(完整)初二数学分式典型例题复习和考点总结,推荐文档
(完整版)初中数学分式章节知识点及典型例题解析

分式的知识点及典型例题分析1、分式的定义:例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2—a 2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +。
(2)下列式子,哪些是分式?5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145b-+。
2、分式有,无意义,总有意义:(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义. 例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )A .122+x x B 。
12+x x C 。
133+x x D 。
25xx - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x 的值为( )A. 2 B 。
—1或—3 C 。
-1 D 。
3同步练习题:3、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去.例1:当x 时,分式121+-a a的值为0 例2:当x 时,分式112+-x x 的值为0例3:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B 。
(完整版)八年级上册《分式》知识点归纳与总结,推荐文档

八年级上册《分式》知识点归纳与总结主讲 王老师一、分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。
二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B 0≠)⑦分式值为-1:分子分母值互为相反数(A+B=0,0B ≠)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ••=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。
3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
八年级 分式知识点总结及复习

八年级 分式知识点总结及复习知识点一:分式的定义一般地;如果A ;B 表示两个整数;并且B 中含有字母;那么式子BA 叫做分式;A 为分子;B 为分母。
知识点二:与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)经典例题1、代数式14x-是( ) A.单项式 B.多项式 C.分式 D.整式 2、在2x ;1()3x y +;3ππ-;5a x -;24x y -中;分式的个数为( ) A.1 B.2 C.3 D.4 3、总价9元的甲种糖果和总价是9元的乙种糖果混合;混合后所得的糖果每千克比甲种 糖果便宜1元;比乙种糖果贵0.5元;设乙种糖果每千克x 元;因此;甲种糖果每千克 元;总价9元的甲种糖果的质量为 千克.4、当a 是任何有理数时;下列式子中一定有意义的是( )A.1a a + B.21a a + C.211a a ++ D.211a a +- 5、当1x =时;分式①11x x +-;②122x x --;③211x x --;④311x +中;有意义的是( ) A.①③④ B.③④ C.②④ D.④6、当1a =-时;分式211a a +-( )A.等于0 B.等于1 C.等于-1 D.无意义 7、使分式8483x x +-的值为0;则x 等于( ) A.38 B.12- C.83 D.12 8、若分式2212x x x -+-的值为0;则x 的值是( ) A.1或-1 B.1 C.-1 D.-2 9、当x 时;分式11x x +-的值为正数. 10、当x 时;分式11x x +-的值为负数. 11、当x = 时;分式132x x +-的值为1.12、分式1111x ++有意义的条件是( ) A.0x ≠ B.1x ≠-且0x ≠ C.2x ≠-且0x ≠ D.1x ≠-且2x ≠-13、如果分式33x x --的值为1;则x 的值为( ) A.0x ≥ B.3x > C.0x ≥且3x ≠ D.3x ≠14、下列命题中;正确的有( )①A 、B 为两个整式;则式子A B 叫分式; ②m 为任何实数时;分式13m m -+有意义; ③分式2116x -有意义的条件是4x ≠; ④整式和分式统称为有理数. A.1个 B .2个 C.3个 D.4个15、在分式222x ax x x ++-中a 为常数;当x 为何值时;该分式有意义?当x 为何值时;该分 式的值为0?知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式;分式的值不变。
