计算理论试卷04年解析

合集下载

2004年数学四试题分析、详解和评注 数一至数四真题+详解

2004年数学四试题分析、详解和评注 数一至数四真题+详解

2004年数学四试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim 0=--→b x ae xxx ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim 0=--→b x ae xxx ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x xxb x a e x x x x ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.完全类似的例题见《数学复习指南》P36例1.60,P43第1(3)题,P44第2(10)题、 第6题,《数学题型集粹与练习题集》P19例1.34,《数学四临考演习》P79第7题, 《考研数学大串讲》P12例17、19.(2) 设1ln arctan 22+-=x x xe e e y ,则1121+-==e e dx dyx .【分析】本题为基础题型,先求导函数即可.【详解】因为)1ln(21arctan 2++-=xxe x e y ,111222++-+='xx x x e e e e y , 所以,1121+-==e e dx dy x . 【评注】 本题属基本题型,主要考查复合函数求导. 类似例题在一般教科书上均可找到.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可. 【详解】令x - 1 = t , ⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.完全类似的例题见《数学复习指南》P96例4.17,《数学四临考演习》P61第2题, P68第15题,《考研数学大串讲》P41例14.(4) 设⎪⎪⎪⎭⎫ ⎝⎛--=100001010A ,AP P B 1-=,其中P 为三阶可逆矩阵, 则 =-220042A B ⎪⎪⎪⎭⎫⎝⎛-100030003 .【分析】 将B 的幂次转化为A 的幂次, 并注意到2A 为对角矩阵即得答案. 【详解】因为⎪⎪⎪⎭⎫ ⎝⎛--=1000100012A , P A PB 200412004-=.故E EP P P A P B ===--11002212004)(,=-220042A B⎪⎪⎪⎭⎫⎝⎛-100030003.【评注】本题是对矩阵高次幂运算的考查.完全类似的例题可见《数学复习指南》P.291例2.13. (5) 设()33⨯=ija A 是实正交矩阵,且111=a ,Tb )0,0,1(=,则线性方程组b Ax =的解是 T)0,0,1(.【分析】利用正交矩阵的性质即可得结果. 【详解】因为 b A x 1-=, 而且()33⨯=ij a A 是实正交矩阵, 于是 1-=A A T , A 的每一个行(列)向量均为单位向量, 所以⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛===-0011312111a a a b A b A x T.【评注】本题主要考查正交矩阵的性质和矩阵的运算.类似的例题可见《考研数学大串讲》(2002版, 世界图书出版公司) P.174例33.(6) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ 故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim 1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界; 如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.完全类似的例题见《数学题型集粹与练习题集》P4例1.10,《数学四临考演习》P51 第15题.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点.(B) x = 0必是g (x )的第二类间断点. (C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ]【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以, 当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性.完全类似的例题见《数学复习指南》P41例 1.70,《数学题型集粹与练习题集》P20例1.35.(9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.[ C ]【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f , 当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点. 故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. 完全类似的例题见《数学复习指南》P141例6.9,《考研数学大串讲》P96例5.(10) 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则(A) F (x )在x = 0点不连续.(B) F (x )在(-∞ , +∞)内连续,但在x = 0点不可导. (C) F (x )在(-∞ , +∞)内可导,且满足)()(x f x F ='.(D) F (x )在(-∞ , +∞)内可导,但不一定满足)()(x f x F ='.[ B ]【分析】先求分段函数f (x )的变限积分⎰=xdt t f x F 0)()(,再讨论函数F (x )的连续性与可导性即可.【详解】当x < 0时,x dt x F x-=-=⎰0)1()(;当x > 0时,x dt x F x==⎰01)(,当x = 0时,F (0) = 0. 即F (x ) = |x |,显然,F (x )在(-∞ , +∞)内连续,但在x = 0点不可导. 故选(B).【评注】本题主要考查求分段函数的变限积分. 对于绝对值函数:||0x x -在0x x =处 不可导;f (x ) =||0x x x n -在0x x =处有n 阶导数,则||)!1()(0)(x x n x f n -+=. 完全类似的例题见《数学复习指南》P95例4.15,《考研数学大串讲》P42例15. (11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f . (D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ; 另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度.