初中数学分式章节知识点及典型例题解析[1]

合集下载

人教版八年级数学上册《分式》知识点复习及典例解析

人教版八年级数学上册《分式》知识点复习及典例解析

人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。

三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。

新人教版初中数学——分式方程-知识点归纳及典型题解析

新人教版初中数学——分式方程-知识点归纳及典型题解析

新人教版初中数学——分式方程知识点归纳及典型题解析1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.易错提醒:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.温馨提示:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤: ①设未知数; ②找等量关系; ③列分式方程; ④解分式方程;⑤检验(一验分式方程,二验实际问题); ⑥答.考向一 解分式方程分式方程的解法:①能化简的应先化简;②方程两边同乘以最简公分母,化为整式方程; ③解整式方程;④验根.典例1 解分式方程:312242x x x -=--. 【解析】去分母得:6-x =x -2, 解得:x =4,经检验x =4是分式方程的解.【名师点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 典例2 方程33122x x x-+=--的解为_______________. 【答案】1x =【解析】方程两边同乘以(2)x -,得(32)3x x -+-=-, 解得1x =,检验:1x =时,20x -≠, 所以1x =是原分式方程的解. 故填1x =.【名师点睛】分式方程的解题步骤:去分母,去括号,移项,合并同类项,系数化为1.同时应注意分式方程必须检验.1.解分式方程13211x x-=--,去分母得 A .12(1)3x --=-B .12(1)3x --=C .1223x --=-D .1223x -+=2.方程24222x x x x =-+--的解为 A .2B .2或4C .4D .无解考向二 分式方程的解(1)求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.(2)验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根;否则这个根就是原分式方程的根,若解出的根都是增根,则原方程无解. (3)如果分式本身约分了,也要代入进去检验.(4)一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.典例3 若关于x 的方程3111ax x x -=++的解为整数解,则满足条件的所有整数a 的和是 A .6B .0C .1D .9【答案】D【解析】分式方程去分母得:ax -1-x =3, 解得:x =41a -, 由分式方程的解为整数解,得到a -1=±1,a -1=±2,a -1=±4, 解得:a =2,0,3,-1,5,-3(舍去), 则满足条件的所有整数a 的和是9, 故选D .【名师点睛】此题考查了分式方程的解,熟练掌握运算法则是解本题的关键.典例4 若关于x 的分式方程121k x -=+的解为负数,则k 的取值范围为_______________. 【答案】3k <且1k ≠【解析】分式方程去分母转化为整式方程,去分母得122k x -=+,解得32x k =-,由分式方程的解为负数,可得203k -<且10x +≠,即213k -≠-,解得3k <且1k ≠.3.若关于x 的方程21111a x x -=++有增根,则a 的值为 A .-12B .12C .2D .2-4.关于x 的方程2334ax a x +=-的解为1x =,则a =A .1B .3C .-1D .-3考向三 分式方程的应用分式方程解实际问题的求解步骤:审题、设未知数、列方程、解方程、检验、写出答案,检验时要注意从方程本身和实际问题两个方面进行.典例5 某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为A .2010154x x +=+B .2010154x x -=+C .201015x x+=D .201015x x-= 【答案】A【解析】由题意可知原计划每天生产x 个零件,则实际每天生产了(4)x +个零件,实际15天共生产了(200)1x +个零件,因此根据题意可列分式方程为2010154x x +=+.故选A .典例6 元旦假期即将来临,某旅游景点超市用700元购进甲、乙两种商品260个,其中甲种商品比乙种商品少用100元,已知甲种商品单价比乙种商品单价高20%,那么乙种商品单价是A .2元B .2.5元C .3元D .5元【答案】B【解析】设乙种商品单价为x 元,则甲种商品单价为(1)20%x +元,由题易得,甲种商品花费300元,乙种商品花费400元,所以300400260120)%(x x+=+,解得 2.5x =元. 故选B .5.某单位向一所希望小学赠送1080本课外书,现用A ,B 两种不同的包装箱进行包装,单独使用B 型包装箱比单独使用A 型包装箱可少用6个;已知每个B 型包装箱比每个A 型包装箱可多装15本课外书.若设每个A 型包装箱可以装书x 本,则根据题意列得方程为A .10801080615x x =+- B .10801080615x x =-- C .10801080615x x=-+D .10801080615x x=++6.在“双十一”购物节中,某儿童品牌玩具淘宝专卖店购进了A 、B 两种玩具,其中A 类玩具的进价比B 玩具的进价每个多3元,经调查发现:用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同(1)求A 、B 的进价分别是每个多少元?(2)该玩具店共购进了A 、B 两类玩具共100个,若玩具店将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则该淘宝专卖店至少购进A 类玩具多少个?1.