最新北师大版高中数学必修二《平行关系的性质》...

合集下载

高中数学北师大版必修二《1.5.2平行关系的性质》课件PPT

高中数学北师大版必修二《1.5.2平行关系的性质》课件PPT

由此易知三者之间可以任意转化.另一种转化就是空间问题平 面化,辅助面在转化空间问题为平面问题中有着重要作用.
3.有关线面、面面平行的判定与性质,可按下面的口诀去记忆 空间之中两直线,平行相交和异面. 线线平行同方向,等角定理进空间. 判断线和面平行,面中找条平行线; 已知线和面平行,过线作面找交线. 要证面和面平行,面中找出两交线. 线面平行若成立,面面平行不用看. 已知面与面平行,线面平行是必然. 若与三面都相交,则得两条平行线.
∵M,N,K 分别为 AE,CD1,CD 的中点,
∴MK∥AD,NK∥DD1. 又∵MK 平面 ADD1A1,NK AD,DD1 平面 ADD1A1,
平面 ADD1A1,
∴MK∥平面 ADD1A1,NK∥平面 ADD1A1, 又 MK∩NK=K,∴平面 MNK∥平面 ADD1A1. 又 MN 平面 MNK,MN 平面 ADD1A1, ∴MN∥平面 ADD1A1.
规律方法 以符号语言为载体考查位置关系问题的判断题,是 高考选择题考查立体几何的主要形式,要熟悉相关定理是前提, 全面分析问题是关键,合理应用模型及排除法是常用方法.
【变式 1】 两个相交平面分别过两条平行直线中的一条,则它 们的交线和这两条平行直线是什么位置关系?试说明理由. 解 平行. 如右图,已知 a α,b β,a∥b,α∩β=l. 因为 a α,b⃘α,且 a∥b,所以 b∥α.
【解题流程】 α∥β → AB∥A′B′,BC∥B′C′,AC∥A′C′
→ 线段成比例 → S△A′B′C′ [规范解答] 相交直线 AA′、BB′所在平面和两平行平面 α、β 分 别相交于 AB、A′B′, 由面面平行的性质定理可得,AB∥A′B′.(2 分) 同理相交直线 BB′、CC′确定的平面和平行平面 α、β 分别相交 于 BC、B′C′,从而 BC∥B′C′. 同理易证 AC∥A′C′.(4 分)

新版高中数学北师大版必修2课件1.5.2平行关系的性质

新版高中数学北师大版必修2课件1.5.2平行关系的性质
-17-
5.2 平行关系的性质
首页
Z H 自主预习 IZHUYUXI
合作学习
EZUOXUEXI
D当堂检测 ANGTANG JIANCE
探究一
探究二
易错辨析
正解取D1D的中点G,连接EG,GC, ∵E是A1A的中点,G是D1D的中点,∴EG������ AD. 由正方体性质知AD������ BC,∴EG������ BC. ∴四边形EGCB是平行四边形,∴EB������ GC.① 又∵G,F分别是D1D,C1C的中点,∴D1G������ FC. ∴四边形D1GCF为平行四边形,∴D1F������ GC.② 由①②知EB������ D1F,∴四边形BED1F是平行四边形. 纠错心得1.立体几何问题只有在转化为平面几何问题后才能直
-6-
5.2 平行关系的性质
首页
Z H 自主预习 IZHUYUXI
合作学习
EZUOXUEXI
D当堂检测 ANGTANG JIANCE
做一做2 平面α∥平面β,平面γ∥平面δ,且 α∩γ=a,α∩δ=b,β∩γ=c,β∩δ=d,则交线a,b,c,d的位置关系是 ( )
A.互相平行 B.交于一点 C.相互异面 D.不能确定 解析:由面面平行的性质定理,可知答案为A. 答案:A
探究一
探究二
易错辨析
探究二平面与平面平行的性质及其应用
【例2】 如图所示,在三棱柱ABC-A1B1C1中,平面ABC∥平面 A1B1C1.若D是棱CC1的中点,在棱AB上是否存在一点E,使DE∥平面 AB1C1?并证明你的结论.
分析:先找出过DE与平面AB1C1平行的平面,可直接找出过D、E 与△AB1C1的三边平行的直线,进而确定平面,然后确定其与棱AB的 交点,即可找出E点位置,然后利用定理进行证明即可.