完全类似的例题见《数学复习指南》P130例5.8,《数学题型集粹与练习题集》P70例5.4. (12) 设n 阶矩阵A 与B 等价, 则必须(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又A 与B 等价, 故n B r <)(, 即0||=B , 从而选(D).【评注】本题是对矩阵等价、行列式的考查, 属基本题型. 相关知识要点见《数学复习指南》P.284-286.(13) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{, 若αx X P =<}|{|, 则x 等于(A) 2αu . (B) 21αu - . (C) 21αu-. (D) αu -1. [ B ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(B).【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查. 见《数学复习指南》P.489分位数概念的注释.(14) 设随机变量n X X X ,,,21 )1(>n 独立同分布,且方差02>σ.令随机变量∑==ni i X n Y 11, 则(A) 212)(σn n Y X D +=+. (B) 212)(σnn Y X D +=-. (C) nσY X Cov 21),(=. (D) 21),(σY X Cov =. [ C ]【分析】 利用协方差的性质立即得正确答案..【详解】 由于随机变量n X X X ,,,21 )1(>n 独立同分布, 于是可得),(1)1,(),(11111∑∑====ni i n i i X X Cov n X n X Cov Y X Cov),(1),(11111X X Cov nX X Cov n n i i ==∑=211)(1σnX D n ==. 故正确答案为(C).【评注】本题是对协方差性质的考查, 属于基本题.相关知识点见《数学复习指南》P.454, 类似的例题可见《2004文登模拟试题》数三的第一套第23题.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(15) (本题满分8分)求)cos sin 1(lim 20xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 222020sin cos sin lim )cos sin 1(lim -=-→→ =30422044sin 212lim 2sin 41lim xxx x x x x x -=-→→. 346)4(21lim 64cos 1lim 22020==-=→→xx x x x x . 【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算.完全类似的例题见《数学复习指南》P28例1.45. (16) (本题满分8分) 求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的 平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D , 由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ 所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算.完全类似的例题见《数学题型集粹与练习题集》P101例8.12(1),《数学四临考演习》P16 第17题,《考研数学大串讲》P79例2. (17) (本题满分8分)设f (u , v )具有连续偏导数,且满足uv v u f v u f v u='+'),(),(. 求),()(2x x f e x y x -=所满足的一阶微分方程,并求其通解.【分析】先求y ',利用已知关系uv v u f v u f v u='+'),(),(,可得到关于y 的一阶微分方程. 【详解】x v x ux x e x y x x f e x x f e x x f e y 222222),(),(),(2----+-='+'+-=', 因此,所求的一阶微分方程为x e x y y 222-=+'.解得 x dxx dx e C x C dx e e x e y 232222)31()(---+=+⎰⎰=⎰(C 为任意常数). 【评注】 本题综合了复合函数求偏导数与微分方程,但是,求偏导数与解微分方程都是基本题型.完全类似的例题见《数学复习指南》P243例11.11,《数学题型集粹与练习题集》P95例7.13、例7.14,《数学四临考演习》P3第16题,《考研数学大串讲》P76例14. (18) (本题满分9分)设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0); (II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. 【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR, 故当10 < P < 20时,降低价格反而使收益增加. 【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dp dR d )1(-=,p E dQ dR d)11(-=, d E EpER-=1(收益对价格的弹性). 这些公式在文登学校辅导材料系列之五《数学应用专题(经济类)》有详细的总结. 完全类似的例题见《数学复习指南》P255例12.4,《数学应用专题(经济类)》P2. (19) (本题满分9分)设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线y = F (x )之间的面积. 对任何t > 0,)(1t S 表示矩形-t ≤ x ≤ t ,0 ≤ y ≤ F (t )的面积. 求(I) S (t ) = S -)(1t S 的表达式;(II) S (t )的最小值.【分析】曲线y = F (x )关于y 轴对称,x 轴与曲线y = F (x )围成一无界区域,所以, 面积S 可用广义积分表示. 【详解】(I) 12202=-==+∞-∞+-⎰x x edx e S ,t te t S 212)(-=,因此t te t S 221)(--=,t ∈ (0 , +∞). (II) 由于t e t t S 2)21(2)(---=',故S (t )的唯一驻点为21=t , 又t e t t S 2)1(8)(--='',04)21(>=''eS ,所以,eS 11)21(-=为极小值,它也是最小值.【评注】本题综合了面积问题与极值问题,但这两问题本身并不难,属于基本题型.完全类似的例题见《数学复习指南》P143例 6.13,《数学题型集粹与练习题集》P80例6.11.(20) (本题满分13分)设线性方程组⎪⎩⎪⎨⎧=+++++=+++=+++,14)4()2(3,022,0432143214321x x μx λx x x x x x x μx λx 已知T )1,1,1,1(--是该方程组的一个解,试求(Ⅰ) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (Ⅱ) 该方程组满足32x x =的全部解.