人教版八年级数学分式知识点和典型例题(最新整理)

a● ÷ 第十六章分式知识点和典型例习题【知识网络】【思想方法】1. 转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.2. 建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题— ——分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义.3. 类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2. 与分式运算有关的运算法则3. 分式的化简求值(通分与约分)4. 幂的运算法则【主要公式】1.同分母加减法则: b ± c = b ± c(a ≠ 0)aa ab d bcda bc ± da 2. 异分母加减法则:± = ± = a c ac ac ac(a ≠ 0, c ≠ 0) ; 3. 分式的乘法与除法: b • d =bd a c ac , b ÷ c = b • d = bda d a c ac4. 同底数幂的加减运算法则:实际是合并同类项5. 同底数幂的乘法与除法;ama n =a m+n ; a ma n =a m -n6. 积的乘方与幂的乘方:(ab)m= amb n , (a m )n = mn7. 负指数幂: a -p = 1a pa 0=1a -b a + b 8. 乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义【例 1】下列代数式中: x , 1x - y , , 2 题型二:考查分式有意义的条件【例 2】当 x 有何值时,下列分式有意义x 2 - y 2 x + y1 , x + y ,是分式的有:.x - y(1)x - 4 x + 4(2) 3xx 2 + 2(3) 2x 2 - 1 (4) 6 - x | x | -3(5) 1x - 1x题型三:考查分式的值为 0 的条件【例 3】当 x 取何值时,下列分式的值为 0.(1)x - 1 x + 3(2)| x | -2 x 2 - 4x 2 - 2x - 3(3)x 2 - 5x - 6题型四:考查分式的值为正、负的条件 【例 4】(1)当 x 为何值时,分式 4为正;(2)当 x 为何值时,分式8 - x 5 - x 3 + (x - 1)2为负;练习:(3) 当 x 为何值时,分式 x - 2 为非负数.x + 31. 当 x 取何值时,下列分式有意义:(1)1 6 | x | -3(2)3 - x(x + 1)2+ 1(3)1 1 + 1x2. 当 x 为何值时,下列分式的值为零:(1)5- | x - 1 | x + 425 - x 2(2) x 2- 6x + 53. 解下列不等式 (1)| x | -2 ≤ 0x + 1(2)x + 5> 0x 2 + 2x + 3(二)分式的基本性质及有关题型1. 分式的基本性质: A=A ⨯ M =A ÷ MBB ⨯ M B ÷ M2. 分式的变号法则:-a= --a= - a = a- b + b - b b题型一:化分数系数、小数系数为整数系数【例 1】不改变分式的值,把分子、分母的系数化为整数.1x - 2 y (1) 2 3 1 x + 1 y (2)0.2a - 0.03b0.04 a + b3 4题型二:分数的系数变号【例 2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)-x + y - x - y题型三:化简求值题(2) --aa - b(3) --a- b【例 3】已知: 1 + 1 = 5 ,求 2x - 3xy + 2 y的值.x y x + 2xy + y提示:整体代入,① x + y = 3xy ,②转化出 1 + 1 .【例 4】已知: x - 1 = 2 ,求 x 2+ 1 x x 2xy 的值.【例 5】若| x - y + 1 | +(2x - 3) 2= 0 ,求 练习:14x - 2 y的值.1. 不改变分式的值,把下列分式的分子、分母的系数化为整数.0.4a + 3 b(1)0.03x - 0.2 y 0.08x + 0.5 y(2) 5 1 a - 1 b 4 101x 22. 已知: x +x = 3 ,求 的值.x 4 + x 2 + 13.