人教版五四制数学初中8年级上册同步全解
八年级数学上册(人教课标)同步讲解:第十三章 轴对称高效三合一

等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称“三线合一”.这个结论作用很大,下面一起来看看吧.作用一求线段长例1 如图1,在△ABC中,AB=AC,AD⊥BC于点D,且AB+AC+BC=50 cm,AB+BD+AD=40 cm,则AD=____cm.解:因为AB=AC,AD⊥BC,所以BD=CD.所以AB+BD=AC+CD.又AB+BC+AC=50 cm,所以AB+BD=25 cm.因为AB+BD+AD=40 cm,所以AD=40-25=15(cm).作用二求角度例2 如图2,在△ABC,AB=AC,AD是BC边上的高,∠CAD=26°,AE=AD,求∠BDE的度数.解:因为AB=AC,AD是BC边上的高,所以∠ADB=90°,∠BAD=∠CAD=26°.因为AE=AD,所以∠ADE=∠AED=(180°-26°)÷2=77°.所以∠BDE=∠ADB-∠ADE=13°.作用三证明线段相等例3 如图3,在等腰三角形ABC中,AB=AC,D,E是BC边上两点,且AD=AE.求证:BD=CE.证明:作AH⊥BC于点H.因为AB=AC,AD=AE,所以BH=CH,DH=EH.所以BH-DH=CH-EH,则BD=CE.作用四判断说理例4如图4,在△ABC中,AB=AC,D是△ABC内一点,且DB=DC,请同学们探索一下AD与BC的位置关系.解:延长AD交BC于点E.在△ABD和△ACD中,AB=AC,AD=AD,DB=DC,所以△ABD≌△ACD.所以∠BAD=∠CAD.因为AB=AC,所以AE⊥BC,即AD⊥BC.。
人教版五四制数学初中8年级上册同步全解

人教版初中数学八年级上册2013目录第十一章三角形 (4)本章综合解说 (4)11.1 与三角形有关的线段 (4)学习目标 (4)知识详解 (4)课外拓展 (9)11.2 与三角形有关的角 (10)学习目标 (10)知识详解 (10)课外拓展 (13)11.3 多边形及其内角和 (13)学习目标 (13)知识详解 (13)课外拓展 (18)单元总结 (18)单元测试 (20)第十二章全等三角形 (25)本章综合解说 (25)12.1 全等三角形 (26)学习目标 (26)知识详解 (26)课外拓展 (32)12.2 三角形全等的判定 (33)学习目标 (33)知识详解 (33)课外拓展 (39)12.3 角的平分线的性质 (39)学习目标 (39)知识详解 (39)课外拓展 (43)单元总结 (43)单元测试 (47)第十三章轴对称 (52)本章综合解说 (52)13.1 轴对称 (53)学习目标 (53)知识详解 (53)课外拓展 (57)13.2 画轴对称图形 (57)学习目标 (57)知识详解 (58)课外拓展 (62)13.3 等腰三角形 (62)学习目标 (62)知识详解 (62)课外拓展 (67)13.4 课题学习最短路径问题 (67)学习目标 (67)知识详解 (67)课外拓展 (72)单元总结 (72)单元测试 (75)第十四章整式的乘法与因式分解 (82)本章综合解说 (82)14.1 整式的乘法 (83)学习目标 (83)知识详解 (83)课外拓展 (87)14.2 乘法公式 (87)学习目标 (87)知识详解 (87)课外拓展 (90)14.3 因式分解 (91)学习目标 (91)知识详解 (91)课外拓展 (94)单元总结 (94)单元测试 (97)第十五章分式 (102)本章综合解说 (102)15.1 分式 (102)学习目标 (102)知识详解 (103)课外拓展 (106)15.2 分式的运算 (106)学习目标 (106)知识详解 (106)课外拓展 (110)15.3 分式方程 (110)学习目标 (110)知识详解 (110)课外拓展 (113)单元总结 (113)单元测试 (116)期中测试 (120)期末测试 (129)第十一章三角形本章综合解说学习目标1.理解三角形及与三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性。
人教版八年级上册数学全册同步讲义

三角形的中线的数学语言:
如图3,AD是ΔABC的中线或AD是ΔABC的BC边上的中线或
BD=CD= BC。AD是ΔABC的中线 BD=CD= BC。
要点诠释:
①三角形的中线是线段;
②三角形三条中线全在三角形内部;
③三角形三条中线交于三角形内部一点,这一点叫三角形的重心.
外角和定理的应用:(1)已知外角度数,求正多边形边数;(2)已知正多边形边数,求外角度数.知识点三:镶嵌
(一)平面镶嵌的定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(或平面镶嵌).
(二)镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形.
(3)有一个角是钝角的三角形是钝角三角形;(4)有一个角是直角的三角形是直角三角形;
(5)有一个角是锐角的三角形是锐角三角形.其中正确的说法有____________.