【分析】 含未知参数的线性方程组的求解, 当系数矩阵为非方阵时一般用初等行变换法化增广矩阵为阶梯形, 然后对参数进行讨论. 由于本题已知了方程组的一个解, 于是可先由它来(部分)确定未知参数.【详解】 将T )1,1,1,1(--代入方程组,得μλ=.对方程组的增广矩阵A 施以初等行变换, 得⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎭⎫ ⎝⎛++=1212)12(2001131012011422302112011λλλλλλλλλλA ,(Ⅰ) 当21≠λ时,有 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→2121100212101001001A , 43)()(<==A r A r ,故方程组有无穷多解,且T ξ)0,21,21,0(0-=为其一个特解,对应的齐次线性方程组的基础解系为 Tη)2,1,1,2(--=,故方程组的全部解为T T k ηk ξξ)2,1,1,2()0,21,21,0(0--+-=+= (k 为任意常数).当21=λ时,有 ⎪⎪⎪⎪⎪⎭⎫⎝⎛--→00000113102121101A , 42)()(<==A r A r ,故方程组有无穷多解,且T ξ)0,0,1,21(0-=为其一个特解,对应的齐次线性方程组的基础解系为 T η)0,1,3,1(1-=,T η)2,0,2,1(2--=, 故方程组的全部解为T T T k k ηk ηk ξξ)2,0,2,1()0,1,3,1()0,0,1,21(2122110--+-+-=++=(21,k k 为任意常数).(Ⅱ) 当21≠λ时,由于32x x =,即 k k -=+-2121,解得 21=k , 故方程组的解为T T T ξ)1,0,0,1()2,1,1,2(21)0,21,21,1(-=--+-= .当21=λ时, 由于32x x =,即121231k k k =--, 解得 212141k k -=,故方程组的全部解为 T T T k k ξ)2,0,2,1()0,1,3,1)(2141()0,0,1,21(22--+--+-=T T k )2,21,21,23()0,41,41,41(2---+-=, (2k 为任意常数).【评注】:(1) 含未知参数的线性方程组的求解是历年考试的重点, 几乎年年考, 务必很好掌握.完全类似的例题可见《数学复习指南》P.341例4.9, 《考研数学大串讲》(2002版, 世界图书出版公司)P.161例10, 以及文登数学辅导班上讲授的例子.(2) 对于题(Ⅱ), 实际上就是在原来方程组中增加一个方程, 此时新的方程组当21≠λ时有惟一解, 当21=λ时有无穷多解. (3) 在题(Ⅱ)中,当21=λ时,解得12221k k -=,方程组的全部解也可以表示为T T k ξ)4,1,1,3()1,0,0,1(1-+-=, (1k 为任意常数).(21) (本题满分13分)设三阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值.若T α)0,1,1(1=, T α)1,1,2(2=, T α)3,2,1(3--=, 都是A 的属于特征值6的特征向量.(Ⅰ) 求A 的另一特征值和对应的特征向量;(Ⅱ) 求矩阵A .【分析】 由矩阵A 的秩为2, 立即可得A 的另一特征值为0. 再由实对称矩阵不同特征值所对应的特征向量正交可得相应的特征向量, 此时矩阵A 也立即可得.【详解】 (Ⅰ) 因为621==λλ是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量有2个.由题设知T α)0,1,1(1=,T α)1,1,2(2=为A 的属于特征值6的线性无关特征向量.又A 的秩为2,于是0||=A ,所以A 的另一特征值03=λ.设03=λ所对应的特征向量为T x x x α),,(321=,则有 01=ααT,02=ααT,即⎩⎨⎧=++=+,02,032121x x x x x得基础解系为Tα)1,1,1(-=,故A 的属于特征值03=λ全部特征向量为T k αk )1,1,1(-= (k 为任意不为零的常数).(Ⅱ) 令矩阵),,(21αααP =,则⎪⎪⎪⎭⎫ ⎝⎛=-0661AP P ,所以1066-⎪⎪⎪⎭⎫ ⎝⎛=P P A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=3131313231311100661******** ⎪⎪⎪⎭⎫ ⎝⎛--=422242224.【评注】 这是一个有关特征值和特征向量的逆问题, 即已知矩阵的部分特征值和特征向量,要求另一部分特征值, 特征向量和矩阵. 这在历年考研题中还是首次出现.但几乎原题可见《数学复习指南》P.362例5.8, 《考研数学大串讲》(2002版, 世界图书出版公司)P.186例15和例16, 以及文登数学辅导班上讲授的例子. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY .方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型.原题可见《数学复习指南》P.434例 2.36, 《考研数学大串讲》(2002版, 世界图书出版公司)P.240例3, 以及文登数学辅导班上讲授的例子. (23) (本题满分13分)设随机变量X 在区间)1,0(上服从均匀分布,在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求(Ⅰ) 随机变量X 和Y 的联合概率密度; (Ⅱ) Y 的概率密度; (Ⅲ) 概率}1{>+Y X P .【分析】正确理解已知条件, 即条件密度是求解本题的关键. 【详解】 (Ⅰ) X 的概率密度为⎩⎨⎧<<=其他,,,010,1)(x x f X在)10(<<=x x X 的条件下,Y 的条件概率密度为⎪⎩⎪⎨⎧<<=其他,,,00,1)|(|x y x x y f X Y当10<<<x y 时,随机变量X 和Y 的联合概率密度为 xx y f x f y x f X Y X 1)|()(),(|== 在其它点),(y x 处,有0),(=y x f ,即⎪⎩⎪⎨⎧<<<=.x y x y x f 其他,,010,1),((Ⅱ) 当10<<y 时,Y 的概率密度为⎰⎰-===+∞∞-1ln 1),()(y Y y dx xdx y x f y f ; 当0≤y 或1≥y 时,0)(=y f Y .因此 ⎩⎨⎧<<-=.y y y f Y 其他,,010,ln )((Ⅲ) ⎰⎰⎰⎰->+==>+xx Y X dy xdx dxdy y x f Y X P 112111),(}1{ 2ln 1)12(121-=-=⎰dx x .【评注】本题考查了二维连续型随机变量的边缘概率密度, 条件概率密度, 联合概率密度的相互关系,以及二维连续型随机变量取值于一个区域的概率的计算,属于综合性题型. 原题可见《考研数学大串讲》(2002版, 世界图书出版公司)P.242例5, 以及文登数学辅导班上讲授的例子.。