已知: 1 - 1 = 3 ,求 2a + 3ab - 2b的值.a b b - ab - a4.若 a 2 + 2a + b 2 - 6b + 10 = 0 ,求 2a - b 3a + 5b的值.5.如果1 < x < 2 ,试化简| x - 2 | - x - 1 + | x | .2 - x | x - 1 | x(三)分式的运算1. 确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2. 确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例 1】将下列各式分别通分.(1) c - 2ab , b , 3a 2c a- 5b 2c; (2)a , a -b b ;2b - 2a(1)(3) 1 x 2 - x , x 1 - 2x + x 2 , 2 x 2 - x - 2;(4) a + 2,1 2 - a题型二:约分【例 2】约分:(1) - 16x 2 y20xy 3;(3) n 2 - m 2m - n x 2 + x - 2 ;(3) x 2 - x - 6.题型三:分式的混合运算【例 3】计算:(1) ( a 2b 3 - c ) c 2 2 (- ab ) ÷ ( bc ) 4 a; (2) (3a 3 3 x + y ) ⋅ (x 2 - y 2 ) ÷ ( y - x ) 2 ; y + xm + 2n +n - 2ma 2- -(3) ;(4) a 1 ;(5) n - m 1 - m - n 1 - n - m 2x - 4x 38x 7;a - 1(6) 1 - x 1 + x 1 1 + x 2 + 1 1 + x 4 + 1 + x 81 ;(x - 1)(x + 1) (x + 1)(x + 3) (x + 3)(x + 5)(7) ( x 2 - 4 - x 2 - 4x + 4 1 x - 2) ⋅ ( x 2 - 2xx + 1 )题型四:化简求值题【例 4】先化简后求值(1)已知: x = -1 ,求分子1 -8[( x 2 - 4x 2 + 4 4x- 1) ÷ ( 1 - 21)] 的值;x (2)已知: x = y = z,求xy + 2 yz - 3xz的值;234x 2 + y 2 + z 2(3)已知: a 2 - 3a + 1 = 0 ,试求(a 2 -题型五:求待定字母的值1 )(a - 1) 的值. a2 a 【例 5】若1 - 3x= x 2 - 1 M + x + 1 N x - 1,试求 M , N 的值.练习:1. 计算⋅ -2a + 5 -a - 1 + 2a - 3a 2 -b 2 - 2ab(1); (2) ;2(a + 1) 2(a + 1) 2(a + 1)a -b b - aa -b +c - a - 2b + 3c +b - 2c2b 2a -(3) ;(4) b + ;a +b -c b - c + a c - a - ba +b (5) (a - b + 4ab )(a + b - 4ab) ;(6) 1 + 1 + 2;(7)a -b 1 - a + b2 + 1 - x 1 .1 + x 1 + x 2(x - 2)(x - 3) (x - 1)(x - 3) (x - 1)(x - 2)2. 先化简后求值(1) a - 1 ⋅ a + 2 a 2 - 4 ÷ a 2 - 2a + 1 1a 2 - 1,其中 a 满足 a 2- a = 0 .(2)已知 x : y = 2 : 3 ,求(x 2- y 2xy ) ÷[(x + y ) ⋅ (x - y x )3] ÷ x y 2的值.3. 已知: 5x - 4 = (x - 1)(2x - 1) A - x - 1B 2x - 1,试求 A 、 B 的值.4. 当 a 为何整数时,代数式399a + 805 的值是整数,并求出这个整数值.a + 2(四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例 1】计算:(1) (a -2 ) -3⋅ (bc -1)3(2) (3x 3 y 2 z -1) -2 ⋅ (5xy -2 z 3 ) 2(a + b ) -3 (a - b )5 2(3)[(a - b ) -2 (a + b ) 4 ](4)[(x + y )3⋅ (x - y ) -2 ]2⋅ (x + y ) -6题型二:化简求值题【例 2】已知 x + x -1 = 5 ,求(1) x 2 + x -2 的值;(2)求 x 4 + x -4 的值.题型三:科学记数法的计算【例 3】计算:(1) (3 ⨯10-3 ) ⨯ (8.2 ⨯10-2 ) 2 ;(2) (4 ⨯10-3 ) 2 ÷ (2 ⨯10-2 )3 .