下列关于x 的方程: ①153x -=,②121x x =-,③()111x x x -+=,④31x a b =-中,是分式方程的有 A .4个 B .3个 C .2个D .1个2.方程2131x x 的解为 A .3x B .4x C .5xD .5x3.解分式方程11222x x x-+=-- A .2x =是方程的解 B .3x =是方程的解 C .4x =是方程的解 D .无解 4.若关于x 的方程223ax a x =-的解为x =1,则a 等于 A .0.5B .-0.5C .2D .-25.若代数式12x -和321x +的值相等,则x 的值为 A .x =-7B .x =7C .x =-5D .x =36.若关于x 的方程3111k x x=---有增根,则k 的值为 A .3 B .1 C .0D .1-7.若分式方程3211x m x x =+++无解,则m = A .1- B .3- C .0D .2-8.关于x 的方程2211x a ax x++=--的解不小于0,则a 的取值范围是 A .2a ≤且1a ≠ B .2a ≥且3a ≠ C .2a ≤D .2a ≥9.一艘船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.设船在静水中的速度为x 千米/时,则可列出的方程为A .906022x x =+-B .906022x x =-+ C .90602x x += D .60902x x+=10.若分式方程22111x m x x x x x++-=++有增根,则m 的值是A .-1或1B .-1或2C .1或2D .1或-211.已知关于x 的分式方程212x ax +=--的解为非负数,则a 的取值范围是 A .a ≤2B .a <2C .a ≤2且a ≠-4D .a <2且a ≠-412.一项工程,甲队单独做需20天完成,甲、乙合作需12天完成,则乙队单独做需多少天完成?若设乙单独做需x 天完成,则可得方程A .1112012x += B .2012x x +=1 C .111220+=xD .1112012x +=13.九年级(1)班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程得A .1501503012x x -=. B .1501503012x x +=. C .1501150212x x-=.D .1501150212x x+=. 14.整数a 满足下列两个条件,使不等式-2≤352x +<12a +1恰好只有3个整数解,使得分式方程13522ax x x x-----=1的解为整数,则所有满足条件的a 的和为 A .2B .3C .5D .615.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,施工时对“……”,设实际每天铺设管道x 米,则可得方程300030001510x x-=-.根据此情景,题中用“……”表示的缺失的条件应补为 A .每天比原计划多铺设10米,结果延期15天才完成B .每天比原计划少铺设10米,结果延期15天才完成C .每天比原计划多铺设10米,结果提前15天才完成D .每天比原计划少铺设10米,结果提前15天才完成16.某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是 A .20元B .18元C .15元D .10元17.分式方程xx 412=+的解为_______________. 18.若关于x 的分式方程33x ax x+--=2a 无解,则a 的值为__________. 19.关于x 的方程123(2)(3)x x x ax x x x ++-=-+-+的解为非正数,则a 的取值范围为__________. 20.分式72x -与2x x-的和为4,则x 的值为_______________. 21.已知x =3是方程211kx k x x---=2的解,那么k 的值为__________. 22.某物流仓储公司用A ,B 两种型号的机器人搬运物品,已知A 型机器人比B 型机器人每小时多搬运20 kg ,A 型机器人搬运1000 kg 所用时间与B 型机器人搬运800 kg 所用时间相等,设B 型机器人每小时搬运x kg 物品,列出关于x 的方程为_______________.23.解下列方程:(1)1233x x x=+--; (2)2316111x x x +=+--;(3 (4)241111x x x +=---.24.“六一”儿童节前,某玩具商店根据市场调查,用1500元购进一批儿童玩具,上市后很快脱销,接着又用2700元购进第二批,所购数量是第一批数量的1.5倍,但每套进价多了10元,求第二批玩具每套的进价是多少元?25.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元.甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?26.某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.(1)求甲、乙两种商品的进价各是多少元?(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.A .x =1B .x =-1C .x =2D .x =-2A .x =-1B .x =1C .x =2D .x =-23.解分式方程21x x -+212x-=3时,去分母化为一元一次方程,正确的是( ) A .x +2=3B .x -2=3C .x -2=3(2x -1)D .x +2=3(2x -1)A .m ≤3B .m <3C .m >-3D .m ≥-35.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .120150= D .120150=7.方程1x -+21x -=1的解是__________.8.一艘轮船在静水中的最大航速为30 km /h ,它以最大航速沿江顺流航行120 km 所用时间,与以最大航速逆流航行60 km 所用时间相同,则江水的流速为__________km /h .9.