题型二 三角形三边的关系
例题2.以下列各组线段为边,能组成三角形的是( )
A.2cm, 3cm, 5cm B.1cm, 11cm, 11cm C.5cm, 8cm, 2cm D.三边之比为5:10:4
5.如果线段a,b,c能组成三角形,那么,它们的长度比可能是( )
A、1∶2∶4 B、1∶3∶4 C、3∶4∶7 D、2∶3∶4
6.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为( )
A、5 B、6 C、7 D、8
二、填空题
1.如图4,图中所有三角形的个数为,在△ABE中,AE所对的角是,∠ABC所对的边是,AD在△ADE中,是的对边,在△ADC中,是的对边;
2.如图5,已知∠1=0.5∠BAC,∠2 =∠3,则∠BAC的平分线为,∠ABC的平分线为;
2022-2023学年全国初中八年级上数学新人教版同步练习(含答案解析考点)001500

2022-2023学年全国初中八年级上数学新人教版同步练习考试总分:32 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )1.如图,在中,于点,.若,则的周长是 ( )A.B.C.D.2. 三角形中,到三个顶点距离相等的点是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三条垂直平分线的交点3. 临猗是我省重要的苹果生产基地,受疫情影响,大量优质苹果滞销.当地几名大学生利用直播带货,助推家乡农业复苏.目前,政府为更好地服务农民,将在村庄、、之间的空地上新建一座仓库.已知、、恰好在三条公路的交点处,要求仓库到村庄、、的距离相等,则仓库应选在( )A.三条角平分线的交点△ABC DE ⊥AC E CE =EA AB =12cm,BC =10cm △BCD 16cm22cm23cm25cmA B C P A B C P A B C P △ABC △ABCB.三边的垂直平分线的交点C.三条中线的交点D.三条高所在直线的交点4. 如图,在中,,的垂直平分线交的延长线于点,若则的长是( )A.B.C.D.二、填空题(本题共计 3 小题,共计12分)5. (6分)如图,已知,,的垂直平分线交于点,则________度.6. (3分)如图,在中,斜边的垂直平分线交边于点,交边于点,如果,那么________.7. (3分)如图,是的角平分线,,分别是和的高,得到下列四个结论:①和互相垂直平分;②=;③当=时,=;④是的垂直平分线.其中正确的是________(填序号).△ABC△ABC△ABCRt△ABC∠ACB=90∘AB DE BC F∠F=,DE=1,30∘EF323–√1AB=AC∠A=40∘AB MN AC D∠DBC=Rt△OMN MN MN Q ON P∠N=27∘∠OMP=AD△ABC DE DF△ABD△ACDAD EF AE AF∠BAC90∘AD EF DE AB三、 解答题 (本题共计 1 小题 ,共计8分 )8.(8分) 如图,,的垂直平分线交延长线于,交于,,.的周长为多少?的度数为多少?AB =AC AB DE BC E AC F ∠A =40∘AB +BC =6(1)△BCF (2)∠E参考答案与试题解析2022-2023学年全国初中八年级上数学新人教版同步练习一、 选择题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )1.【答案】B【考点】线段垂直平分线的性质【解析】先根据,垂足为,得出,故可得出结论.【解答】解:∵,垂足为,,,,∴,∴的周长.故选.2.【答案】D【考点】线段垂直平分线的性质【解析】运用到三角形的某边两端距离相等的点在该边的垂直平分线上的特点,可以判断到三个顶点距离相等的点是三边垂直平分线的交点.【解答】解:根据到线段两端的距离相等的点在线段的垂直平分线上,可以判断:三角形中,到三个顶点距离相等的点是三条垂直平分线的交点.故选.3.【答案】DE ⊥AC E CE =AE CD =AD DE ⊥AC E CE =AE AB =12cm BC =10cm CD =AD △BCD =BC +BD +CD =BC +AB =10+12=22cm B D线段垂直平分线的性质【解析】根据到三角形三个顶点距离相等的点是三角形三边的垂直平分线的交点.【解答】解:∵仓库到村庄、、的距离相等,∴仓库应选在三边的垂直平分线的交点.故选.4.【答案】B【考点】线段垂直平分线的性质【解析】此题暂无解析【解答】解:如图,连接,的垂直平分线交于的延长线于,,故选二、 填空题 (本题共计 3 小题 ,共计12分 )P A B C P △ABC B AF ∵AB DE BD F ∴AF =BF ,∵FD ⊥AB ,∴∠AFD =∠BFD =,30∘∠B =∠FAB =90°−30°=60°∵∠ACB =,90∘∴∠BAC =,30∘∵DE =1∴AE =2DE =2∴∠FAE =∠AFD =30∘∴EF =AE =2.B.【考点】线段垂直平分线的性质【解析】由,,即可推出,由垂直平分线的性质可推出,即可推出,根据图形即可求出结果.【解答】解:如图,∵,,∴,∵的垂直平分线交于,∴,∴,∴.故答案为:.6.【答案】【考点】线段垂直平分线的性质【解析】先求出的度数,再根据线段垂直平分线上的点到线段两端点距离相等,,可以得出,最后两角相减即可.