练习:1.计算:(1) (1 - 1 ) ⋅ ( 1 ) -2 ÷ | - 1 | +(1 -3)0 + (-0.25) 2007 ⋅ 42008 3 553(2) (3-1 m 3 n -2 ) -2 ⋅ (m -2 n ) -3(2ab 2 ) -2 ⋅ (a 2b ) 2 (3)(3a 3b 2 ) ⋅ (ab 3 ) -2[4(x -y) 2 (x +y) -2 ]2(4)[2(x +y) -1 (x -y)]-22.已知x 2- 5x + 1 = 0 ,求(1)x +x -1,(2)x 2+x -2的值.第二讲分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程(1)1=3;(2)2-1= 0 ;(3)x + 1-4= 1 ;(4)5 +x=x + 5 x -1 x x - 3 x x - 1 x 2-1x + 3 4 -x提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程(1)x+4x + 4= 4 ;(2)x + 7+x + 9=x + 10+x + 6 x + 1 x x + 6 x + 8 x + 9 x + 5提示:(1)换元法,设x=y ;(2)裂项法,x + 7=1 +1.【例3】解下列方程组x + 1 x + 6 x + 6⎧1+1=1(1)⎪⎪⎪ 1+1=1 (2)⎨⎪ ⎪1+1=1 (3)⎪⎩题型三:求待定字母的值【例4】若关于x 的分式方程 2x - 3 =1 -mx - 3有增根,求m 的值.【例5】若分式方程2x +a=-1 的解是正数,求 a 的取值范围. x - 2提示: x =2 -a> 0 且 x ≠ 2 ,∴a < 2 且 a ≠-4 . 3x y z y 2 z 3 x 4题型四:解含有字母系数的方程【例6】解关于x 的方程x -a=c(c +d ≠ 0)b -x d提示:(1)a, b, c, d 是已知数;(2)c +d ≠ 0 . 题型五:列分式方程解应用题练习:1.解下列方程:(1)x - 1+x + 12x1 -2x= 0 ;(2)xx - 3- 2 =4;x - 3(3 2x-3= 2 7 3 7 -x 2);(4)-=1 +x + 2 x - 2 x 2+x x -x 2x 2- 1(5)5x - 4=2x + 5-1 (6) 1 + 1 = 1 +12x - 4 3x - 2 2 x +1 x + 5 x + 2 x + 4(7)x+x - 9=x + 1+x - 8x - 2 x - 7 x -1 x - 62.解关于x 的方程:(1)1=1+2(b ≠ 2a) ;(2)1+a=1+b(a ≠b) .a xb a x b x3.如果解关于x 的方程kx - 2+ 2 =xx - 2会产生增根,求k 的值.4.当k 为何值时,关于x 的方程x + 3=x + 2k(x -1)(x + 2)+1 的解为非负数.5.已知关于x 的分式方程2a + 1=a 无解,试求a 的值.x + 1(二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:一、交叉相乘法例1.解方程:1=x3x + 2二、化归法例2.解方程:三、左边通分法1-x - 12= 0x 2- 1例3:解方程:x - 8-x - 71= 87 -x四、分子对等法例 4.解方程:1+a=1+b(a ≠b)a xb x五、观察比较法例 5.解方程: 4x+ 5x - 2 = 175x - 2 4x 4六、分离常数法例 6.解方程:x + 1 + x + 8 = x + 2 +x + 7七、分组通分法例 7.解方程: x + 2 1 + x + 2 x + 9 1 = x + 5 x + 3 1 + x + 3 x + 81x + 4(三)分式方程求待定字母值的方法例 1.若分式方程 x - 1= x - 2 m 2 - x无解,求 m 的值。
分式知识点及典型例题

分式知识点及典型例题一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分母 B 的值不能为零,如果 B 的值为零,那么分式就没有意义。
例如:1/x ,(x + 1)/(x 2) 都是分式,而 1/2 (分母 2 为常数,不含字母)就不是分式。
二、分式有意义的条件分式有意义的条件是分母不为零。
即对于分式 A/B,B ≠ 0 时,分式有意义。
例如:对于分式 1/(x 1) ,要使其有意义,x 1 ≠ 0 ,解得x ≠ 1 。
三、分式的值为零的条件分式的值为零需要同时满足两个条件:分子为零,分母不为零。
即当 A = 0 且B ≠ 0 时,分式 A/B 的值为零。