2004数学四试题 考研数学真题及解析

2004数学四试题 考研数学真题及解析

2004年数学(四)试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim 0=--→b x a e x x ,则a =_______,b =________.(2) 设1ln arctan 22+-=x xxe e e y ,则==1x dx dy.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 设⎪⎪⎪⎭⎫ ⎝⎛--=100001010A ,AP P B 1-=,其中P 为三阶可逆矩阵, 则 =-220042A B ___________.(5) 设()33⨯=ij a A 是实正交矩阵,且111=a ,Tb )0,0,1(=,则线性方程组b Ax =的解是 ___________. (6) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _________二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2). (D) (2 , 3). [ ] (8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ](9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点.(B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点.(C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ](10) 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则(A) F (x )在x = 0点不连续.(B) F (x )在(-∞ , +∞)内连续,但在x = 0点不可导.(C) F (x )在(-∞ , +∞)内可导,且满足)()(x f x F ='. (D) F (x )在(-∞ , +∞)内可导,但不一定满足)()(x f x F ='. [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是(A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ).(B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ).(C) 至少存在一点),(0b a x ∈,使得0)(0='x f . (D) 至少存在一点),(0b a x ∈,使得)(0x f = 0. [ ](12) 设n 阶矩阵A 与B 等价, 则必须(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ](13) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{, 若αx X P =<}|{|, 则x 等于(A) 2αu . (B) 21αu - . (C) 21αu-. (D) αu -1. [ ](14) 设随机变量n X X X ,,,21 )1(>n 独立同分布,且方差02>σ.令随机变量∑==ni i X n Y 11, 则 (A) 212)(σn n Y X D +=+. (B) 212)(σnn Y X D +=-. (C) nσY X Cov 21),(=. (D) 21),(σY X Cov =. [ ] 三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(15) (本题满分8分)求)cos sin 1(lim 2220x xx x -→.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的 平面区域(如图).(17) (本题满分8分)设f (u , v )具有连续偏导数,且满足uv v u f v u f v u='+'),(),(. 求),()(2x x f e x y x -=所满足的一阶微分方程,并求其通解.(18) (本题满分9分)设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0); (II) 推导)1(d E Q dPdR -=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加.(19) (本题满分9分)设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线y = F (x )之间的面积. 对任何t > 0, )(1t S 表示矩形-t ≤ x ≤ t ,0 ≤ y ≤ F (t )的面积. 求(I) S (t ) = S -)(1t S 的表达式;(II) S (t )的最小值.(20) (本题满分13分)设线性方程组⎪⎩⎪⎨⎧=+++++=+++=+++,14)4()2(3,022,0432143214321x x μx λx x x x x x x μx λx 已知T )1,1,1,1(--是该方程组的一个解,试求(Ⅰ) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(Ⅱ) 该方程组满足32x x =的全部解.(21) (本题满分13分)设三阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值.若T α)0,1,1(1=, T α)1,1,2(2=, T α)3,2,1(3--=, 都是A 的属于特征值6的特征向量.(Ⅰ) 求A 的另一特征值和对应的特征向量;(Ⅱ) 求矩阵A .(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布;(Ⅱ) X 与Y 的相关系数 XY ρ;(Ⅲ) 22Y X Z +=的概率分布.(23) (本题满分13分)设随机变量X 在区间)1,0(上服从均匀分布,在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求(Ⅰ) 随机变量X 和Y 的联合概率密度;(Ⅱ) Y 的概率密度;(Ⅲ) 概率}1{>+Y X P .。

2004年考研数学(一)试题及答案解析

2004年考研数学(一)试题及答案解析

2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。

【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可。

【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)= 2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分。

完全类似的例题见《数学复习指南》P89第8题, P90第11题.(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分。

【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.完全类似例题见《数学题型集粹与练习题集》P143例10.11,《考研数学大串讲》P122例5、例7 .(4)欧拉方程)0(024222>=++x y dx dyx dx y d x 的通解为 221x c x c y +=.【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可。

2004年高考数学试题(全国4理)及答案

2004年高考数学试题(全国4理)及答案

2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x ∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)C已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值. 19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x e x f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.4316.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα,所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小 值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去 当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f图2Cy图1在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512, 所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x ex x e x x e x f xx x ----=+-++-='由,0)(='x f 得.0sin 2=--x ex解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nqq q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq q q q n q q q q n q q q nq q q n q qq q n q q qn nnn n n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。