高中数学北师大版必修2课件:第一章立体几何初步1-5-2平行关系的性质课件PPT

高中数学北师大版必修2课件:第一章立体几何初步1-5-2平行关系的性质课件PPT
1.5.2 平行关系(1)
问题引入
1. 直线和平面有哪几种位置关系? 平行、相交、在平面内
2. 反应直线和平面三种位置关系的根据 是什么?
公共点的个数
没有公共点: 平行
仅有一个公共点:相交 无数个公共点: 在平面内
问题引入
3. 直线和平面平行的判定定理
如果平面外的一条直线和平面内 的一条直线平行,那么这条直线和这 个平面平行.
问题引入
4. 线面平行的判定定理解决了线面 平行的条件;反之,在直线与平面平行 的条件下,会得到什么结论?
问题讨论
1. 若直线l∥平面α,则直线l与平面α 的直线的位置关系有哪几种可能?
l
a
b
问题讨论
2. 若直线l ∥平面α,则在平面α内与 l 平行的直线有多少条?这些与l平行的 直线的位置关系如何?
且AC、BD与 β,分别相 交于点C, D.
求证:AC=BD.
证明:
∵AB∥β ,
平面AD∩β=CD ∵AC∥BD
∴AB∥CD
∴ABCD是平行四边形 ∴AC=BD
例题解析
例3.在四面体ABCD中,E、F分别是 AB、AC的中点,过直线EF作平面α,分别 交BD、CD于M、N,求证:EF∥MN.
A
E
a
c
b
α
β
γ
例题解析
证明:因为 b,所以b
因为a // b
所以a // ,
又因为 a,所以a
又因为 c
所以a // c,因为a // b
所以b // c
课堂练习
Ø1. 复习直线与平面的位置关系; Ø2. 复习直线与平面平行的判定; Ø3. 学习并掌握直线与平面平行的 性质.

高中数学北师大版必修二 1.5.2平行关系的性质 课件(36张)

高中数学北师大版必修二 1.5.2平行关系的性质 课件(36张)

目标导航
预习引导
预习交流 3
若平面 α∥平面 β,直线 a⫋α,那么 a 与 β 的位置关系是怎样的? 提示:a∥β.由于 α∥β,所以 α 与 β 没有公共点,而 a⫋α,所以 a 与 β 也没有公共点.故必有 a∥β.由此可得到证明线面平行的一种新方法,即 转化为面面平行.
预习交流 4
若平面 α∥平面 β,直线 a⫋α,直线 b⫋β,那么 a 与 b 的位置关系是怎 样的? 提示:直线 a 与 b 可能平行,也可能异面,但不可能相交.
问题导学
当堂检测
证明:连接 AC 交 BD 于 O,连接 MO, ∵ 四边形 ABCD 是平行四边形, ∴ O 是 AC 的中点.又 M 是 PC 的中点, ∴ AP∥OM. 又 OM⫋平面 BMD,AP⊈ 平面 BMD,∴ AP∥平面 BMD. ∵ 平面 PAHG∩平面 BMD=GH,AP⫋平面 PAHG, ∴ AP∥GH.
(1)求证:AC∥BD; (2)已知 PA=4 cm,AB=5 cm,PC=3 cm,求 PD 的长.
问题导学
当堂检测
思路分析:由 PB 与 PD 相交于点 P 可知 PB,PD 确定一个平面,结合 α∥β,可使用面面平行的性质定理推出线线平行关系,这样就转化为平 面问题.
问题导学
当堂检测
(1)证明:∵ PB∩PD=P, ∴ 直线 PB 和 PD 确定一个平面 γ, 则 α∩γ=AC,β∩γ=BD. 又 α∥β,∴ AC∥BD. (2)解:由(1)得 AC∥BD,∴ ∴=
目标导航
预习引导
2.平面和平面平行的性质定理 (1)文字叙述: 如果两个平行平面同时与第三个平面相交,那么它们的交线平行. (2)符号表示: ������ ∥ ������ ������⋂������ = a ⇒ a∥b. ������⋂������ = b (3)图形表示:

高一数学(北师大)必修2课件:1.5.2平行关系的性质

高一数学(北师大)必修2课件:1.5.2平行关系的性质

1•理解线面平行的性质定理2•理解面面平行的性质定理3•能够利用两个定理解决有关问题.HI首页X褊嚴E DWf 思维脉络首页1・直线与平面平行的性质定理文字语言:如果一条直线与一个平面平行,那么过该直线的任意一个平面与已知平面的交线与该直线符号语言:川%压0QCI0二图形语言:作用:证明两条—平行.首页做一做1如图所示,在四棱锥P-ABCD中,分别为A C,PC上的点,且MNII平面丹10,则()A.MNWPDB.MNIIB4C.MNWADD.以上均有可能PBX名师点拨:;I正确理解线面平行的性质定理:(1)克线与平面平行的性质定理中有三个条件:①直线/和平面僅平行。

即/ //a;②平面a』相交亍即g Dp=b ;③直线I在平面0内,即库乩这三个条件缺一不可.(2)线面平行的性质定理可以作为证明线线平行的一种方法.(3)在应用线面平行的性质定理时亍往往会出现这样的易错点fa. // 宰趴所以a //,所以在应用时要谨慎.; (4)线面平行的判定定理与性质定理常常交桥使周::先通过线线平行找出线面平行"再通过线面平行推出线线I平行,其关系可用以下关系链表示:i 「囊线]在平面内作您丽|经过直线作或找平翦|...... •平行…或找二篆直线八平行t面号平WT的交线"•平行..DWf D 鵜細ANC首页2 •平面与平面平行的性质定理文字语言:如果两个平行平面同时与第三个平面相交,那么它们的•平行.符号语言:a II p.a^\y-a,p^\y-b^c图形语言:作用:证明直线与直线DWf D為絲狐观首页做一做2 平面a II平面0,平面y II平面5,且aC\y=a,ar\3=b,j3C\y=c^r\3=d,则交线a.b.c.d的位置关系是()A.互相平行 B.交于一点C.相互异面D.不能确定解答,(名师点拨JIa正确理解面面平行的性质定理:(1)面面平行的性质定理可以作为证明线线平行的一1种方法;I] (2〉已知两个平面平行'虽然一个平面内的任何直线I〕椰平行于另一个平面’但是这两个平面内的所有直线并不II-定相互平行.[ (3)面面平行的其他性质:: II ①两个平行平面中,一个平面内的直线必平行于另一: I个平面.简言之严面面平行,则线面平行「这可以作为证iII明銭面平行的一种方法. i I ②夹在两个平行平面间的平行践段相等. i I ③两个平面都与第三个平面平行.那么这两个平面互i 「相平行+i I: ④两条直线被三个平行平面所截.截得的对应线段成1II比仙i Ii ⑤经过平面外一点有JI只有一个平面与已知平面平行.=DWf D為絲狐观首页思考辨析判断下列说法是否正确,正确的在后面的括号内打“V”,错误的打“X”.(1)如果三个平面a,0,y满足a\\p\\y,且平面5与这三个平面相交,交线分别为d上G则有a II b II c成立()(2)若直线"与平面a不平行,过直线“的平面”与平面a的交线为/,则" 与/不平行.()(3)若直线"与平面a平行,则直线“一定平行于平面a内所有的直线. ()首页X籀嚴E探究一直线与平面平行的性质及其应月【例1】如图所示,己知四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和仲作平面交平面BDM于GE求证:APWGH.首页X籀嚴E D嘉絲邀IANC 探究一探究二探究二易错辨析证明涟接A C交BD于点O,连接MO.:四边形ABCD是平行四边形,・:0是AC的中点.又M是PC的中点,・II OM.・・OMM平面BMDAPE平面BMD..9.AP\\平面BMD :•平面BAHGA平面BMD=GHAP圧平面PAHG./.APWGH.