例如:若分式(x 2)/(x + 2)的值为零,则 x 2 = 0 且 x +2 ≠ 0 ,解得 x = 2 。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
即:A/B =(A×C)/(B×C) ,A/B =(A÷C)/(B÷C)(C 为不等于零的整式)例如:化简分式 2a/(3b) ,可以将分子分母同时乘以 2 ,得到 4a/(6b) ;或者将分子分母同时除以 a ,得到 2/(3b/a) 。
五、约分把一个分式的分子与分母的公因式约去,叫做分式的约分。
约分的关键是确定分式中分子与分母的公因式。
确定公因式的方法:1、如果分子分母都是单项式,先找出系数的最大公因数,再找相同字母的最低次幂。
2、如果分子分母是多项式,先因式分解,再找公因式。
例如:约分(2x + 2)/(x²+ 2x + 1) ,先将分子因式分解为 2(x + 1) ,分母因式分解为(x + 1)²,然后约去公因式 x + 1 ,得到 2/(x + 1) 。
六、通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
初二数学分式典型例题复习和考点总结

第十六章分式知识点和典型例习题【知识网络】【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd ac ac •=,b c b d bda d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n, (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义(一)分式的概念: 形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件:1、分母中字母的取值不能使分母值为零,否则分式无意义2、当分子为零且分母不为零时,分式值为零。
分式典型知识点与例题总结

人教版八年级下册分式全章 知识点和典型例习题 知识点回顾知识点一:分式形如 的式子叫做分式 。
知识点二:分式B A 的值1.当 时,分式有意义;2.当 时,分式无意义;3.当 时,分式的值为0;4.当 时,分式的值为1;5.当 时, 分式的值为正;6.当 时,分式的值为负; 知识点三:分式的基本性质用式子表示 知识点四:分式中的符号法则用式子表示 知识点五: 分式的约分 约去分子、分母的最大公因式,使分式变成最简分式或者整式 1.最大公因式= 。
2.当分式的分子和分母为多项式时, 知识点六:分式的通分把异分母分式变成同分母分式的过程。
1.最简公分母= 。
2.当分式的分子和分母为多项式时,知识点七:分式的乘除法法则(用式子表示)乘法法则:用式子表示 除法法则: 用式子表示 知识点八:回顾因式分解总步骤:一提二套三分组1. 提公因式: 套 平方差公式: 2 . 公 完全平方和:式 完全平方差:知识点九:分式的加减法法则 加法法则:减法法则:知识点十:分式的混合运算先 再 最后再 。
知识点十一:整数指数幂七大公式1.同底数幂的乘法2.同底数幂的乘法3.幂的乘方4.积的乘方5.分式的乘方法则6.0指数幂7.负整数指数幂 知识点十二:科学计数法1.绝对值大于1数都可表示成2. 绝对值小于1数都可表示成 其中101<≤a 。
知识点十三:分式方程 1. 概念 2. 解法:①去分母:② ③知识点十四:分式方程解应用题的步骤 、 、 、 、【例题】下列有理式中是分式的有(1)-3x ;(2)yx ;(3)22732xy y x -;(4)x 81-;(5)35+y ; (6)112--x x ;(7)π12--m ; (8)5.023+m ;【练习】1、在下列各式ma m x xb a x xa,),1()3(,43,2,3222--÷++π中,是分式的有 个2.找出下列有理式中是分式的代号(1)-3x ;(2)yx ;(3)22732xyy x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7) π-12m ; (8)5.023+m .二.分式的值 【例题】 1.当a 时,分式321+-a a 有意义;2.当_____时,分式4312-+x x 无意义;3.若分式33x x --的值为零,则x = ;4.当_______时,分式534-+x x 的值为1;5.当______时,分式51+-x 的值为正;6.当______时分式142+-x 的值为负.【练习】1.①分式36122--x x 有意义,则x ;②当x_____时,分式1x x x-- 有意义;③当x ____时分式x x 2121-+有意义;④当x_____时,分式11x x +-有意义;⑤使分式9x 1x 2-+有意义的x 的取值范围是 ; 2.