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A -B -C 横穿双向行驶车道,其中AB =BC =6米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:__________.10.解分式方程:21x-=251x-.12.端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?13.列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.14.列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.15.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.16.列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.1.【答案】A【解析】方程两边同乘以1x -得到12(1)3x --=-, 故选A . 2.【答案】C【解析】去分母得:2x =(x -2)2+4,分解因式得:(x -2)[2-(x -2)]=0, 解得:x =2或x =4,经检验x =2是增根,分式方程的解为x =4, 故选C . 3.【答案】B【解析】方程21111a x x -=++两边同时乘以(1)x +,可得211a x -=+, 因为方程21111a x x -=++有增根,所以最简公分母10x +=,即增根是1x =-, 把1x =-代入整式方程,可得12a =.故选B . 4.【答案】D【解析】把x =1代入原方程得:23314a a +=-, 去分母得,8a +12=3a -3, 解得a =-3, 故选D . 5.【答案】C【解析】设每个A 型包装箱可以装书x 本,则每个B 型包装箱可以装书(15)x +本,根据单独使用B 型包装箱比单独使用A 型包装箱可少用6个,列方程得10801080615x x=-+, 故选C .6.【解析】(1)设B 类玩具的进价为x 元,则A 类玩具的进价是(3)x +元,由题意得:9007503x x=+, 解得:15x =,经检验:15x =是原方程的解. 所以15+3=18(元).答:A 类玩具的进价是18元,B 类玩具的进价是15元.(2)设购进A 类玩具a 个,则购进B 类玩具(100)a -个,由题意得:1210(100)1080a a +-≥,解得:40a ≥,答:该淘宝专卖店至少购进A 类玩具40个.1.【答案】C【解析】关于x 的方程①153x -=,该方程分母中不含未知数,不是分式方程. 关于x 的方程②121x x =-,该方程分母中含有未知数,是分式方程. 关于x 的方程③()111x x x -+=,该方程分母中含有未知数,是分式方程.关于x 的方程④31x a b =-中,该方程分母中不含未知数,不是分式方程.综上,是分式方程的有②、③,共2个. 故选C . 2.【答案】C【解析】方程两边同乘()(31)x x +-,可得()213x x -=+,即223x x -=+,即5x =, 检验:当5x =时,1)03()(x x -≠+,所以5x =是原方程的根, 故选C . 3.【答案】D【解析】方程两边分别乘以x -2得:1-x +2(x -2)=-1, 去括号整理得:x =2, 经检验x =2是方程的增根, 故原方程无解. 故选D . 4.【答案】B【解析】把x =1代入方程223ax a x =-得:2213a a =-, 解得:a =-0.5,经检验a =-0.5是原方程的解, 故选B . 5.【答案】B【解析】根据题意得:13221x x =-+, 去分母得:3x -6=2x +1, 解得:x =7,经检验x =7是分式方程的解. 故选B . 6.【答案】A【解析】将方程的两边同时乘以(1)x -,可得31x k =-+,解得4x k =-,根据方程有增根可得1x =,即41k -=,所以3k =.故选A . 7.【答案】B【解析】去分母,可得32(1)x m x =++,解得2x m =+, 因为分式方程3211x mx x =+++无解,所以12130x m m +=++=+=,解得3m =-, 故选B . 8.【答案】A 【解析】2211x a ax x++=-- 方程两边同时乘以(x -1)得:x +a -2a =2(x -1), 解得:x =2-a ,∵方程的解不小于0,∴2-a ≥0,解得:a ≤2, ∵分式方程分母不为0,∴2-a ≠1,解得:a ≠1, 即a 的取值范围是:a ≤2且a ≠1, 故选A . 9.【答案】A【解析】因为船在静水中的速度为x 千米/时,所以由题意可得906022x x =+-, 故选A . 10.【答案】D【解析】方程两边都乘x (x +1),得2x 2-(m +1)=(x +1)2, ∵最简公分母x (x +1)=0, ∴x =0或x =-1. 当x =0时,m =-2;当x =-1时,m =1.故选D . 11.【答案】C 【解析】212x ax +=--, 去分母可得:22x a x +=-+, 移项可得:22x x a +=- , 合并同类项可得:32x a =-, 系数化为1可得:23ax -=, 根据分式方程的解为非负数和分式有解可得:203a -≥,且223a-≠,解得:a ≤2且a ≠-4, 故选C . 12.【答案】D【解析】设乙单独做需x 天完成, 由题意得:1112012x +=,故选D . 13.【答案】C【解析】设慢车的速度为x 千米/小时,则快车的速度为1.2x 千米/小时, 根据题意可得:1501150212x x-=.. 故选C . 14.【答案】C【解析】由不等式组-2≤352x +<12a +1,可知-3≤x <33a -, ∵x 有且只有3个整数解,∴-1<33a -≤0,∴0<a ≤3, 由分式方程可知:x =-64a -,将x =-64a -代入x -2≠0,∴a ≠1,∵关于x 的分式方程有整数解,∴6能被a -4整除, ∵a 是整数,∴a =2、3、5、6、7、10、-2; ∵0<a ≤3,∴a =2或3,∴所有满足条件的整数a 之和为5, 故选C .【解析】题中方程表示原计划每天铺设管道(10)x -米,即实际每天比原计划多铺设10米,结果提前15天完成, 故选C . 16.