首页X籀嚴E探究一探究二探究二易错辨析c反恩感悟上: :: 如果已知亢线与平面平行,在利用直线与平面平行的;ti性质定理时■常作过此克线与已知平面相交的辅助平面.i: : I完成线面平行向线线平行的转化"再由线线平行向线面平II行转化•这种互相转化的思担方法的应用「在立体几何中;[十IANC 分常见. ii 「'■ta ■■ ■«*■ ■ * ■ ■・■・■■■■・■■心■ ■■■“■ ■ a:■ ■・■•■■!&■ ■■■■■■<!■ ■ is ■ ■■■■■■■】■■■■(■■■•■■•■ ■■■«■■ m ■首页X籀嚴E变式训练1如图所示亦n”二CD/zn尸EF0PI尸A5ABII久求证:CDWEF.探究二平面与平面平行的性质及其应用【例2】如图所示,已知刖風点P 是平面切外的一点(不在a 与”之 间),直线P5"分别与a,0相交于点A,〃和CQ(1) 求证:ACIIBD;(2)若PA=4 cm,AB=5 cmfC二3 eg求PD的长.分析:由PB与PD相交于点P可知P5PD确定一个平面,结合a II几可使用面面平行的性质定理推出线线平行关系,这样就转化为平面问题.I反思感悟)利用面面平行的性质定理证明线线平行的基本步骤: (1 }先找两个平面,使这两个平面分别经过这两条直线中的一条;(2)判定这两个平面平行;(3)再找一个平面.使这两条直线椰在这个平面内;(4)由定理得出结论.首页X籀嚴E D嘉絲邀IANC 探究一探究二探究二易错辨析变式训练2在正方体中,作截面EFGH(如图所示)交GDA1B/5CQ分别于点E,FGH,则四边形EFGH的形状为()A.平行四边形B.菱形C.矩形D.梯形首页X籀嚴E解析:由于正方体中平面ABB X A X\\平面DCCQi,又截面EFGH与平面ABB{A{.平面DCC X D X分别相交于由面面平行的性质定理知GFHEH;同理可得EFWGH,故四边形EFGH —定是平行四边形,故选A.首页X籀嚴E D嘉絲邀IANC探究三平行关系的综合问题【例3】如图所示,在底面是平行四边形的四棱锥P-ABCD中,点E在PD上,且PE /ED=2 :1,在棱PC上是否存在一点F,使BFII平面AEC?并证明你的结论.i!l首页探究一探究二探究二易错辨析分析:可从“若两个平面平行,则一个平面内的任一直线都与另个平面平行”这一结论入手考虑,作过点B与平面AEC平行的平与PC的交点就是要找的点.首页X 籀嚴ED 嘉絲邀IANC探究一探究二探究二易错辨析解:存在•当F 是棱PC 的中点时,BFII 平面AEC ,证明如下: 取PE 的中点M,连接FMJBF,则FMII CE.因为FW 平面AECCE9平面AEC,所以FM11平面AEC.① 由EM 二 -PE 二ED,知E 是MD 的中点,连接2设BD n A C 二0则0为BD 的中点,连接OEMBMWOE.因为BMg 平 探究一 探究二 探究二易错辨析由FMHBM=M,得平面BFMW 平面AEC. 因为BFM 平面BFM,所以BF11平面AEC.P首页X籀嚴E匚反思感悟j 空间中三种平行关系的转化| L由面面平行的性质知,当a //P时,若/呈s则必有:1//P,因此可通过面面平行来证明线面平行.1 2.空间中三种平行关系的转化如下:线线平行i 3■在解决问题时▼论证平行关系亍用判定定理;已知平!行关系,则用性质定理.变式训练3如图所示屮为平行四边形ABCD所在平面外一点,点M,N 分别为AB,PC的中点,平面PADH平面PBC=l.(1)求证:BCIIZ;⑵MN与平面是否平行?证明你的结论.探究一探究二探究二易错辨析证明:如图所示,取PD的中点£连接ENAE,又因为N为PC的中点,所以EN |DC.