当x = 3时,分式bx a x +-无意义,则b ______ 3. ①若分式11x x -+的值为零,则x 的值为 ;②若分式)1x )(3x (1|x |=-+-,则x 的值为_________________; ③分式392--x x 当x __________时分式的值为0;④当x= _时,分式22943x x x --+的值为0;⑤当a=______时,分式2232a a a -++ 的值为零;4.当x __ 时,分式x -51的值为正.5.当x=_____时,分式232x x --的值为1.6.若分式231-+x x 的值为负数,则x 的取值范围是__________。
(word完整版)初二数学分式典型例题复习和考点总结,文档

第十六章分式知识点和典型例习题【知识网络】【思想方法】1.转变思想转变是一种重要的数学思想方法,应用特别广泛,运用转变思想能把复杂的问题转变为简单问题,把生疏的问题转变为熟悉问题,本章很多地方都表达了转变思想,如,分式除法、分式乘法;分式加减运算的根本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的根本思想:把分式方程转变为整式方程,从而获取分式方程的解等.2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实责问题时,第一要成立一个简单的数学模型,经过数学模型去解决实责问题,经历“实责问题———分式方程模型———求解———讲解解的合理性〞的数学化过程,领悟分式方程的模型思想,对培养经过数学建模思想解决实责问题拥有重要意义.3.类比法本章突出了类比的方法,从分数的根本性质、约分、通分及分数的运算法那么类比引出了分式的根本性质、约分、通分及分式的运算法那么,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不表达了类比思想的重要性,分式方程解法及应用也能够类比一元一次方程.第一讲分式的运算【知识要点】 1. 分式的看法以及根本性质;2.与分式运算有关的运算法那么3.分式的化简求值 ( 通分与约分 )4.幂的运算法那么【主要公式】 1. 同分母加减法那么:b c b c a0a a a2. 异分母加减法那么 :b d bc da bc daa 0, c 0 ;a c ac ac ac3. 分式的乘法与除法b d bd bc bd bd:?ac,d a?aca c a c4.同底数幂的加减运算法那么 : 实质是合并同类项5. 同底数幂的乘法与除法m n=am+n mn m-n; a●a; a÷a =a6.积的乘方与幂的乘方:(ab)m= a m b n, (a m)n=a mn7. 负指数幂 :a-p =1p a0=1a8. 乘法公式与因式分解: 平方差与完满平方式(a+b)(a-b)= a 2- b 2 ;(a±b) 2= a 2±2ab+b2〔一〕、分式定义及有关题型题型一:观察分式的定义〔一〕分式的看法:形如A(A 、B 是整式,且 B 中含有字母, B≠ 0)的式子,叫做分式.其中 A 叫做分式的分子 ,BB叫做分式的分母 .b , x2y 21【例 1】以下代数式中:x , 1 x y,a,x y ,是分式的有:.2a b x y x y题型二:观察分式有意义的条件:在分式中,分母的值不能够是零.若是分母的值是零,那么分式没有意义 .【例 2】当x有何值时,以下分式有意义〔 1〕x 4〔2〕3x〔 3〕2〔 4〕6 x〔 5〕1x 4x22x21| x | 3x1x题型三:观察分式的值为0 的条件:1、分母中字母的取值不能够使分母值为零,否那么分式没心义2、当分子为零且分母不为零时,分式值为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 分式的运算
【知识要点】1.分式的概念以及基本性质;
2.与分式运算有关的运算法则
3.分式的化简求值(通分与约分)
4.幂的运算法则
【主要公式】1.同分母加减法则: b c b c a 0
aa a
b
2.异分母加减法则:
d
bc
da
bc da a 0, c 0;
a c ac ac ac
= 6.积的乘方与幂的乘方:(ab)m= am bn , (am)n amn
a2
a2 1 4a
4
;(2)
a 2 4b 2 3ab 2
a
ab 2b
;(3)
42(x 2 x
y2)
x2 35( y x)3
1x2 y (1) 2 3
1x1 y 34
(2) 0.2a 0.03b 0.04a b
题型三:分数的系数变号
【例 2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.