2004数一真题答案解析PDF

2004数一真题答案解析PDF

2004数一真题答案解析PDF【题目】在学习和备考的过程中,对于历年真题的解析和理解是非常重要的。

特别是对于数学类考试,解析题目,学习解题方法,对于提升自己的数学能力起到关键的作用。

而2004年的数学一科真题,则成为了备考中重要的参考材料之一。

本文将通过对2004年数一真题的解析,解释其中的难点,分析解题思路,帮助读者更好地理解并掌握这部分知识。

首先,我们先来了解一下2004年数一真题的结构和内容。

这份考卷共有三道大题,涵盖了数学的各个领域,分别是代数几何、数列和数论。

每道大题中又细分了若干小题,共计30道小题。

题目难度适中,但蕴含的考点却非常丰富。

因此,理解并掌握这份试卷的解题思路是备考的重要一环。

首先,我们来看代数几何部分。

其中一道关于椭圆的题目可以说是相对难度较大的。

这道题目要求求出与直线y=4x+k交点横坐标为3的椭圆的标准方程。

解决这道题目的关键在于对椭圆方程的掌握和理解。

我们知道,椭圆的标准方程可以表示为(x-h)²/a² + (y-k)²/b² =1,其中(h,k)为椭圆的中心坐标,a和b分别为椭圆的横向和纵向的半径长度。

因此,我们可以将题目中的条件转化为等式形式,得到方程: (3-h)²/a² + (4(3)+k-h)²/b² =1。

根据题目要求可得, (3-h)²/a² + (4(3)+k-h)²/b² =1 变为 9/a² + (4(3)+k-h)²/b² =1。

通过此方程可将h的值消去,然后根据平行于x轴的直线与椭圆的交点横坐标为3得到 (4(3)+k)²/b² =1-9/a²。

完整的解题过程需要借助一些基本的代数运算和椭圆性质的理解,再进行进一步的推理和计算。

接下来,我们转到数列部分。

2004年数一真题中的数列部分一共有10道小题,涉及到了等差数列和等比数列。

数三04年真题答案解析

数三04年真题答案解析

数三04年真题答案解析数学是一门既有挑战性又有趣味性的学科,而数学考试则往往是学生们最头疼的问题之一。

在高中阶段,考生们通常需要参加重要的中考或高考,而这些考试中的数学部分往往是最关键的。

因此,准确地解析曾经的数学真题对于学生们来说是非常有价值的。

在本文中,我将详细解析2004年数学真题,并提供相应的解题思路和方法。

首先,我们来看看2004年的数学真题中的选择题。

一般来说,选择题往往是考察基础知识和运算能力的。

例如,题目一要求计算$\frac{3}{8} \time 0.04$。

这是一个简单的小数乘法运算,只需要将0.04乘以$\frac{3}{8}$,即可得到结果。

这样的题目在真题中往往是可以迅速解决的,关键是要掌握基本的计算规则和技巧。

然而,并不是所有的选择题都那么简单。

有些题目需要考生们动用一些技巧才能解决。

例如,题目五要求计算$\sqrt{2004^2-2000^2}$。

一般来说,我们可以利用勾股定理的知识来解决这个题目。

由勾股定理可知,$x^2 + y^2 = z^2$,其中$x$、$y$、$z$分别表示三角形直角边的长度。

因此,我们可以将题目中的式子看作是$x=2004$,$y=2000$和$z$的形式,然后将这些数值代入勾股定理的公式,最后可以得到$z=20$。

通过这样的思路,我们可以迅速得到题目的答案。

除了选择题,解答题也是考试中必不可少的一部分。

解答题往往需要考生们具备一定的推理和分析能力。

例如,题目八要求考生们从一个数列中找出一些特定数字。

首先,考生们需要仔细观察所给的数列,然后找出其中的规律。

对于这道题来说,我们可以发现数列中的数字满足以下规律:第一个数字减去第二个数字再加上第三个数字等于零。

因此,我们只需要根据这个规律找出数列中满足条件的数字即可。

在解答题中,有些题目可能会涉及到一些高阶的数学知识。

例如,题目十要求考生们解决一个概率问题。

对于这种题目,我们可以利用概率的基本概念来解决。

2004年数二真题及解析

2004年数二真题及解析

2004年数学(二)真题评注一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = 0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n →∞→∞--====++, 所以 ()f x 0,01,0x x x=⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x取值范围为1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d ydx< 确定x 的取值范围.【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++,222223214113(1)3(1)d y d dy dt tdt dx dx dxt t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭,令 220d ydx< ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞.(0t =时,1x =⇒x ∈(,1]-∞时,曲线凸.) 【评注】本题属新题型.已考过的题型有求参数方程所确定的函数的二阶导数, 如1989、1991、1994、2003数二考题,也考过函数的凹凸性.(3)1+∞=⎰2π.【分析】利用变量代换法和形式上的牛顿莱布尼兹公式可得所求的广义积分值. 【详解1】22100sec tan sec tan 2t t dt dt t t πππ+∞⋅==⋅⎰⎰.【详解2】11201101)arcsin 2dt dt tt π+∞-===⎰⎰⎰.【评注】本题为混合广义积分的基本计算题,主要考查广义积分(或定积分)的换元积分法.(4)设函数(,)z z x y =由方程232x zz ey -=+确定, 则3z zx y∂∂+=∂∂2.【分析】此题可利用复合函数求偏导法、公式法或全微分公式求解. 【详解1】在 232x zz e y -=+ 的两边分别对x ,y 求偏导,z 为,x y 的函数.23(23)x z z z e x x-∂∂=-∂∂,23(3)2x z z ze y y-∂∂=-+∂∂, 从而 2323213x zx z z e x e--∂=∂+,23213x z z y e-∂=∂+所以 2323132213x zx zz z e x y e--∂∂++=⋅=∂∂+ 【详解2】令 23(,,)20x zF x y z e y z -=+-=则232x z F e x -∂=⋅∂, 2F y ∂=∂, 23(3)1x z Fe z-∂=--∂ 2323232322(13)13x z x zx z x z Fz e e x F x e ez----∂∂⋅∂∴=-=-=∂∂-++∂, 232322(13)13x z x z F z y F y e ez--∂∂∂=-=-=∂∂-++∂, 从而 232323313221313x z x zx z z z e x y ee ---⎛⎫∂∂+=+= ⎪∂∂++⎝⎭【详解3】利用全微分公式,得23(23)2x z dz e dx dz dy -=-+2323223x zx z e dx dy e dz --=+-2323(13)22x zx z edz e dx dy --+=+232323221313x z x z x ze dz dx dy e e ---∴=+++ 即 2323213x z x z z e x e--∂=∂+, 23213x z z y e -∂=∂+ 从而 32z zx y∂∂+=∂∂ 【评注】此题属于典型的隐函数求偏导.