【答案】A【解析】设文学类图书平均价格为x 元/本,则科普类图书平均价格为1.2x 元/本, 依题意得:12000120001001.2x x-=, 解得:x =20,经检验,x =20是原方程的解,且符合题意. 故选A . 17.【答案】2x =【解析】方程x x 412=+两边都乘以x ,可得24x +=,解得2x =,检验:当2x =时,0x ≠,即2x =是原方程的解,故答案为:2x =. 18.【答案】1或12【解析】去分母得:x -a =2a (x -3), 整理得:(1-2a )x =-5a , 当1-2a =0时,方程无解,故a =12; 当1-2a ≠0时,x =521aa -=3时,分式方程无解,则a =3, 则a 的值为:1或12;故答案为:1或12.19.【答案】a ≤3且a ≠-12【解析】去分母,得:(x +1)(x +3)-x (x -2)=x +a ,解得x =35a -, 由题意知35a -≤0且35a -≠-3, 解得:a ≤3且a ≠-12, 故答案为:a ≤3且a ≠-12.【解析】首先根据分式72x -与2xx-的和为4,可得7422x x x +=--,去分母,可得748x x -=-,解得3x =,经检验3x =是原方程的解,故x 的值为3.故答案为:3.21.【答案】2【解析】当x =3时,有321223k k --=, 去分母得:9k -4k +2=12,5k =10, 解得:k =2,故答案为:2. 22.【答案】100080020x x=+ 【解析】设B 型机器人每小时搬运x kg 物品,则A 型机器人每小时搬运(x +20)kg 物品,根据题意可得100080020x x =+,故答案为:100080020x x=+.23.【解析】(1)去分母,可得126x x =--,解得7x =,经检验7x =是分式方程的解, 所以方程1233x x x=+--的解为7x =. (2)去分母,可得3316x x -++=,解得2x =, 经检验2x =是分式方程的解,所以方程2316+=的解为2x =.(3 即5(4)2111x x =---,去分母得2241(1)x x =-++,化简得321x =+,解得1x =, 经检验1x =为方程的增根, 所以方程无解.24.【解析】设第一批玩具每套的进价是x 元,则1500x×1.5=270010x +,解得:x =50.经检验:x =50是原方程的解,则第二批玩具每套的进价是x +10=60(元). 答:第二批玩具每套的进价为60元.25.【解析】(1)设乙种款型T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据题意:78006400301.5x x+=, 解得40x =,经检验,40x =是原方程的解,且符合题意,1.560x =.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件. (2)6400160x=,16030130-=(元), 13060%6016060%(402)160[1(160%)0.5](402)⨯⨯+⨯⨯÷-⨯-+⨯⨯÷468019206405960=+-=(元)答:售完这批T 恤衫商店共获利5960元.26.【解析】(1)设甲种商品的进价为x 元/件,则乙种商品的进价为0.9x 元/件,36003600100.9x x+=, 解得,x =40,经检验,x =40是原分式方程的解, ∴0.9x =36,答:甲、乙两种商品的进价各是40元/件、36元/件.(2)设甲种商品购进m 件,则乙种商品购进(80-m )件,总利润为w 元, w =(80-40)m +(70-36)(80-m )=6m +2720, ∵80-m ≥3m , ∴m ≤20,∴当m =20时,w 取得最大值,此时w =2840, 答:该商店获得的最大利润是2840元.经检验x=-1是原方程的根;故选B.2.【答案】A【解析】方程两边同时乘以x(x-1)得,x(x-5)+2(x-1)=x(x-1),解得x=-1,把x=-1代入原方程的分母均不为0,故x=-1是原方程的解.故选A.3.【答案】C【解析】方程两边都乘以(2x-1),得x-2=3(2x-1),故选C.7.【答案】x=-2【解析】2121 1(1)(1)xx x x--=-+-,去分母,得(2x-1)(x+1)-2=(x+1)(x-1),去括号,得2x2+x-3=x2-1,移项并整理,得x2+x-2=0,所以(x+2)(x-1)=0,解得x=-2或x=1,经检验,x=-2是原方程的解.故答案为:x=-2.8.【答案】10【解析】设江水的流速为x km/h,根据题意可得:12030x+=6030x-,解得:x=10,10.【解析】两边都乘以(x+1)(x-1),得:2(x+1)=5,解得:x=32,检验:当x=32时,(x+1)(x-1)=54≠0,∴原分式方程的解为x=32.11.【答案】x=2【解析】方程两边都乘以(x+1)(x-1),去分母得x(x+1)-(x2-1)=3,即x2+x-x2+1=3,解得x=2.检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴x=2是原方程的解,故原分式方程的解是x=2.12.【解析】设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,依题意,得:96x+720.6x=27,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:这种粽子的标价是8元/个.经检验得:x=50是原方程的根,故3x=150,答:小明的速度是50米/分钟,则小刚骑自行车的速度是150米/分钟.14.【解析】设汽车行驶在普通公路上的平均速度是x千米/分钟,则汽车行驶在高速公路上的平均15.【解析】设甲校师生所乘大巴车的平均速度为x km/h,则乙校师生所乘大巴车的平均速度为1.5x km/h.根据题意得24027011.5x x-=,解得x=60,经检验,x=60是原分式方程的解,1.5x=90.答:甲、乙两校师生所乘大巴车的平均速度分别为60 km/h和90 km/h.16.【解析】设小明的速度是x米/分钟,则小刚骑自行车的速度是3x米/分钟,根据题意可得:1200x-4=30003x,解得:x=50,经检验得:x=50是原方程的根,故3x=150,答:小明的速度是50米/分钟,则小刚骑自行车的速度是150米/分钟.。

