初二数学分式典型例题复习和考点总结
人教版八年级数学上册《分式》知识点复习及典例解析

人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。
三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。
最新初二数学八上分式和分式方程所有知识点总结和常考题型练习题

分式知识点一、分式的定义如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。
二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ∙∙=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
四、分式的约分定义:把分式的分子与分母的公因式约去,叫做分式的约分。
步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。
最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
五、分式的通分定义:把几个异分母的分式化成同分母分式,叫做分式的通分。
步骤:分式的通分最主要的步骤是最简公分母的确定。
最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
确定最简公分母的一般步骤:Ⅰ 取各分母系数的最小公倍数;Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。
Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。
注意:分式的分母为多项式时,一般应先因式分解。
八年级初二数学_分式的复习知识点、练习和答案_全面详细易懂

第十六章 分式16.1分式16.1.1从分数到分式1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?5-x y 8+ )(7-x x 71 6)m m m +( 3. 当x 为何值时,分式的值为0?2-x x y564)-x 2)-x x (( ()7m 245y y 2++16.1.2分式的基本性质1.重点: 理解分式的基本性质. 2.难点: 灵活应用分式的基本性质将分式变形.随堂练习1.填空: (1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x -2.约分:(1)c ab b a 2263 (2)2228m n n m (3)532164xyzyz x - (4)x y y x --3)(23.通分:(1)321ab 和c b a 2252 (2)xya 2和23xb 2316.2分式的运算16.2.1分式的乘除(一)1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算 .随堂练习计算(1)ab c 2c b a 22⋅ (2)322542n mm n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy xy 52÷16.2.1分式的乘除(二)1.重点:熟练地进行分式乘除法的混合运算.2.难点:熟练地进行分式乘除法的混合运算.随堂练习计算 (1))2(216322ba a bc ab -⋅÷ (2)(2)103326423020)6(25ba c c ab b ac ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)(4)22222)(x y x xy y xy x x xy -⋅+-÷-16.2.1分式的乘除(三)1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.随堂练习1.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249ab - (3)3)32(x y -=3398xy (4)2)3(b x x -=2229b x x - 2.计算 (1) 22)35(y x (2)332)23(c b a - (3)32223)2()3(x ay xy a -÷ (4)23322)()(z x z y x -÷- 5))()()(422xy xy y x -÷-⋅- (6)232)23()23()2(ayx y x x y -÷-⋅- 16.2.2分式的加减(一)1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.随堂练习计算 (1)ba ab b a b a b a b a 22255523--+++(2)m n m n m n m n n m -+---+22(3)96312-++a a16.2.2分式的加减(二)1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.随堂练习计算 (1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 答案六、(1)2x (2)ba ab - (3)3 16.2.3整数指数幂1.重点:掌握整数指数幂的运算性质.2.难点:会用科学计数法表示小于1的数.随堂练习1.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= ( 5)2 -3= ( 6)(-2) -3=2.计算(1) (x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)3六、1.(1)-4 (2)4 (3)1 (4)1(5) 81 (6)81- 2.(1)46y x (2)4x y (3) 7109yx 16.3分式方程(一)1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.随堂练习解方程 (1)623-=x x (2)(2)1613122-=-++x x x (3)114112=---+x x x1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
八年级 分式知识点总结及复习

八年级 分式知识点总结及复习知识点一:分式的定义一般地,如果A,B 表示两个整数,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。
知识点二:与分式有关的条件①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0) 经典例题1、代数式14x-是( ) A.单项式 B.多项式 C.分式 D.整式 2、在2x ,1()3x y +,3ππ-,5a x -,24x y -中,分式的个数为( ) A.1 B.2 C.3 D.43、总价9元的甲种糖果和总价是9元的乙种糖果混合,混合后所得的糖果每千克比甲种 糖果便宜1元,比乙种糖果贵0.5元,设乙种糖果每千克x 元,因此,甲种糖果每千克 元,总价9元的甲种糖果的质量为 千克.4、当a 是任何有理数时,下列式子中一定有意义的是( )A.1a a + B.21a a + C.211a a ++ D.211a a +- 5、当1x =时,分式①11x x +-,②122x x --,③211x x --,④311x +中,有意义的是( )A.①③④B.③④C.②④D.④6、当1a =-时,分式211a a +-( )A.等于0 B.等于1 C.等于-1 D.无意义 7、使分式8483x x +-的值为0,则x 等于( ) A.38 B.12- C.83 D.128、若分式2212x x x -+-的值为0,则x 的值是( ) A.1或-1 B.1 C.-1 D.-29、当x 时,分式11x x +-的值为正数. 10、当x 时,分式11x x +-的值为负数. 11、当x = 时,分式132x x +-的值为1.12、分式1111x++有意义的条件是( ) A.0x ≠ B.1x ≠-且0x ≠ C.2x ≠-且0x ≠ D.1x ≠-且2x ≠-13、如果分式33x x --的值为1,则x 的值为( ) A.0x ≥ B.3x > C.0x ≥且3x ≠ D.3x ≠14、下列命题中,正确的有( ) ①A 、B 为两个整式,则式子A B 叫分式; ②m 为任何实数时,分式13m m -+有意义; ③分式2116x -有意义的条件是4x ≠; ④整式和分式统称为有理数.A.1个 B .2个 C.3个 D.4个15、在分式222x axx x ++-中a 为常数,当x 为何值时,该分式有意义?当x 为何值时,该分 式的值为0?知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
初二数学分式