(5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为315y x =.【分析】此题为一阶线性方程的初值问题.可以利用常数变易法或公式法求出方程的通解,再利用初值条件确定通解中的任意常数而得特解.【详解1】原方程变形为 21122dy y x dx x -=, 先求齐次方程102dy y dx x-= 的通解:12dy dx y x=积分得 1ln ln ln 2y x c =+ y ⇒=设(y c x =为非齐次方程的通解,代入方程得211(((22c x c x c x x x '-= 从而 321()2c x x '=,积分得 352211()25c x x dx C x C =+=+⎰,于是非齐次方程的通解为53211()55y x C x =+=1615x yC ==⇒=,故所求通解为 315y x =.【详解2】原方程变形为 21122dy y x dx x -=,由一阶线性方程通解公式得1122212dx x xy e x edx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 11ln ln 22212x x ex e dx C -⎡⎤=+⎢⎥⎣⎦⎰35221125x dx C x C ⎤⎤=+=+⎥⎢⎥⎦⎦⎰6(1)15y C =⇒=,从而所求的解为315y x =.【评注】此题为求解一阶线性方程的常规题.(6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =19.【分析】利用伴随矩阵的性质及矩阵乘积的行列式性质求行列式的值. 【详解1】 2ABA BA E **=+ 2ABA BA E **⇔-=,(2)A E BA E *⇔-=,21A E B A E *∴-==, 221111010(1)(1)392100001B A E AA *====-⋅---. 【详解2】由1A A A *-=,得 11122ABA BA E AB A A B A A AA **---=+⇒=+2A AB A B A ⇒=+ (2)A A E B A ⇒-= 32A A E B A ⇒-=21192B A A E∴==- 【评注】此题是由矩阵方程及矩阵的运算法则求行列式值的一般题型,考点是伴随矩阵的性质和矩阵乘积的行列式.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 2x β=⎰,30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα []B【分析】对与变限积分有关的极限问题,一般可利用洛必塔法则实现对变限积分的求导并结合无穷小代换求解.【详解】302lim lim cos x x x t dtt dt γα++→→=⎰⎰32lim x +→= 320lim lim 02x x x x++→→===, 即o ()γα=.又 2000lim lim xx x βγ++→→=23002tan 22lim lim 01sin 2x x x x x x x ++→→⋅===, 即 o ()βγ=.从而按要求排列的顺序为αγβ、、, 故选(B ). 【评注】此题为比较由变限积分定义的无穷小阶的常规题. (8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点.(D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点. []C【分析】求分段函数的极值点与拐点, 按要求只需讨论0x =两方()f x ', ()f x ''的符号.【详解】 ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩,()f x ''=2,102,01x x -<<⎧⎨-<<⎩,从而10x -<<时, ()f x 凹, 10x >>时, ()f x 凸, 于是(0,0)为拐点. 又(0)0f =, 01x ≠、时, ()0f x >, 从而0x =为极小值点. 所以, 0x =是极值点, (0,0)是曲线()y f x =的拐点, 故选(C ).【评注】此题是判定分段函数的极值点与拐点的常规题目 (9)lim (1)n n→∞+等于(A )221lnxdx ⎰. (B )212ln xdx ⎰. (C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰[]B【分析】将原极限变型,使其对应一函数在一区间上的积分和式.作变换后,从四个选项中选出正确的.【详解】 lim ln (1)n n→∞+ 212lim ln (1)(1(1)nn nn nn →∞⎡⎤=+++⎢⎥⎣⎦212limln(1ln(1(1)n n n n n n →∞⎡⎤=++++++⎢⎥⎣⎦11lim 2ln(1nn i i n n →∞==+∑ 102ln(1)x dx =+⎰2112ln x t tdt +=⎰212ln xdx =⎰故选(B ).【评注】此题是将无穷和式的极限化为定积分的题型,值得注意的是化为定积分后还必须作一变换,才能化为四选项之一.(10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >. (D)对任意的(,0)x δ∈-有()(0)f x f >.[]C【分析】可借助于导数的定义及极限的性质讨论函数()f x 在0x =附近的局部性质.【详解】由导数的定义知 0()(0)(0)lim00x f x f f x →-'=>-,由极限的性质, 0δ∃>, 使x δ<时, 有()(0)0f x f x->即0x δ>>时, ()(0)f x f >, 0x δ-<<时, ()(0)f x f <, 故选(C ).【评注】此题是利用导数的定义和极限的性质讨论抽象函数在某一点附近的性质.(11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.y(D )2cos y ax bx c A x *=+++[]A【分析】利用待定系数法确定二阶常系数线性非齐次方程特解的形式. 【详解】对应齐次方程 0y y ''+= 的特征方程为 210λ+=,特征根为 i λ=±,对 2021(1)y y x e x ''+=+=+ 而言, 因0不是特征根, 从而其特解形式可设为21y ax bx c *=++对 sin ()ix m y y x I e ''+==, 因i 为特征根, 从而其特解形式可设为2(sin cos )y x A x B x *=+从而 21sin y y x x ''+=++ 的特解形式可设为2(sin cos )y ax bx c x A x B x *=++++【评注】这是一道求二阶常系数线性非齐次方程特解的典型题,此题的考点是二阶常系数线性方程解的结构及非齐次方程特解的形式.