【解答】解:在中,,,30AB =AC ∠A =40∘∠C =∠ABC =70∘AD =BD ∠A =∠ABD =40∘AB =AC ∠A =40∘∠C =∠ABC =70∘AB MN AC D AD =BD ∠A =∠ABD =40∘∠DBC =30∘3036∘∠OMN PM =PN ∠PMN =∠N Rt △OMN ∠N =27∘∴∠OMN =−=90∘27∘63∘∵PQ垂直平分,,,.故答案为:.7.【答案】②③【考点】角平分线的性质线段垂直平分线的性质【解析】此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 1 小题 ,共计8分 )8.【答案】解:∵是的垂直平分线,∴,∵,,∴的周长;∵,,∴,∵的垂直平分线交延长线于,∴,∴.【考点】线段垂直平分线的性质【解析】暂无暂无【解答】∵PQ MN ∴PM =PN ∴∠PMN =∠N =27∘∠OMP =∠OMN −∠PMN=−=63∘27∘36∘36(1)DF AB AF =BF AB +BC =6AB =AC △BCF =BC +CF +BF=BC +CF +AF =BC +AC =AB +BC =6(2)AB =AC ∠A =40∘∠ACB =∠ABC =(−)=12180∘40∘70∘AB DE BC E ∠BDE =90∘∠E =−∠ABC =90∘20∘(1)AB解:∵是的垂直平分线,∴,∵,,∴的周长;∵,,∴,∵的垂直平分线交延长线于,∴,∴.(1)DF AB AF =BF AB +BC =6AB =AC △BCF =BC +CF +BF=BC +CF +AF =BC +AC =AB +BC =6(2)AB =AC ∠A =40∘∠ACB =∠ABC =(−)=12180∘40∘70∘AB DE BC E ∠BDE =90∘∠E =−∠ABC =90∘20∘。
八年级数学上册(人教课标)同步讲解:第十五章 分式方程一二三四

一、理解分式方程的定义分母中含有未知数的方程,叫做分式方程.例如,,都是分式方程.分式方程和整式方程的最大区别就在于分母中是否含有未知数(不是一般的字母系数).例1关于x的方程:①;②;③;④;⑤.其中是分式方程的有.(只填序号)解析:根据分式方程的定义,填②③⑤.二、掌握分式方程的基本解法解分式方程的基本思想是:把分式方程转化为整式方程,然后通过求整式方程,将整式方程的解代入最简公分母中,如果最简公分母的值不为0,则整式方程的解就是原分式方程的解;否则这个解就不是原分式方程的解,原分式方程无解.例2 (2013年济宁)解方程.解:方程两边乘x(x﹣2),得x=3(x-2).解得x=3.检验:当x=3时,x(x﹣2)≠0.所以,原分式方程的解为x=3.三、了解分式的增根将分式方程变形为整式方程时,方程两边同乘以一个含有未知数的整式,约去分母,有时就可能产生不适合原分式方程的解(或根),这种解通常被称为增根.所以解分式方程一定要进行检验.分式方程检验的方法:一是将整式方程的解代入到最简公分母中,看这个最简公分母的值是否为0;二是将整式方程的解代入到原分式方程左右两边,看看两边的值是否相等.例3解方程.解:两边同乘以,得.解得.检验:当时,,因此不是原分式方程的解.所以,原分式方程无解.四、学会用分式方程解决实际问题列分式方程解实际问题的一般步骤:①审清题意:弄清题目中的已知量和未知量,并能找出表示问题含义的全部等量关系;②设未知数:有设直接未知数和间接未知数两种,并用所设的未知数表示有关的量;③找出相等关系,列出方程;④解方程;⑤检验:检验时要检验所求未知数的值是否为原分式方程的解,还要检验是否符合题目的实际意义,也就是“双重检验”;⑥写出答案:注意不要忘记答案的单位.例 4(2013年咸宁)在咸宁创建“国家卫生城市”的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,平均每天比原计划多植5棵,现在植60棵所需的时间与原计划植45棵所需的时间相同,问现在平均每天植多少棵树.分析:设现在平均每天植树x棵,则原计划平均每天植树(x﹣5)棵.根据现在植60棵所需的时间与原计划植45棵所需的时间相同建立方程求解即可.解:设现在平均每天植树x棵,则原计划平均每天植树(x﹣5)棵.根据题意,得.解得x=20.经检验,x=20是原方程的解,且符合题意.答:现在平均每天植树20棵.。
人教版初中数学八年级上册同步全解

人教版初中数学八年级上2013目录第十一章三角形 (4)本章综合解说 (4)11.1与三角形有关的线段 (4)学习目标 (4)知识详解 (4)(二)三角形的高、中线与角平分线 (5)(三)三角形的稳定性 (6)课外拓展 (9)11.2与三角形有关的角 (9)学习目标 (9)知识详解 (9)(一)三角形的内角 (9)(二)三角形的外角 (10)课外拓展 (14)11.3 多边形及其内角和 (14)学习目标 (14)知识详解 (14)(一)多边形 (14)(二)多边形的内角和 (15)课外拓展 (18)中考链接 (18)单元总结 (20)单元测试 (21)第十二章全等三角形 (28)本章综合解说 (28)12.1 全等三角形 (29)学习目标 (29)知识详解 (29)课外拓展 (34)12.2 三角形全等的判定 (34)学习目标 (34)知识详解 (34)课外拓展 (40)12.3 角的平分线的性质 (41)学习目标 (41)知识详解 (41)课外拓展 (46)中考链接 (46)单元总结 (48)单元测试 (49)第十三章轴对称 (55)本章综合解说 (55)13.1 轴对称 (55)学习目标 (55)知识详解 (56)课外拓展 (59)13.2 画轴对称图形 (59)学习目标 (59)知识详解 (59)课外拓展 (63)13.3 等腰三角形 (63)学习目标 (63)知识详解 (63)课外拓展 (68)中考链接 (69)单元总结 (71)单元测试 (72)第十四章整式的乘除与因式分解 (81)本章综合解说 (81)14.1 整式的乘法 (82)学习目标 (82)知识详解 (82)课外拓展 (86)14.2 乘法公式 (87)学习目标 (87)知识详解 (87)课外拓展 (89)14.3 因式分解 (90)学习目标 (90)知识详解 (90)课外拓展 (93)中考链接 (93)单元总结 (94)单元测试 (96)第十五章分式 (100)本章综合解说 (100)15.1 分式 (101)学习目标 (101)知识详解 (101)课外拓展 (105)15.2 分式的运算 (105)学习目标 (105)知识详解 (105)课外拓展 (110)15.3 分式方程 (111)学习目标 (111)知识详解 (111)课外拓展 (115)中考链接 (115)单元总结 (116)单元测试 (118)期中测试 (123)期末测试 (130)第十一章三角形本章综合解说学习目标1.理解三角形及有关概念,会画任意三角形的高、中线、角平分线;2.了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;3.会证明三角形内角和等于1800,了解三角形外角的性质。
2022-2023学年全国初中八年级上数学人教版同步练习(含答案解析)122023

2022-2023学年全国初中八年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 甲和乙下棋,甲执白子,乙执黑子.如图,甲、乙已经下了枚棋子,棋盘中心黑子的位置用表示,其右下角黑子的位置用表示.甲将第枚白子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是( )A.B.C.D. 2.如图, 与关于直线对称,则的度数为( )A.B.C.D.3. 四边形中,,,点,分别在边,上运动,当周长最小时,的度数为 7(−1,0)(0,−1)4(−1,1)(−2,1)(1,−2)(−1,−2)△ABC △A ′B ′C ′∠B 30∘50∘90∘100∘ABCD ∠BAD =α(<α<90∘)180∘∠B =∠D =90∘M N BC CD △AMN ∠AMN +∠ANM ()A.B.C.D.4. 下列食品标识中,不是轴对称图形的是( )A.B.C.D.5.如图,、和分别是关于,边所在直线的轴对称图形,若,则的度数为( )−α180∘+α90∘12−2α360∘−α180∘12△ABE △ADC △ABC AB AC ∠1:∠2:∠3=7:2:1∠αA.B.C.D.6. 如图,已知,点在边上,且,和分别是和上的动点,则 的最小值为( )A.B.C.D. 7. 下列四个图案中,是轴对称图形的是( )A. B.C.D.90∘108∘110∘126∘∠AOB =15∘M OB OM=4N P OM OA PM+PN 12348. 已知,为上一点且,若以点为圆心,为半径的圆与相切,则为( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形既是中心对称图形,又是轴对称图形的概率是________.10. 我国国旗上的五角星有________条对称轴.11. 如图,点是内任意一点,=,点和点分别是射线和射线上的动点,=,则周长的最小值是________.12. 如图是用两种正多边形密铺的平面图形图案中的一部分,其中一种是正方形,另一种与正方形相邻的四个正多边形是全等图形,那么这种正多边形是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图,在的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,如图中的为格点三角形,请你在下面四张图中分别画出一个与成轴对称的格点三角形(要求所画图形不重复).∠AOB =30∘P OB OP =10P OA r 53–√53–√3105P ∠AOB OP 3cm M N OA OB ∠AOB 30∘△PMN 2×2△ABC △ABC14. 如图,所有的网格都是由边长为的小正方形构成,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形,为格点三角形.如图,图,图,图都是的正方形网格,点,点都是格点,请分别按要求在网格中作图:①在图中作,使它与全等;②在图中作,使由平移而得;③在图中作,使与关于某条直线对称;如图,是一个的正方形网格,图中与关于某条直线轴对称的格点三角形有________个.15. 如图,在内,点、分别是点关于、的对称点,分别交、于、.(1)若的周长是,求的长.(2)若,试求的度数.16. 