初二数学分式一、 知识要点1:分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA 叫做分式,A 为分子,B 为分母且B 不能为0。
2:分式的基本性质:分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
3:分式的约分:把分式分子分母因式分解,然后约去分子与分母的公因。
①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。
4:最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
5: 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
注意:分式的分母为多项式时,一般应先因式分解。
6:整数指数幂:引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。
即n m n m a a +=⋅a ()mn n m a a =()n n n b b a a = n m n m a a -=÷a (0≠a )n n b a b a =⎪⎭⎫ ⎝⎛nn a 1=-n a (0≠a ) 10=a (0≠a ) (任何不等于零的数的零次幂都等于1)其中m ,n 均为整数。
7:分式方程的解的步骤⑴去分母,把方程两边同乘以各分母的最简公分母。
(产生增根的过程)⑵解整式方程,得到整式方程的解。
⑶检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。
8:应用题的几种类型:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题。
(2)、工程问题 基本公式:工作量=工时×工效。
八年级上册《分式》知识点归纳与总结

八年级上册《分式》知识点归纳与总结主讲 王老师一、分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。
二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B 0≠)⑦分式值为-1:分子分母值互为相反数(A+B=0,0B ≠)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ∙∙=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。
3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
初二数学分式知识点

初二数学分式知识点一、引言分式是初中数学中的重要概念,它在代数运算、方程求解以及后续的高中数学学习中都扮演着关键角色。
本文旨在总结初二数学中分式的基本概念、性质、运算规则以及应用实例,帮助学生掌握分式相关知识点。
二、分式的定义1. 分式:形如 \(\frac{a}{b}\) 的代数式,其中 \(a\) 称为分子,\(b\) 称为分母,\(b \neq 0\)。
2. 条件:分母不能为零,因为除以零没有定义。
三、分式的基本性质1. 等值变换:分式的分子和分母同时乘以或除以同一个非零数,分式的值不变。
2. 符号规则:分式的符号由分子和分母的符号决定,分子分母同号结果为正,异号结果为负。
3. 约分:通过找出分子和分母的最大公约数并约去,简化分式。
4. 通分:将多个分式转化为具有相同分母的分式,便于进行加减运算。
四、分式的运算规则1. 加减法:- 同分母分式相加减:分子相加减,分母不变。
- 异分母分式相加减:先通分,再按照同分母分式进行加减。
2. 乘法:- 分式的乘法:分子乘分子,分母乘分母。
3. 除法:- 分式的除法:将除数的分式取倒数,然后进行乘法运算。
4. 乘方:- 分式的乘方:分子和分母分别取方。
五、分式的解方程1. 一元一次方程:通过移项和化简分式,求解未知数。
2. 一元二次方程:在解一元二次方程时,要注意分式的化简和检验根。
六、分式的应用题1. 比例问题:利用分式表示比例关系,解决实际问题。
2. 工作问题:通过分式方程解决工作效率和工作时间的问题。
3. 浓度问题:使用分式计算溶液的稀释和浓缩。
七、常见题型与解题技巧1. 化简求值:熟练掌握分式的化简方法,准确求出分式的值。
2. 分式方程:注意检验解的有效性,避免出现除以零的情况。
3. 应用题:理解题意,找出等量关系,建立分式方程求解。
八、总结分式是初中数学的重要内容,掌握分式的性质和运算规则对于提高数学成绩至关重要。
通过不断的练习和应用,可以加深对分式概念的理解,提高解题能力。
分式典型知识点与例题总结