(12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A )11()dx f xy dy -⎰⎰. (B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D)2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[]D在直角坐标系下,20()()Df xy dxdy dy f xy dx =⎰⎰⎰⎰1111()dx f xy dy -=⎰⎰故应排除(A )、(B ). 在极坐标系下, cos sin x r y r θθ=⎧⎨=⎩ ,2sin 20()(sin cos )Df xy dxdy d f r rdr πθθθθ=⎰⎰⎰⎰,故应选(D ).【评注】此题是将二重积分化为累次积分的常规题,关键在于确定累次积分的积分限.(13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫⎪⎪ ⎪⎝⎭.[]D【分析】根据矩阵的初等变换与初等矩阵之间的关系,对题中给出的行(列)变换通过左(右)乘一相应的初等矩阵来实现.【详解】由题意 010100001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 100011001C B ⎛⎫⎪= ⎪ ⎪⎝⎭,010100100011001001C A ⎛⎫⎛⎫ ⎪⎪∴= ⎪⎪ ⎪⎪⎝⎭⎝⎭011100001A AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭,从而 011100001Q ⎛⎫ ⎪= ⎪ ⎪⎝⎭,故选(D ).【评注】此题的考点是初等变换与初等矩阵的关系,抽象矩阵的行列初等变换可通过左、右乘相应的初等矩阵来实现.(14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关. []A【分析】将A 写成行矩阵, 可讨论A 列向量组的线性相关性.将B 写成列矩阵, 可讨论B 行向量组的线性相关性.【详解】设 (),i j l m A a ⨯=()i j m n B b ⨯=, 记 ()12m A A A A = 0AB = ⇒()11121212221212n n m m m mn b b b b b b A A A bb b ⎛⎫ ⎪ ⎪⎪⋅⋅⋅ ⎪ ⎪⎝⎭()1111110m m n mn m b A b A b A b A =++++= (1)由于0B ≠, 所以至少有一 0i j b ≠(1,1i m j n ≤≤≤≤), 从而由(1)知, 112210j j i j i m m b A b A b A b A +++++=,于是 12,,,m A A A 线性相关.又记 12m B B B B ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则0AB = ⇒11121121222212m m l l l m m a a a B a a a B a a a B ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1111221211222211220m m m m l l l m m a B a B a B a B a B a B a B a B a B +++⎛⎫⎪+++ ⎪== ⎪ ⎪⎪+++⎝⎭由于0A ≠,则至少存在一 0i j a ≠(1,1i l j m ≤≤≤≤),使 11220i i i j j im m a B a B a B a B ++++=,从而 12,,,m B B B 线性相关,故应选(A ).【评注】此题的考点是分块矩阵和向量组的线性相关性,此题也可以利用齐次线性方程组的理论求解.三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【分析】此极限属于型未定式.可利用罗必塔法则,并结合无穷小代换求解. 【详解1】 原式2cos ln 331limx x x ex+⎛⎫ ⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭=20ln 2cos ln 3lim x x x→+-=() 01sin 2cos lim 2x x x x →⋅-+=()011sin 1lim22cos 6x x x x →=-⋅=-+ 【详解2】 原式2cos ln 331limx x x ex+⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭=20cos 1ln 3lim x x x→-+=(1) 20cos 11lim 36x x x →-==- 【评注】此题为求未定式极限的常见题型.在求极限时,要注意将罗必塔法则和无穷小代换结合,以简化运算.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.【分析】分段函数在分段点的可导性只能用导数定义讨论. 【详解】(Ⅰ)当20x -≤<,即022x ≤+<时,()(2)f x k f x =+2(2)[(2)4](2)(4)k x x kx x x =++-=++.(Ⅱ)由题设知 (0)0f =.200()(0)(4)(0)lim lim 40x x f x f x x f x x+++→→--'===-- 00()(0)(2)(4)(0)lim lim 80x x f x f kx x x f k x x---→→-++'===-. 令(0)(0)f f -+''=, 得12k =-. 即当12k =-时, ()f x 在0x =处可导. 【评注】此题的考点是用定义讨论分段函数的可导性. (17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数; (Ⅱ)求()f x 的值域.【分析】利用变量代换讨论变限积分定义的函数的周期性,利用求函数最值的方法讨论函数的值域.【详解】 (Ⅰ) 32()sin x x f x t dt πππ+++=⎰,设t u π=+, 则有22()sin()sin ()x x xxf x u du u du f x ππππ+++=+==⎰⎰,故()f x 是以π为周期的周期函数.(Ⅱ)因为sin x 在(,)-∞+∞上连续且周期为π, 故只需在[0,]π上讨论其值域. 因为()sin()sin cos sin 2f x x x x x π'=+-=-,令()0f x '=, 得14x π=, 234x π=, 且344()sin 4f t dt πππ==⎰,554433443(sin sin sin 24f t dt t dt t dt πππππππ==-=⎰⎰⎰, 又 20(0)sin 1f t dt π==⎰, 32()(sin )1f t dt πππ=-=⎰,∴()f x的最小值是2, 故()f x的值域是[2.