在平行四边形ABCD ^.CD AB,又M为AB的中点,所以EN AM.所以四边形A MNE为平行四边形,所以AE〃MN. 又AE仝平面PAD,MN工平面PAD,所以MW〃平面PAD.在立体证明中错套平面几何定理而致误典例如图所示,已知EF分别是正方^ABCD-A X B X C{D X的棱AA^CC,的中点•求证四边形BEDpF是平行四边形.错解:在正方^ABCD-A X B X C X D^,平面A X ADD X\\平面B X BCC{, 由面面平行的性质定理得D{E\\FB.同理QiFHEB,故四边形EEFD、为平行四边形.正解:取DiD的中点G,连接EG,GC,:K是AiA的中点,G是DiD的中点,• ••EG AD.由正方体性质知AD BC. /.EG BC.•:四边形EGCB是平行四边形,•:EB GC.又:GF分别是DiACiC的中点,•:D1G FC.•:四边形DiGCF为平行四边形,•:D\F GC. ② 由①參口EB DiF,•:四边形BEDiF是平行四边形.工纠错心得」III L立体几何问题只有在转化为平面几何问题后才能I直接使•用平面几何知识解决,正确的解题思路是将立体几「何问题转化为平面几何问题再证明.: 2•错解中就是担当然认为四边形EEDiF一是平面图I[形,而没有必要的说理••■■■■■■■—■■■■■■■■■■■■■■■■■■■■■■■■■■—■■■■■■■■■■■■■■■■■■0■■■■■■■■■■■■■■■■■首页X初虢弟E D煮腦t®1 •如果直线t/平行于平面%则下列说法正确的是()A.平面a内有且只有一条直线与“平行B.平面a内有无数条直线与“平行C.平面a内不存在与“平行的直线5 D.平面a内任一条直线都与d平行首页X初虢弟E D煮腦t®20 3 4 52•若平面a II平面堆禹则a与b~定是()A.平行直线B.异面直线c・相交直线 D.无公共点的直线53•如图所示,在正四棱柱ABCDTBGD中,E,F,G,H分别是棱CCiCmDDC的中点、,N是BC的中点,点M在四边形EFGH的边上及其内部运动,则M满足条件 ______________ 时,有MNII平面B、BDD\・INA B5解析:连接F&由题意知,HNII平面B、BDD「FH\\平面B、BDD「且HNOFH二H、所以平面NHFW平面B X BDD X.所以当M在线段HF上运动时,有MNII平面B X BDD{.5 A B矗X麴競E DSM?2 23 ④4•已知三棱锥缶BCD中二/截面EFGH与AB.CD都平行,则截面EFGH的周长是_____________ .首页1 2 3 [J] 5解析:截面肯定是平行四边形,且篇=务,所以EF=—a, R理空=—.AC AB AC所以FG=W@所以EF+FG=a. 所以截面EFGH的周长为2么N(5•在正方WABCD-A X B X C{D X中,分别为棱A/】与BC的中点,求证:EFII平面AiACC]・首页X褊嚴E DWf12 3 41-22345证明:取B[C]的中点G,连接EG ,GF因为EG 分别是A]Bi ,BiC\的中点,所以EGIIAG 因为 EG0 平面 A {ACC V A X C X ^ 平面 A X ACC X , 所以EG II 平面A X ACC V同理個为G ,F 分别是B^C^BC 的中点,所以GF\\C X C. 因为GFg 平面A]ACG ,C]C2平面A X ACC 所以GFW首页X 褊嚴E DWf1,平面A l ACC l・因为EGRGF=G,所以平面EFGW平面A X ACC X.又EF9平EFG,所以EFII平面A{ACC1-。