如图,在正方形网格上的一个.(每个小正方形的顶点叫做格点,其中点,,均在格点上).1△ABC(1)1236×6M N1△MNP△ABC2△MDE△MDE△ABC3△NFG△NFG△ABC(2)44×4△ABCP∠AOB M N P AO BO MNOA OB E F△PEF10cm MN∠AOB=30∘∠MON△ABC A B C作关于直线对称的(点,,的对应点分别为点,,;在上画出点,使得的值最小.(1)△ABC MN △A ′B ′C ′A B C A ′B ′)C ′(2)MN Q QA+QC参考答案与试题解析2022-2023学年全国初中八年级上数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A【考点】轴对称图形【解析】此题主要考查了轴对称图形的性质以及点的坐标.【解答】解:如图所示,甲将第枚白子放入棋盘后,所有棋子构成一个轴对称图形,所以他放的位置是.故选.2.【答案】D【考点】轴对称的性质三角形内角和定理【解析】由已知条件,根据轴对称的性质可得,利用三角形的内角和等于180°可求答案.4(−1,1)A ∠C =∠=C ′30∘解:与关于直线对称,,.故选.3.【答案】C【考点】轴对称——最短路线问题【解析】根据要使的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出关于和的对称点,″,即可得出″,进而得出″即可得出答案.【解答】解:如图所示:作关于和的对称点,,连接,交于,交于,则即为的周长最小值.∵,∴,∵,,且,,∴.故选.4.【答案】C∵△ABC △A ′B ′C ′∴∠C =∠=C ′30∘∴∠B =−∠A−∠C =−−=180∘180∘50∘30∘100∘D △AMN A BC CD A'A ∠AA'M +∠A =60∘∠AMN +∠ANM =2(∠AA'M +∠A )A BC CD A ′A ′′A ′A ′′BC M CD N A ′A ′′△AMN ∠DAB =α∠A M +∠A ′A ′′=−α180∘∠M A =∠MA A ′A ′∠NAD =∠A ′′∠M A+∠MA =∠AMN A ′A ′∠NAD+∠A ′′=∠ANM ∠AMN +∠ANM =∠M A+∠MA +∠NAD+∠A ′A ′A ′′=2(∠A M +∠A ′A ′′)=2×(−α)=−2α180∘360∘C轴对称图形【解析】根据轴对称图形的概念逐一判断即可.【解答】解:,是轴对称图形,故错误,,是轴对称图形,故错误,,是中心对称图形,不是轴对称图形,故正确,,既是中心对称图形,又是轴对称图形,故错误.故选.5.【答案】B【考点】轴对称的性质【解析】根据三角形的内角和定理和折叠的性质计算即可.【解答】解:∵,∴设,,.由得:,解得,故,,.∵和是分别沿着、边翻折形成的,∴,,,.故.在与中,,,∴,∴.故选. A A B B C C D D C ∠1:∠2:∠3=7:2:1∠1=7x ∠2=2x ∠3=x ∠1+∠2+∠3=180∘7x+2x+x =180∘x =18∠1=7×18=126∘∠2=2×18=36∘∠3=1×18=18∘△ABE △ADC △ABC AB AC 180∘∠DCA =∠E =∠3=18∘∠2=∠EBA =∠D =36∘∠4=∠EBA+∠E =+=36∘18∘54∘∠5=∠2+∠3=+=18∘36∘54∘∠EAC =∠4+∠5=+=54∘54∘108∘△EGF △CAF ∠E =∠DCA ∠DFE =∠CFA △EGF ∼△CAF α=∠EAC =108∘B6.【答案】B【考点】轴对称——最短路线问题【解析】作关于的对称点,过作于,交于,则此时的值最小,连接,得出,,,,根据含度角的直角三角形性质求出即可.【解答】解:作关于的对称点,过作于,交于,则此时的值最小,连接,则,,,,∵,∴.故选.7.【答案】D【考点】轴对称图形【解析】此题暂无解析【解答】解:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,故是轴对称图形.故选.8.【答案】M OA Q Q QN ⊥OB N OA P PM +PN OQ ∠QOA =∠AOB =15∘OQ =OM =4PM =PQ ∠QNO =90∘30QN M OA Q Q QN ⊥OB N OA P PM +PN OQ ∠QOA =∠AOB =15∘OQ =OM =4PM =PQ ∠QNO =90∘QN =OQ =×4=21212PM +PN =PQ +PN =QN =2B D DD【考点】轴对称的性质【解析】此题暂无解析【解答】此题暂无解答二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】概率公式中心对称图形轴对称图形【解析】由五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的①⑤,直接利用概率公式求解即可求得答案.【解答】解:∵五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的①⑤,∴从中抽取一张,正面图形一定满足既是中心对称图形又是轴对称图形的概率是:.故答案为:.10.【答案】【考点】2525255轴对称的性质【解析】根据轴对称图形的定义,可直接求得结果.