人教版初中八年级数学上册第十五章《分式》知识点(含答案解析)(1)

人教版初中八年级数学上册第十五章《分式》知识点(含答案解析)(1)

一、选择题1.使分式21xx -有意义的x 的取值范围是( )A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数2.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .33.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-4.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510yy a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3C .6D .115.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-46.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④7.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=--8.已知2340x x --=,则代数式24xx x --的值是( )A .3B .2C .13D .129.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<-C .x 2>D .x 2<10.若分式()22222x y x y a x a yax ay+-÷-+的值等于5,则a 的值是( )A .5B .-5C .15D .15-11.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++B .222()x y x y +-C .222()x y x y -+D .222()x y x y ++12.020*******)(0.125)8+⨯的结果是( )A B 2C .2D .013.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x+ D .21xx + 14.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( ) A .102x x x -<< B .012x x x -<<C .021x x x -<<D .120x x x -<<15.计算a ba b a÷⨯的结果是() A .aB .2aC .2b aD .21a二、填空题16.已知5a b +=,6ab =,b aa b+=______. 17.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 18.已知5,3a b ab -==,则b aa b+的值是__________. 19.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.20.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.21.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg .22.计算:2120192-⎛⎫-= ⎪⎝⎭______. 23.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.24.已知(3)1a a -=,则整数a 的值为______. 25.方程11212x x =+-的解是x =_____. 26.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题27.雪梨是石家庄市某地的特色时令水果.雪梨上市后,水果店的老板用2400元购进一批雪梨,很快售完;老板又用3750元购进第二批雪梨,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)求第一批雪梨每件进价是多少元?(2)老板以每件225元的价格销售第二批雪梨,售出80%后,为了尽快售完,剩下的决定打折促销,要使得第二批雪梨的销售利润为2460元,剩余的雪梨每件售价应该打几折?(利润=售价-进价) 28.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---. 29.分式计算与解方程:(1)21211a a a a ----; (2)121221xx x +=-+. 30.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =.。

人教版八年级数学分式知识点及典型例题

人教版八年级数学分式知识点及典型例题
a. 行程问题:基本公式:路程 =速度×时间而行程问题中又分相遇问题、追及问题. b. 数字问题: 在数字问题中要掌握十进制数的表示法. c. 工程问题: 基本公式:工作量 =工时×工效.
d. 顺水逆水问题 : v 顺水 =v 静水 +v 水 . v 逆水=v 静水 -v 水 .
工程问题: 例 1:一项工程,甲需 x 小时完成,乙需 y 小时完成,则两人一起完成这项工程需要
xy
x xy y
)A
7
B
7C
2D
2
2
2
7
7
例 5:已知 2x
3y ,求 xy x2 y2
y2
的值;
x2 y2
例 6:如果
a =2,则 b
a 2 ab b 2 a2 b2
=
例 7:已知
a 与 b 的和等于 x2 x2
4x
2
,则 a=
x4
,b=