人教版八年级下册分式全章 知识点和典型例习题 知识点回顾知识点一:分式形如 的式子叫做分式 。
知识点二:分式B A 的值1.当 时,分式有意义;2.当 时,分式无意义;3.当 时,分式的值为0;4.当 时,分式的值为1;5.当 时, 分式的值为正;6.当 时,分式的值为负; 知识点三:分式的基本性质用式子表示 知识点四:分式中的符号法则用式子表示 知识点五: 分式的约分 约去分子、分母的最大公因式,使分式变成最简分式或者整式 1.最大公因式= 。
2.当分式的分子和分母为多项式时, 知识点六:分式的通分把异分母分式变成同分母分式的过程。
1.最简公分母= 。
2.当分式的分子和分母为多项式时,知识点七:分式的乘除法法则(用式子表示)乘法法则:用式子表示 除法法则: 用式子表示 知识点八:回顾因式分解总步骤:一提二套三分组1. 提公因式: 套 平方差公式: 2 . 公 完全平方和:式 完全平方差:知识点九:分式的加减法法则 加法法则:减法法则:知识点十:分式的混合运算先 再 最后再 。
知识点十一:整数指数幂七大公式1.同底数幂的乘法2.同底数幂的乘法3.幂的乘方4.积的乘方5.分式的乘方法则6.0指数幂7.负整数指数幂 知识点十二:科学计数法1.绝对值大于1数都可表示成2. 绝对值小于1数都可表示成 其中101<≤a 。
知识点十三:分式方程 1. 概念 2. 解法:①去分母:② ③知识点十四:分式方程解应用题的步骤 、 、 、 、【例题】下列有理式中是分式的有(1)-3x ;(2)yx ;(3)22732xy y x -;(4)x 81-;(5)35+y ; (6)112--x x ;(7)π12--m ; (8)5.023+m ;【练习】1、在下列各式ma m x xb a x xa,),1()3(,43,2,3222--÷++π中,是分式的有 个2.找出下列有理式中是分式的代号(1)-3x ;(2)yx ;(3)22732xyy x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7) π-12m ; (8)5.023+m .二.分式的值 【例题】 1.当a 时,分式321+-a a 有意义;2.当_____时,分式4312-+x x 无意义;3.若分式33x x --的值为零,则x = ;4.当_______时,分式534-+x x 的值为1;5.当______时,分式51+-x 的值为正;6.当______时分式142+-x 的值为负.【练习】1.①分式36122--x x 有意义,则x ;②当x_____时,分式1x x x-- 有意义;③当x ____时分式x x 2121-+有意义;④当x_____时,分式11x x +-有意义;⑤使分式9x 1x 2-+有意义的x 的取值范围是 ; 2.当x = 3时,分式bx a x +-无意义,则b ______ 3. ①若分式11x x -+的值为零,则x 的值为 ;②若分式)1x )(3x (1|x |=-+-,则x 的值为_________________; ③分式392--x x 当x __________时分式的值为0;④当x= _时,分式22943x x x --+的值为0;⑤当a=______时,分式2232a a a -++ 的值为零;4.当x __ 时,分式x -51的值为正.5.当x=_____时,分式232x x --的值为1.6.若分式231-+x x 的值为负数,则x 的取值范围是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章分式知识点和典型例习题【知识网络】【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd ac ac •=,b c b d bda d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n, (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义(一)分式的概念: 形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件:1、分母中字母的取值不能使分母值为零,否则分式无意义2、当分子为零且分母不为零时,分式值为零。
【例3】当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数. 练习:1.当x 取何值时,下列分式有意义:(1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式 (1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯= 2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:分式化简(约分)(1)4322016xy y x -;(2)44422+--x x x ; (3)在分式x y z xyz-+中,x,y,z 分别扩大到原来的两倍,则分式大小怎么变化?题型二:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型三:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx yx --+- (2)b a a --- (3)b a ---题型四:化简求值题【例3】已知:511=+y x ,求yxy x yxy x +++-2232的值.【例4】已知:21=-x x ,求221x x +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值.练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x的值. 3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---. (三)分式的乘除法题型一:分式的乘法:① 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.如果得到的不是最简分式,应该通过约分进行化简b da c⋅=( ) ② 整式和分式相乘,直接把整式和分式的分子相乘作结果的分子,分母不变。
即ca b⋅=( )【例1】 计算下列各分式:(1)4411242222++-⋅+--a a a a a a ;(2)b a ab ab b a 234222-⋅-;(3)3222)(35)(42x y x x y x --⋅-题型二:分数除法:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.b da c÷=( ) 【例2】 计算下列(1)⎪⎭⎫ ⎝⎛-÷a bc ac b 2110352; (2)()y x a xy 28512-÷ ;题型三:分式的混合运算:熟记分式乘除法法则【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+;题型四:化简求值题【例4】先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a .(2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值. .(四)、分式的加减法题型一:同分母分数相加减:分母不变,把分子相加减。
c da b a b+=++ 【例1】 计算:(1)xyy x xy y x 2)(2-++)(;(2)xy y x xy y x 22)()(--+.;(3)22y x x--22x y y -题型二:异分母分数相加减:正确地找出各分式的最简公分母。
求最简公分母概括为:(通分)① 最简公分母的系数,取各分母系数的最小公倍数; ② 最简公分母的字母,取各分母所有字母的最高次幂的积;③ 分母是多项式时一般需先因式分解。
(aba 322-) 【例2】通分:(1)22232,,555a b a b b a a b a b a b ++- (2)22,,m n n mn m m n n m+---【例3】(1)计算:1624432---x x .(2)计算2a a b a b ---(3)31-x -31+x ; (4)412-a -21-a ;题型三:加减乘除混合运算 【例4】计算:(1)、x x x x x x -÷+--24)22(,(2)3352242x x x +⎛⎫÷-- ⎪--⎝⎭新授知识 分式方程问题1:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分式方程概念:方程中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.做一做 在方程①73x -=8+152x -,②1626x-=x ,③281x -=81x x +-,④x-112x -=0中,是分式方程的有( )A .①和②B .②和③C .③和④D .①和④问题2:怎么解问题1中的分式方程:【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)x x 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数. 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:求待定字母的值【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围.练习:1.解下列方程: (1)021211=-++-xxx x ; (2)3423-=--x x x ;。