北师大版高中数学必修2课件1.5平行关系的性质课件(数学北师大必修二)

北师大版高中数学必修2课件1.5平行关系的性质课件(数学北师大必修二)
( )
⑹ 若 a ∥ , a ∥ ,则 ∥ .
二、知识应用: 题型二 线面平行的性质应用
例 2. 一木块如图所示,棱 BC 平行于面 A' C' .⑴ 要经过面 A' C' 内的 一点 P 和棱 BC 将木料锯开,应怎样画线?⑵ 所画的线与平 面 AC 是什么位置关系?
D’
解:⑴ 过 p 画一条直线与 B C 平行,即可; (2) l∥ B C , B C ∥面 AC,则 l 平行于面 AC.
第五节·平行关系
5.2 平行关系的性质
一、新课讲授:
1.直线和平面平行的性质
文字语言:直线和平面平行的性质定理:一条直线与一个平面平行, 则过这条直线的任一平面与此平面的交线与该直线平行.
图形语言:
符号语言: a / / , a ,
= b a / /b .
一、新课讲授:
2. 两平面平行的性质
c ,∴a∥c.
∵ a∥b,∴b∥c.∵ b , c ,∴ b ∥ .
二、知识应用: 题型三 面面平行的性质应用
C
例 4. 已知两条异面直线 AB , CD 与三个平行平面 , , 分别相交于 A, E , B 及 C , F , D .又 AD , BC 与平面的交点为 H , G . A EHFG 求证:四边形 为平行四边形.
⑴ 文字语言:两平面平行,则其中一平面内的任一条直线都 平行于另一平面.
图形语言:

a

符号语言:若 // , a ,则 a // .
一、新课讲授:
2. 两平面平行的性质
⑵ 文字语言:平面和平面平行的性质定理:如果两个平行平面同时与第三个 平面相交,那么它们的交线平行. 图形语言:

高中数学北师大版必修2第一章立体几何初步1.5.2平行关系的性质2

高中数学北师大版必修2第一章立体几何初步1.5.2平行关系的性质2


4
5


=

.

=
反思解决已知两个平面平行的问题时,通常用到面面平行的性质.
面面平行是平行中的“最高级”,利用面面平行的性质“降低”其档次,
即转化为线面平行或线线平行.
题型一
题型二
题型三
【变式训练2】 例2中若点P在α与β之间,在第(2)问的条件下,求
PD的长.


解:仿照例 2 易证得 AC∥BD,∴ = ,
∴四边形MNPQ为平行四边形.
题型一
题型二
题型三
题型二
面面平行性质的应用
【例2】 如图所示,已知α∥β,P是平面α,β外的一点(不在α与β之
间),直线PB,PD分别与α,β相交于点A,B和C,D.
(1)求证:AC∥BD;
(2)已知PA=4,AB=5,PC=3,求PD的长.
分析:由PB与PD相交于点P可知PB,PD确定一个平面,结合α∥β,
题型一
线面平行性质的应用
【例1】 已知平面α∩平面β=l,直线a∥α,a∥β.
求证:a∥l.
分析:先利用线面平行的性质将线面平行转化为线线平行,再利
用平行公理证明.
证明:如图所示,过a作平面γ交平面α于b.
∵a∥α,∴a∥b.
过a作平面δ交平面β于c.
∵a∥β,∴a∥c.∴b∥c.
又b⊈β,c⫋β,∴b∥β.
又四边形A1B1C1D1是平行四边形,
∴A1B1∥C1D1,从而AB∥CD.
同理BC∥AD,故四边形ABCD是平行四边形.
1
2
3
4
5
5.有一块木料如图所示,已知棱BC平行于面A'B'C'D',要经过木料表