【解答】解:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有条对称轴.故答案为:.11.【答案】【考点】轴对称——最短路线问题【解析】设点关于的对称点为,关于的对称点为,当点、在上时,的周长最小.【解答】分别作点关于、的对称点、,分别交、,连接、、.∵点关于的对称点为,关于的对称点为,∴=,=;∵点关于的对称点为,∴=,=,∴===,====,∴是等边三角形,∴===.∴的周长的最小值===.12.【答案】正八边形【考点】平面镶嵌(密铺)轴对称图形中心对称图形553cmP OA C OB D M N CD △PMN P OA OB C D OA N OP OD PN P OA C OB D PM CM OP OC P OB D PN DN OP OD OC OD OP 3cm ∠COD ∠COA+∠POA+∠POB+∠DOB 2∠POA+4∠POB 2∠AOB 60∘△COD CD OC OD 3(cm)△PMN PM +MN +PN CM +MN +DN ≥CD 7cm【解析】正八边形的每个内角为:,利用“围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角”作为相等关系列出多边形个数之间的数量关系,利用多边形的个数都是正整数可推断出能和正八边形一起密铺的多边形是正四边形.【解答】解:正四边形的每个内角是,即用两种正多边形密铺的平面图形图案中的一部分,其中一种是正方形,另一种与正方形相邻的四个正多边形是全等图形;正八边形的内角为,有,故两个正八边形与正方形可以密铺平面图形的图案,正八边形是中心对称图形.故答案为:正八边形.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:与成轴对称的格点三角形如图所示,.【考点】作图-轴对称变换【解析】根据轴对称图形的概念,画出图形即可.【解答】解:与成轴对称的格点三角形如图所示,−÷8=180∘360∘135∘90∘∵135∘+2×=90∘135∘360∘△ABC △ABC.14.【答案】解:如图中,即为所求;如图中,即为所求;如图中,即为所求.【考点】作图-轴对称变换全等图形作图-平移变换轴对称图形【解析】根据全等三角形的判定画出图形即可;根据平移的性质画出图形即可;根据轴对称的性质画出图形即可.根据轴对称的性质画出图形即可解决问题.【解答】(1)①1△MNP ②2△MDE ③3△NFG 6(1)①②③(2)①解:如图中,即为所求;如图中,即为所求;如图中,即为所求.如图,与关于某条直线轴对称的格点三角形共有个三角形.故答案为:.15.【答案】解:(1)∵、分别是点关于、的对称点,∴,,∴的周长,∵的周长等于,∴;(2)如图,连接、、.∵垂直平分,∴,∴,同理,,∵.∴.【考点】轴对称的性质(1)①1△MNP ②2△MDE ③3△NFG (2)△ABC 66M N P AO BO ME =PE NF =PF MN =ME+EF +FN =PE+EF +PF =△PEF △PEF 10cm MN =10cm OP OM ON OA MP OP =OM ∠MOA =∠AOP ∠BOP =∠BON ∠AOB =∠AOP +∠BOP =30∘∠MON =2∠AOB =60∘【解析】(1)根据轴对称的性质可得,,然后求出的周长;(2)结合线段垂直平分线的性质和等腰三角形的性质推知,,同理,,则.【解答】解:(1)∵、分别是点关于、的对称点,∴,,∴的周长,∵的周长等于,∴;(2)如图,连接、、.∵垂直平分,∴,∴,同理,,∵.∴.16.【答案】解:如图,即为所求.如图,线段与的交点即为所求.【考点】作图-轴对称变换轴对称——最短路线问题【解析】此题暂无解析【解答】解:如图,即为所求.ME =PE NF =PF MN =△PEF OP =OM ∠MOA =∠AOP ∠BOP =∠BON ∠MON =2∠AOB =60∘M N P AO BO ME =PE NF =PF MN =ME+EF +FN =PE+EF +PF =△PEF △PEF 10cm MN =10cm OP OM ON OA MP OP =OM ∠MOA =∠AOP ∠BOP =∠BON ∠AOB =∠AOP +∠BOP =30∘∠MON =2∠AOB =60∘(1)△A ′B ′C ′(2)AC ′MN Q (1)△A ′B ′C ′如图,线段与的交点即为所求.(2)AC ′MN Q。
人教版八年级上册数学同步解析

人教版八年级上册数学同步解析
人教版八年级上册数学同步解析是一种有效的学习方法,它
可以帮助学生更好地理解数学知识,提高学习效率。
首先,人教版八年级上册数学同步解析可以帮助学生更好地
理解数学知识。
它可以帮助学生更好地理解数学概念,更好地掌
握数学知识,更好地掌握数学技能,更好地掌握数学思维方法。
其次,人教版八年级上册数学同步解析可以提高学习效率。
它可以帮助学生更快地掌握数学知识,更快地掌握数学技能,更
快地掌握数学思维方法,更快地掌握数学概念,从而提高学习效率。
最后,人教版八年级上册数学同步解析可以帮助学生更好地
掌握数学知识,更好地掌握数学技能,更好地掌握数学思维方法,更好地掌握数学概念,从而提高学习效率。
总之,人教版八年级上册数学同步解析是一种有效的学习方法,它可以帮助学生更好地理解数学知识,提高学习效率。