15 、分式的应用题:
( 1)列方程应用题的步骤是什么? (1) 审; (2) 设; (3) 列; (4) 解; (5) 答. ( 2)应用题有几种类型;基本公式是什么?基本上有四种:
( 1)使分式有意义:令分母≠ 0 按解方程的方法去求解;
( 2)使分式无意义:令分母 =0 按解方程的方法去求解;
注意:( x 2 1 ≠ 0)
例 1:当 x 例 3:当 x
时,分式 1 有意义; x5
时,分式
1
2
有意义。
x1
例 2:分式 2x 1 中,当 x ____ 时,分式没有意义 2x
例 4:当 x
3 ,求
x2 y2
4
x 2 2xy y 2
xy y 2

初中数学分式章节知识点及典型例题解析[1]

初中数学分式章节知识点及典型例题解析[1]

分式的知识点及典型例题分析1、分式的定义:例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +. (2)下列式子,哪些是分式?5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145b-+.2、分式有,无意义,总有意义:(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。

例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )A .122+x x B.12+x x C.133+x x D.25x x - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x 的值为( )A. 2 B.-1或-3 C. -1 D.3同步练习题:3、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去。

例1:当x 时,分式121+-a a的值为0 例2:当x 时,分式112+-x x 的值为0例3:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B.2 C. 2- D.以上全不对例4:能使分式122--x xx 的值为零的所有x 的值是 ( )A 0=xB 1=xC 0=x 或1=xD 0=x 或1±=x例5:要使分式65922+--x x x 的值为0,则x 的值为( )A.3或-3 B.3 C.-3 D 2例6:若01=+aa,则a 是( )A.正数 B.负数 C.零 D.任意有理数 4、分式的基本性质的应用:分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

分式章节知识点总结归纳解析

分式章节知识点总结归纳解析

分式重点知识复习及相应练习5、 下列各式:土,也,迥(宀1),哄丄(―刃中,是分式的共有()2 x n 4 a-b mA 、1个B 、2个C 、3个D 、4个_^a-b x + 3 5 + x a + b _ 1 t亠6、 在 ---- , ----- , ---- , ------ ,2 —中,是分式的有()2 x 7T a-b aA 、1个B 、2个C 、3个D 、4个7、 下列各式:巳二2,兰旦,土上,—(X 2 +1),—(x-y )中,是分式的共有()2 x 7t 4 a-b mA 、1个B 、2个C 、3个D 、4个A二、分式有意义;分式亓中,当BHO 时,分式有意义:当B=0时,分式无意义。

2 x 1、 若分式——有意义,则X 的取值范围是 _________ :当 ___________ 时,分式 ------- 无意义.3-x2x-3x-32、 己知分式 ------------ ,当兀=2时,分式无意义,则d 的值爬 _______________x~ -5x +a4W-3 3、 当x_时,分式一有意义,当兀= 时,分式一无意义.x 2-lx-3 2x x + 1 4、 当xH —时,分式 ----- 有意义;当x=— 时,分式 ----------- 有意义:X+2X-14x — 2 5、 当x=—时,分式一有意义。

当时,分式 ---------------------------- 无意义:x 2-l3x + 8|x|-36、 当XH_________ 时,分式■无意义.x-3A 一、分式的概念:形如万(A 、B 是整式,B 中含有字母,BHO )的式子。

1、在代数式3x + g, 6x 2y 3 2 b 2abc^ x 2 -1 ——,—+ —,a 35+y X~ ,‘一中,分式的个数有. X-1 X 个。

2、下列代数式中:- 71 1]2_j2夕厘,是分式的有: 3.各式中,一x+ — y,3 2 1 1 4xy X X 分式的个数有() 期'5 +a jr n A 、1 个B 2个 c 、3个D 、4个亠 a_b x + 35 + x a + b2 +丄中,a绘分式的有()2x7t a-bA 、1个B 、2个C 、3个D 、4个x+ y7、 当X 为任意实数时,下列分式一定有意义的是( )2 1 1 1 A. ------ B. — ---- C. — D.—; ---x+3x- -2|x|jr+18、 下列分式,对于任意的X 的值总有意义的是()x —5x —1x" +1 X" — 1A 、 jB 、jC 、D 、x~—1 x~ +18 兀X —19、当兀为任意实数时,下列分式一定有意义的是()2 11 A. B. C. x+3x 2-2x 1 D ,,X~ +1三、分式的值为零:两个条件同时满足:①分子为0,即A=0;②分式有意义,即BH0X 2 — 1I 、分式 -------- 的值为0,则X 的值是 _______________X + 1%■ -9浜若分式厂市的值族则询值为( A.O B. -3C. 36 3或一32x-7 3、 当%= _________ 时,分式 ---- 的值为1.x-32x +14、 分式 ------ 中,当兀= ________ 时,分式没有意义,当/ = _______ 时,分式的值为寥:2-xX" — x5、 能使分式 一的值为零的所有X 的值是()X' -IX= 1 C 、X = 0 或X=l D 、X=0或X = ±lx-b,分式无意义,兀=4时,此分式的值为0,则a+b 的值等于(x-aB. -2C. 6D. 27、解下列不等式口20.(4) /+5 >0 X+3 x~ + 2x + 3四、分式的基本性质:分式的分子和分母同时乘以(或除以〉同一个不等于0的整式,分式的值不变。