高中数学第一章立体几何初步5平行关系5.2平行关系的性质课件北师大版必修2

高中数学第一章立体几何初步5平行关系5.2平行关系的性质课件北师大版必修2

B.EF∥BC
C.EF与BC异面
D.以上均有可能
答案:B
4.过正方体ABCD-A1B1C1D1的三顶点A1,C1,B的平面与底面 ABCD所在的平面的交线为l,则l与A1C1的位置关系是 ________.
答案:平行
考点一 直线与平面平行性质的应用 [典例] 如图,在三棱锥 P-ABQ 中,E,F,C,D 分别
[类题通法] 1.空间中各种平行关系相互转化关系的示意图
[类题通法]
2.证明直线与直线平行的方法 (1)平面几何中证明直线平行的方法.如同位角相等,两直 线平行;三角形中位线的性质;平面内垂直于同一直线的两条 直线互相平行等; (2)公理 4; (3)线面平行的性质定理; (4)面面平行的性质定理. 3.证明直线与平面平行的方法 (1)线面平行的判定定理; (2)两个平面平行,其中一个平面内的任意一条直线平行于 另一个平面.
三、基本技能·素养培优
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)如果一条直线和一个平面平行,则这条直线只和这个平面内
一条直线平行.
(× )
(2)若a∥α,则在α内存在直线与a平行.
(√ )
(3)若平面α,β平行,γ∩α=a,γ∩β=b,在β中除了b之外还有
无数条直线平行于直线a.
[针对训练]
如图,P 是平行四边形 ABCD 所在平面外的一点,M 是 PC 的 中点,在 DM 上取一点 G,过点 G 和 AP 作平面,交平面 BDM 于 GH.求证:AP∥GH.
证明:如图,连接 AC 交 BD 于点 O,连接 MO. ∵四边形 ABCD 是平行四边形, ∴点 O 是 AC 的中点. 又∵点 M 是 PC 的中点,∴AP∥OM. 又∵AP 平面 BDM,OM 平面 BDM, ∴AP∥平面 BDM. ∵平面 PAHG∩平面 BDM=GH, AP 平面 PAHG,∴AP∥GH.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