它可
以帮助学生更快地掌握数学知识,更好地掌握数学技能,更好地
掌握数学思维方法,更好地掌握数学概念,从而提高学习效率。
因此,学生应该充分利用人教版八年级上册数学同步解析,以提
高学习效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学八年级上册2013目录第十一章三角形 (4)本章综合解说 (4)11.1 与三角形有关的线段 (4)学习目标 (4)知识详解 (4)课外拓展 (9)11.2 与三角形有关的角 (10)学习目标 (10)知识详解 (10)课外拓展 (13)11.3 多边形及其内角和 (13)学习目标 (13)知识详解 (13)课外拓展 (18)单元总结 (18)单元测试 (20)第十二章全等三角形 (25)本章综合解说 (25)12.1 全等三角形 (26)学习目标 (26)知识详解 (26)课外拓展 (32)12.2 三角形全等的判定 (33)学习目标 (33)知识详解 (33)课外拓展 (39)12.3 角的平分线的性质 (39)学习目标 (39)知识详解 (39)课外拓展 (43)单元总结 (43)单元测试 (47)第十三章轴对称 (52)本章综合解说 (52)13.1 轴对称 (53)学习目标 (53)知识详解 (53)课外拓展 (57)13.2 画轴对称图形 (57)学习目标 (57)知识详解 (58)课外拓展 (62)13.3 等腰三角形 (62)学习目标 (62)知识详解 (62)课外拓展 (67)13.4 课题学习最短路径问题 (67)学习目标 (67)知识详解 (67)课外拓展 (72)单元总结 (72)单元测试 (75)第十四章整式的乘法与因式分解 (82)本章综合解说 (82)14.1 整式的乘法 (83)学习目标 (83)知识详解 (83)课外拓展 (87)14.2 乘法公式 (87)学习目标 (87)知识详解 (87)课外拓展 (90)14.3 因式分解 (91)学习目标 (91)知识详解 (91)课外拓展 (94)单元总结 (94)单元测试 (97)第十五章分式 (102)本章综合解说 (102)15.1 分式 (102)学习目标 (102)知识详解 (103)课外拓展 (106)15.2 分式的运算 (106)学习目标 (106)知识详解 (106)课外拓展 (110)15.3 分式方程 (110)学习目标 (110)知识详解 (110)课外拓展 (113)单元总结 (113)单元测试 (116)期中测试 (120)期末测试 (129)第十一章三角形本章综合解说学习目标1.理解三角形及与三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性。
2.理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和。
3.了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并掌握多边形的内角和与外角和公式。
内容提要三角形是一种基本的几何图形,本章在线段与角、相交线与平行线的基础上介绍三角形的概念与性质,进而研究多边形的概念与性质。
在本章,学生进一步学习通过推理得出数学结论的方法,提高推理能力。
本章的有关内容有广泛的实际应用,也是学习各种特殊三角形(如等腰三角形、直角三角形)与平行四边形等图形知识的基础。
学法指导三角形是基本的几何图形之一,在生产和生活中有广泛的应用。
教科书通过举出三角形的实际例子让学生认识和感受三角形,形成三角形的概念。
多边形概念的引入,也是类似处理的。
三角形有很多重要的性质,如稳定性,三角形的内角和等于180°。
教科书在介绍三角形的稳定性的同时,顺带介绍了四边形的不稳定性,这些内容是通过如下的实际问题引入的:“盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?”。
然后通过实验得出三角形有稳定性,四边形没有稳定性的结论,进而明白在上述实际问题中“斜钉一根木条”的道理。
除此之外,教科书还举出了一些应用三角形的稳定性,四边形的不稳定性的实际例子。
对于三角形的内角和等于180°,教科书则安排求视角的实际问题作为例题,加强与实际的联系。
11.1 与三角形有关的线段学习目标1.认识三角形,能用符号语言表示三角形,并把三角形分类。
2.知道三角形三边不等的关系。
3.懂得判断三条线段能否构成一个三角形的方法,并能用于解决有关的问题。
知识详解1.三角形的边由不在同一条直线的三条线段首尾顺次相接所组成的图形叫做三角形。
如图,顶点是A,B,C的三角形,记作:“△ABC”,读作三角形ABC。
边:组成三角形的三条线段叫做三角形的边,如图,线段AB,BC,CD是三角形的边。
顶点:相邻两边的公共端点叫做三角形的顶点。
内角:相邻两边组成的角叫做三角形的角。
如图,∠A,∠B,∠C是三角形的角。
2.三角形的分类不等边三角形三角形按边分类:底和腰不相等的等腰三角形等腰三角形等边三角形锐角三角形三角形按角分类:直角三角形钝角三角形3. 三角形三边的关系:三角形任意两边之和大于第三边;任意两边之差小于第三边。
三角形两边之和大于第三边指的是三角形中任意两边之和都大于第三边,即a+b>c,c+b >a,a+c>b三个不等式同时成立。
