每小题3分,共30分)11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x=________时,分式x x ++51的值等于21. 13.分式方程0222=--x x x 的增根是. 14. 一汽车从甲地开往乙地,每小时行驶v1千米,t 小时可到达,如果每小时多行驶v2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为.16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是.19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程.三、解答题(共5大题,共60分)21. .解下列方程 (1)x x x --=+-34231(2)2123442+-=-++-x x x x x (3)21124x x x -=--. 22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C9.B ,10.D ;二、11.0;12.3,13.2=x ;14.212v v t v +;15.3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20.()240024008120%x x-=+; 三、21.(1)无解(2)x= -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x2-4)=1, 化简,得2x=-3,x=32- 经检验,x=32-是原方程的根. 22.6天,24.解;5=x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学分式练习题汇

HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
分式及分式方程(补充)
一、选择题
1、在x 1、21、212+x 、πxy 3、y x +3、m
a 1
+中分式的个
数有( )
A 、2个
B 、3个
C 、4个
D 、5个 2、要使分式
1
(1)(2)
x x x ++-有意义,则x 应满足 ( )
A .x ≠-1
B .x ≠2
C .x ≠±1
D .x ≠-1且x ≠2 3、下列约分正确的是( )
A 、326x x
x =; B 、
0=++y x y
x ; C 、x xy x y x 12=++; D 、21
422
2=y x xy 4、如果把分式
y
x xy
+中的x 和y 都扩大2倍,则分式的值( )
A 、扩大4倍;
B 、扩大2倍;
C 、不变;
D 缩小2倍
5、化简2
293m
m
m --的结果是( ) A 、
3+m m B 、3+-m m C 、3
-m m
D 、m m
-3
6、下列分式中,最简分式是 ( ) A.a b b a -- B.22x y x y ++ C.242x x -- D.4422+++a a a
7、根据分式的基本性质,分式b a a
--可变形为( ) (A )b a a -- (B )b a a + (C )b a a
--
(D )
b a a +-
8、对分式
2y
x ,23x y
,14xy 通分时, 最
( )
A .24x 2y 2
B .12x2y2 C.24xy29、下列式子(1)
y
x y x y x -=--1
22;(
(3)1-=--b
a a
b ;(4)
x x y x y x +
-
=
--+-( )
A 、1个
B 、2 个
C 、 310、x-y (x ≠y )的倒数的相反数 ( A .-
1x y + B .y x --1 C .x -
1二、填空题(每题3分,共30分)
11、当x 时,分式5
1
-x 有意义
12、当x 时,分式1
1
x 2+-x 的值为
13、1x-y
当x=,y=1时,分式的值为2xy-1
_
14、计算:
y x y x y x ⎛⎫
÷⋅- ⎪⎝⎭
= 15、用科学计数法表示:— =
16、如果
32
=b a ,那么=+b a a
____ 。

17、若
541
45=----x
x x 有增根,则增根18、20080-22+113-⎛⎫ ⎪⎝⎭=
19、方程
x
x 5
27=-的解是 20、某工厂库存原材料x 吨,原计划每
每天少用b 吨,则可以多用 三、解答题
21、计算题(1)1
12
---a a a
(2)
x
x x x x x +-÷-+-22
2
1
112 22、(8分)先化简,再求值:11112
-÷⎪⎭⎫ ⎝

-+x x x ,其中:x=-2
23、解方程
(1)23
3x x =-
(2)
()()
3
1121
x
x x x =
--+- 24、中学2班和3班的学生去河边抬砂到校园内铺路,经统计发现:162班比163班每小时多抬30kg ,162班抬900kg 所用的时间和163班抬600kg 所用的时间相等,两个班长每小时分别抬多少砂?
25、已知y=1
23x x
--,x 取哪些值时:
(1)y 的值是零; (2)分式无意义; (3)y 的值是正数; (4)y 的值是负数.
第16章 分式参考答案
(第一次统测试卷)
11. x ≠5 12. x=1 13. 1
14. 3
3y x
-
15. ⨯410-
16. 25
17. x=4 18. 0 19. x=-5
20.
x
a b - 三、解答题。

相关文档
最新文档