讲授新课
讨论: 两个平面平行,其中一个平面内的直线
与另一个平面有什么位置关系? 两个平行平面内的直线有什么位置关系? 当第三个平面和两个平行平面都相交,
两条交线有什么关系?为什么?
探究:如果两个平面平行,两个平面内的直 线有什么位置关系?
借助长方体模型探究 结论:如果两个平面平行,那么两个平面内 的直线要么是异面直线,要么是平行直线. 北师大版高中数学必修二《平行关
α
a
又因为a,b同在平面γ内,
所以,a∥b
b
β
北师大版高中数学必修二《平行关 系的性质》...
性质定理:两个平行平面同时和第 三个平面相交,那么它们的交线平行.
符号语言:
//
a,
a // b
b
a
b
例1 求证:夹在两个平行平面间的两条 平行线段相等.
已知: //, A/B C / , D 且 A , C , B, D .
()
⑶若直线a和平面, 都平行,则 与平 行 .
()
⑷若平面外的两条平行直线中的一条平行于这
个平面,则另一条也平行于这个平面. ( )
例2 若平面外的两条平行直线中的一条平行于 这个平面,则另一条也平行于这个平面.
已知:直线a、b,平面,且a//b,a//,b,
求证:b//.
证明:过a作平面,且 c, a
⑷夹在两个平行平面间的所有平行线段相等
4、线线平行线面平行面面平行,要注意这 里平行关系的互相转化. 5、注意辅助线、辅助面的作法 北师大版高中数学必修二《平行关
系的性质》...
课后作业 课本P34习题A组 7;B组 3.
系的性质》...
探究 :当第三个平 面和两个平行平面 都相交时,两条交 线有什么关系?
β
答:两条交线平行.
α
a
b
下面我们来证明这个结论
北师大版高中数学必修二《平行关 系的性质》...
如图,平面α,β,γ满足α∥β,α∩γ=
a,β∩γ=b,求证:a∥b
证明:∵α∩γ=a,β∩γ=b
γ
∴aα,bβ ∵α∥β ∴a,b没有公共点,
1. 已知直线a与平面平行,那么直线a与平面 内的直线有什么位置关系?
a 异面 或 平行
2. 什么条件下,平面内的直线与直线a平行
呢? 若“不异面(共面)”必平行
解决问题
已知:直线a∥平面, a , b.
求证:a∥b.
a
b
证明:b, b 又 , 因为a//
∴a与b无公共点.
又∵ a , b , 即a与b共面. ∴ a∥b.
作直线EF//B'C&##39;、C'D'于点E、F, A'
P E
C'
连结BE、CF,
B'
D
C
则EF、BE、CF为 应画的线.
A
B
直线与平面平行的性质定理与判定定理的运用: 例1 如图所示的一块木料中,棱BC平行于面A'C'. ⑴要经过面内的一点P和棱BC将木料锯开,应 怎样画线?
a
b
2.判定定理与性质定理展示的数学思想方法: ⑴判定定理.线线平行 线面平行 ⑵性质定理.线面平行 线线平行
3、两个平面平行具有如下的一些性质:
⑴如果两个平面平行,那么在一个平面内的所 有直线都与另一个平面平行
⑵如果两个平行平面同时和第三个平面相交, 那么它们的交线平行.
⑶如果一条直线和两个平行平面中的一个相交, 那么它也和另一个平面相交
A1
∵PQ//面AB1,P Q 面 D 1 A B 1 , P
面 D 1A1 B 面 A1 B A1,B D
∴PQ//AB1,
PQ
1 2
AB1
2 2
.
A
C
Q
1
B1
C B
平面与平面平行的性质
北师大版高中数学必修二《平行关 系的性质》...
复习引入
1. 线面平行、面面平行的判定定理 2. 线面平行的性质定理
平行关系的性质
北师大版高中数学必修二《平行关 系的性质》...
直线与平面平行的性质
北师大版高中数学必修二《平行关 系的性质》...
复习引入
1.直线与直线的位置关系有
相交 共面
平行 异面
2.直线与平面平行的判定方法:
⑴定义法;
⑵判定定理. 线线平行 线面平行
a
b a//
a // b
a
b
思考问题
求证: AB=CD.
C
A
D B
例2 已知: l, m是两条异面直线,l∥平面, l∥平面,m∥面,m∥平面, 求证: ∥.
S l1 m1
P l
m
l2 m2
练习
1. 若∥,∥,求证: ∥ .
a
b
2. 教材P33练习2.
a'
b'
an
bn
课堂小结
1.直线与平面平行的性质定理
a//
a b a∥b.
讲授新课
直线与平面平行的性质定理
一条直线与一个平面平行,则过这条直线 的任一个平面与此平面的交线和该直线平行.
线面平行 线线平行
符号语言:
a//
a
a
a∥b.
b
b
例1 如图所示的一块木料中,棱BC平行于面A'C'. ⑴要经过面内的一点P和棱BC将木料锯开,应 怎样画线?
解:⑴如图,在平面A'C'内,过点P
b
a// 性质定理
a a //c
c
c
b//c a//b c
b//.
b 判定定理
练习2:已知正方体ABCD—A1B1C1D1的棱长为1,
点P是面AA1D1D的中心,点Q是B1D1上一点,
2
且PQ//面AB1,则线段 PQ长为 2 .
解析:连结AB1、AD1,
D1
∵点P是面AA1D1D的中心, ∴点P是 AD1的中点,
⑵所画的线与平面AC是什么位置关系?
解:⑵ 由⑴,得 EF//BC, D'
F
EF//BC
A'
P E
C'
B C 面 A C EF//面AC
EF面AC
D
B' C
BE、CF都与面相交. A
B
线面平行 线线平行 线面平行
练习1: 判断下列命题是否正确?
⑴若直线a与平面平行,则a与内任何直线平
行.
()
⑵若直线a、b都和平面平行,则a与b平行.
相关文档
最新文档