注意:①判定三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可②在实际运用中,已经两边的长度,则第三边的取值范围为:两边之差<第三边<两边之和作用:①利用三角形的三边关系,在已知两边的三角形中可以确定第三边的取值范围;②根据所给三条线段长度判断这三条线段能否构成三角形;“两点之间线段最短”是三边关系得出的理论依据。
4. 三角形的高、中线、角平分线(1)三角形的高概念:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
注意:①三角形的高是线段;②锐角三角形的三条高都在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点。
(2)三角形的中线在三角形中,连接一个顶点与它对边的中点的线段,叫做三角形的中线。
注意:①三角形的中线是线段;②三角形三条中线全在三角形内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成面积相等的两个三角形。
重心:三角形三条中线的交点叫做三角形的重心。
(3)三角形的角平分线在三角形中,一个角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;④可以用量角器画三角形的角平分线。
5. 三角形的稳定性三角形具有稳定性,而四边形没有稳定性。
【典型例题】例1:如图,图中三角形的个数为()A .2B .18C .19D .20【答案】D【解析】线段AB 上有5个点,线段AB 与点C 组成5³(5-1)÷2=10个三角形;同样,线段DE 上也有5个点,线段DE 与点C 组成5³(5-1)÷2=10个三角形,图中三角形的个数为20个,故选D 。
例2:如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个。
【答案】21【解析】根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n 个图形中,三角形的个数是4n -3.所以当n=6时,原式=21。
例3:在△ABC 中,有一点1p ,当1p 、A 、B 、C 没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC 内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:【答案】【解析】当△ABC内有1个点时,构成不重叠的三角形的个数是3=1³2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2³2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3³2+1=7;当有1007个点时,三角形的个数是1007³2+1=2015【误区警示】易错点1:根据三角形的三边不等关系确定未知字母的范围1. 三角形的三边分别为3,1-2a,8,则a的取值范围是()A.-6<a<-3B.-5<a<-2C.2<a<5D.a<-5或a>-2【答案】B【解析】根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B。
易错点2:三角形三边关系2. 下列长度的三条线段(单位:厘米)能组成三角形的是()A.1,2,3.5B.4,5,9C.5,8,15D.6,8,9【答案】D【解析】选择最短的两条线段,计算它们的和是否大于最长的线段,若大于,则能构成三角形,否则构不成三角形,只有6+8=14>9,所以D能构成三角形。
【综合提升】针对训练1. 三角形的三条高在()A.三角形的内部B.三角形的外部C.三角形的边上D.三角形的内部、外部或边上2. 如图,AE是△ABC的中线,EC=6,DE=2,则BD的长为()A.2 B.3 C.4 D.63. 在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个1.【答案】D【解析】三角形的三条高交于一点,但有三种情况:当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部,所以只有D正确。
2.【答案】C【解析】因为AE是△ABC的中线,所以BE=EC=6.又因为DE=2,所以BD=BE-DE=6-2=43.【答案】10【解析】∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5【中考链接】A.3B.4C.9 2D.5【答案】C【解析】∵点P在y=1x上,∴|x p|³|y p|=|k|=1,∴设P的坐标是(a,1a)(a为正数),∵PA⊥x轴,∴A的横坐标是a,∵A在y=-2x上,∴A的坐标是(a,-2a),∵PB⊥y轴,∴B的纵坐标是1a,∵B在y=-2x上,∴代入得:1a=-2 x ,解得:x=-2a,∴B的坐标是(-2a,1a),∴PA=|1a-(-2a)|=3a,PB=|a-(-2a)|=3a,∵PA⊥x轴,PB⊥y轴,x轴⊥y轴,∴PA⊥PB,∴△PAB的面积是:12PA³PB=12³3a³3a=92课外拓展三角形具有稳定性,有着稳固、坚定、耐压的特点。