(完整版)初中数学分式方程典型例题讲解

(完整版)初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题【知识网络】【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd ac ac •=,b c b d bda d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n, (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义(一)分式的概念: 形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件:1、分母中字母的取值不能使分母值为零,否则分式无意义2、当分子为零且分母不为零时,分式值为零。

人教版八年级数学上册第十五章分式知识点总结和题型归纳(无答案)

人教版八年级数学上册第十五章分式知识点总结和题型归纳(无答案)

分式知识点总结和题型归纳第一部分分式的运算 (一)分式定义及有关题型题型一:考查分式的定义 :A一般地,如果 A ,B 表示两个整数,并且 B 中含有字母,那么式子 A 叫做分式,A 为分子,BB 为分母。

i-y ,是分式的有: x y题型二:考查分式有意义的条件 分式有意义:分母不为 0( B 0) 分式无意义:分母为 0( B 0) 【例1】当x 有何值时,下列分式有意义(1)—(2)-3^ ( 3)(4)( 5)丄x4x 22 x 21| x| 3x1x题型三:考查分式的值为 0的条件分式值为0:分子为0且分母不为0 ( A 0)B 0【例1】当x 取何值时, 下列分式的值为0.(1)Jx 3(2)|x| 2 x 242(3) x 22x 3x 5x 6【例2】当x 为何值时,下列分式的值为零:题型四:考查分式的值为正、负的条件分式值为正或大于 0:分子分母冋号(A或A 0 )B 0B 0【例1】下列代数式中:(1)5 |x 1 | x 4(2) 2^5 xx 6x 5x 1 -,2x分式值为负或小于0:分子分母异号(A °或八°)B 0 B0【例"(1)当x为何值时,分式为正;(3)当x为何值时,分式工为非负数.【例2】解下列不等式(1)1古 °(2)U题型五:考查分式的值为1,-1的条件分式值为1 :分子分母值相等(A=B)分式值为-1 :分子分母值互为相反数(A+B=°)【例1】若也L上的值为1,-1,则x的取值分别为________________________ x 2思维拓展练习题:a b1、若a>b>0, a2+ b2—6ab=0,则一a b2、一组按规律排列的分式:b2 b5 b8b11,2 , 3, 4 , L L ( ab 0),则第n个分式为a a a a(2)当x为何值时,分式5 x23 (x 1)2为负;A3、已知x23x 1 0,求X2 -2的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、分式的值为零:
使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去。
例1:当x时,分式 的值为0例2:当x时,分式 的值为0
例3:如果分式 的值为为零,则a的值为()A. B.2C. D.以上全不对
例4:能使分式 的值为零的所有 的值是()
①约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分
②分式约分的依据:分式的基本性质.
③分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.
④约分的结果:最简分式(分子与分母没有公因式的分式,叫做最简分式)
约分主要分为两类:第一类:分子分母是单项式的,主要分数字,同字母进行约分。
例1:分式 的最简公分母是()
A. B. C. D.
例2:对分式 , , 通分时,最简公分母是()
A.24x2y3B.12x2y2C.24xy2D.12xy2
例3:下面各分式: , , , ,其中最简分式有()个。
练习题:(1)下列式子中,是分式的有.
⑴ ;⑵ ;⑶ ;⑷ ;⑸ ;⑹ .
(2)下列式子,哪些是分式?
; ; ; ; ; .
2、分式有,无意义,总有意义:
(1)使分式有意义:令分母≠0按解方程的方法去求解;
(2)使分式无意义:令分母=0按解方程的方法去求解;
注意:( ≠0)
例1:当x时,分式 有意义;例2:分式 中,当 时,分式没有意义
例如: 最简公分母就是 。
“二、四”型:指其一个分母完全包括另一个分母,最简公分母就是其一的那个分母。
例如: 最简公分母就是
“四、六”型:指几个分母之间有相同的因式,同时也有独特的因式,最简公分母要有独特的;相同的都要有。
例如: 最简公分母是:
这些类型自己要在做题过程中仔细地去了解和应用,仔细的去发现之间的区别与联系。
6、分式的乘,除,乘方:
分式的乘法:乘法法测: · = .
分式的除法:除法法则: ÷ = · =
分式的乘方:求n个相同分式的积的运算就是分式的乘方,用式子表示就是( )n.分式的乘方,是把分子、分母各自乘方.用式子表示为:( )n= (n为正整数)
例题:
计算:(1) (2) (3)
计算:(4) (5) (6)
例2:
例3:如果把分式 中的a和b都扩大10倍,那么分式的值()
A、扩大10倍B、缩小10倍C、是原来的20倍D、不变
例4:如果把分式 中的x,y都扩大10倍,则分式的值()
A.扩大100倍B.扩大10倍C.不变D.缩小到原来的
例5:如果把分式中的x和y都扩大2倍,即分式的值()
A、扩大2倍;B、扩大4倍;C、不变; D缩小2倍
例6:如果把分式 中的x和y都扩大2倍,即分式的值()
A、扩大2倍;B、扩大4倍;C、不变;D缩小2倍
例7:如果把分式 中的x和y都扩大2倍,即分式的值()
A、扩大2倍;B、扩大4倍;C、不变;D缩小 倍
例8:若把分式 的x、y同时缩小12倍,则分式的值()
A.扩大12倍ﻩB.缩小12倍ﻩC.不变ﻩﻩD.缩小6倍
例9:若x、y的值均扩大为原来的2倍,则下列分式的值保持不变的是()
A、 B、 C、 D、
例10:根据分式的基本性质,分式 可变形为()
A B C D
例11:不改变分式的值,使分式的分子、分母中各项系数都为整数, ;
例12:不改变分式的值,使分子、分母最高次项的系数为正数, =。
5、分式的约分及最简分式:
A、 B、 C、 D、
例5:下列式子正确的是()
A. B. C. D.
例6:化简 的结果是( )A、 B、 C、 D、
例7:约分: ; =; ; 。
例8:约分: =; ; ;
; ; __________ __________。
例9:分式 , , , 中,最简分式有()
A.1个B.2个C.3个D.4个
例题:化简 的结果是()A.1B. xyC. D.
计算:(1) ;(2) (3)(a2-1)· ÷
7、分式的通分及最简公分母:
通分:主要分为两类:第一类:分母是单项式;第二类:分母是多项式(要先把分母因式分解)
分为三种类型:“二、三”型;“二、四”型;“四、六”型等三种类型。
“二、三”型:指几个分母之间没有关系,最简公分母就是它们的乘积。
初中数学分式章节知识点及典型例题解析[1]
————————————————————————————————作者:
————————————————————————————————日期:

分式的知识点及典型例题分析
1、分式的定义:
例:下列式子中, 、8a2b、- 、 、 、2- 、 、 、 、 、 、 、 中分式的个数为()(A)2(B)3(C)4(D)5
计算:(7) (8) (9)
计算:(10) (11) (12)
计算:(13) (14)
求值题:(1)已知: ,求 的值。
(2)已知: ,求 的值。
(3)已知: ,求 的值。
例题:
计算:(1) (2) =(3) =
计算:(4) =(5)
(6)
求值题:(1)已知: 求 的值。
(2)已知: 求 的值。
例题:计算 的结果是()A B C D
A B C 或 D 或
例5:要使分式 的值为0,则x的值为()A.3或-3ﻩB.3C.-3D2
例6:若 ,则a是()A.正数B.负数C.零D.任意有理数
4、分式的基本性质的应用:
分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
例1: ; ;如果 成立,则a的取值范围是________;
第二类:分子分母是多项式的,把分子分母能因式分解的都要进行因式分解,再去找共同的因式约去。
例1:下列式子(1) ;(2) ;(3) ;(4) 中正确的是()A、1个B、2个C、3个D、4个
例2:下列约分正确的是()
A、 ;B、 ;C、 ;D、
例3:下列式子正确的是()
A B. C. D.
例4:下列运算正确的是()
例3:当x时,分式 有意义。例4:当x时,分式 有意义
例5: , 满足关系时,分式 无意义;
例6:无论x取什么数时,总是有意义的分式是()
A. B. C. D.
例7:使分式 有意义的x的取值范围为()A. B. C. D.
例8:要是分式 没有意义,则x的值为()A.2B.-1或-3C.-1D.3
同步练习题:
相关文档
最新文档