(1) x y x y
(2) a ab
(3) a b
题型四:化简求值题
【例 3】已知: 1 1 5 ,求 2x 3xy 2 y 的值.
题型四:考查分式的值为正、负的条件
【例 4】(1)当 x 为何值时,分式 4 为正; 8 x
(2)当
x
为何值时,分式
5 x 3 (x 1)2
为负;
(3)当 x 为何值时,分式 x 2 为非负数. x3
练习:
1.当 x 取何值时,下列分式有意义:
(1) 1 6 | x | 3
(2) 3 x (x 1)2 1
(三)分式的乘除法
题型一:分式的乘法:
① 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.如果得到的不是最简分式,
b
应该通过约分进行化简
d
(
)
ac
② 整式和分式相乘,直接把整式和分式的分子相乘作结果的分子,分母不变。即 a c ( b
)
【例 1】 计算下列各分式:
(1)
a2 a2
4 2a 1
2.分式的变号法则: a a a a b b b b
题型一:分式化简(约分)
16x2 y3
x2 4
x y z
(1)
; (2)
; (3)在分式
20 xy 4
x2 4x 4
xyz
中,x,y,z 分别扩大到
原来的两倍,则分式大小怎么变化?
题型二:化分数系数、小数系数为整数系数 【例 1】不改变分式的值,把分子、分母的系数化为整数.
第十六章分式知识点和典型例习题
【知识网络】
3.分式的乘法与除法: b d bd , b c b d bd a c ac a d a c ac
4.同底数幂的加减运算法则:实际是合并同类项
5.同底数幂的乘法与除法;am● an =am+n; am÷ an =am-n
【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简 单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分 式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程 的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问 题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题—— —分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想, 对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分 式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些 运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.
(3) 1 1 1 x
2.当 x 为何值时,下列分式的值为零:
(1) 5 | x 1 | x4
(2)
25 x2
x2 6x
5
3.解下列不等式 (1) | x | 2 0
x 1
(本性质及有关题型
1.分式的基本性质: A A M A M B BM BM
7.负指数幂: a-p= 1
ap
a0=1
8.乘法公式与因式分解:平方差与完全平方式
(a+b)(a-b)= a2- b2 ;(a±b)2= a2±2ab+b2
(一)、分式定义及有关题型
题型一:考查分式的定义(一)分式的概念:
A 形如 (A、B 是整式,且 B 中含有字母,B≠0)的式子,叫做分式.其中 A 叫做分式的分子,B
0.4a 3 b
(2)
5
1a 1 b
4 10
2.已知: x 1 3 ,求 x2 的值.
x
x4 x2 1
3.已知: 1 1 3 ,求 2a 3ab 2b 的值.
ab
b ab a
4.若 a 2 2a b2 6b 10 0 ,求 2a b 的值. 3a 5b
5.如果1 x 2 ,试化简 | x 2 | x 1 | x | . 2 x | x 1| x
xy
x 2xy y
【例 4】已知: x 1 2 ,求 x2 1 的值.
x
x2
【例 5】若 | x y 1 | (2x 3)2 0 ,求 1 的值. 4x 2y
练习: 1.不改变分式的值,把下列分式的分子、分母的系数化为整数.
(1) 0.03x 0.2 y 0.08x 0.5y
(2) 3x (3) 2 (4) 6 x (5) 1
x2 2
x2 1
| x | 3
x 1
x
题型三:考查分式的值为 0 的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义 2、当分子为零且分母不为零时,分式值为零。
【例 3】当 x 取何值时,下列分式的值为 0.
(1) x 1 x3
(2) | x | 2 x2 4
B
叫做分式的分母.
1
【例 1】下列代数式中: x , 1 x y, a b , x2 y 2 , x y ,是分式的有:
.
2
ab x y x y
题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义.
【例 2】当 x 有何值时,下列分式有意义
(1) x 4 x4