【评注】此题的讨论分两部分:(1)证明定积分等式,常用的方法是变量代换.(2)求变上限积分的最值, 其方法与一般函数的最值相同.(18)(本题满分12分)曲线2x x e e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值;(Ⅱ)计算极限()lim()t S t F t →+∞.【分析】用定积分表示旋转体的体积和侧面积,二者及截面积都是t 的函数,然后计算它们之间的关系.【详解】 (Ⅰ)0()2tS t π=⎰022x x te e π-⎛+= ⎝⎰ 2022x x te e dx π-⎛⎫+= ⎪⎝⎭⎰, 2200()2x x tte e V t y dx dx ππ-⎛⎫+== ⎪⎝⎭⎰⎰, ()2()S t V t ∴=. (Ⅱ)22()2t t x te e F t yππ-=⎛⎫+== ⎪⎝⎭,20222()lim lim ()2x x tt t t t e e dx S t F t e e ππ-→+∞→+∞-⎛⎫+ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭⎰222lim 222t t tt t t t e e e e e e ---→+∞⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭lim 1t tttt e e e e --→+∞+==- 【评注】在 t 固定时,此题属于利用定积分表示旋转体的体积和侧面积的题型,考点是定积分几何应用的公式和罗必塔求与变限积分有关的极限问题.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e->-. 【分析】文字不等式可以借助于函数不等式的证明方法来证明,常用函数不等式的证明方法主要有单调性、极值和最值法等.【详证1】设224()ln x x x e ϕ=-, 则 2ln 4()2x x x e ϕ'=-21ln ()2xx x ϕ-''=,所以当x e >时, ()0x ϕ''<, 故()x ϕ'单调减小, 从而当2e x e <<时, 22244()()0x e e eϕϕ''>=-=, 即当2e x e <<时, ()x ϕ单调增加.因此, 当2e a b e <<<时, ()()b a ϕϕ>, 即 222244ln ln b b a a e e->- 故 2224ln ln ()b a b a e ->-.【详证2】设2224()ln ln ()x x a x a eϕ=---, 则2ln 4()2x x x e ϕ'=-21ln ()2xx xϕ-''=, ∴x e >时, ()0x ϕ''<()x ϕ'⇒, 从而当2e x e <<时,22244()()0x e e e ϕϕ''>=-=, 2e x e ⇒<<时, ()x ϕ单调增加.2e a b e ⇒<<<时, ()()0x a ϕϕ>=.令x b =有()0b ϕ>即 2224ln ln ()b a b a e ->-.【详证3】证 对函数2ln x 在[,]a b 上应用拉格朗日定理, 得 222ln ln ln ()b a b a ξξ->-, a b ξ<<.设ln ()t t t ϕ=, 则21ln ()t t tϕ-'=,当t e >时, ()0t ϕ'<, 所以()t ϕ单调减小, 从而2()()e ϕξϕ>, 即222ln ln 2e e eξξ>=, 故 2224ln ln ()b a b a e ->- 【评注】此题是文字不等式的证明题型.由于不能直接利用中值定理证明,所以常用的方法是将文字不等式化为函数不等式,然后借助函数不等式的证明方法加以证明.(20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.【分析】本题属物理应用.已知加速度或力求运动方程是质点运动学中一类重要的计算,可利用牛顿第二定律,建立微分方程,再求解.【详解1】由题设,飞机的质量9000m kg =,着陆时的水平速度0700/v km h =.从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为()x t ,速度为()v t .根据牛顿第二定律,得dvm kv dt=-. 又 dv dv dx dvv dt dx dt dx=⋅=,mdx dv k ∴=-,积分得 ()mx t v C k=-+,由于0(0)v v =,(0)0x =, 故得0mC v k=, 从而0()(())mx t v v t k=-.当()0v t →时,069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【详解2】根据牛顿第二定律,得dvm kv dt =-. 所以 dv kdt v m=-,两边积分得 kt mv Ce -=,代入初始条件 00t vv ==, 得0C v =,0()k mv t v e -∴=,故飞机滑行的最长距离为 00() 1.05()k t mmv mv x v t dt ekm kk+∞-+∞==-==⎰.【详解3】根据牛顿第二定律,得22d x dxm k dt dt=-,220d x k dx dt m dt+=, 其特征方程为 20kr r m+=, 解得10r =, 2k r m=-, 故 12k mx C C e-=+,由(0)0x =, 200(0)k mt t kC dxv ev dtm-====-=,得012mv C C k=-=, 0()(1)k t m mv x t e k-∴=-.当t →+∞时,069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【评注】此题的考点是由物理问题建立微分方程,并进一步求解. (21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂. 【分析】利用复合函数求偏导和混合偏导的方法直接计算. 【详解】122xy zx f ye f x∂''=+∂, 122xy zy f xe f y∂''=-+∂,21112222[(2)]xy xy xy zx f y f xe e f xye f x y∂''''''=⋅-+⋅++∂∂2122[(2)]xy xy ye f y f xe ''''+⋅-+⋅ 222111222242()(1)xy xy xy xyf x y e f xye f e xy f '''''''=-+-++++. 【评注】此题属求抽象复合函数高阶偏导数的常规题型. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.【分析】此题为求含参数齐次线性方程组的解.由系数行列式为0确定参数的取值,进而求方程组的非零解.【详解1】对方程组的系数矩阵A 作初等行变换, 有11111111222220033333004444400a aa a a B a a a a a a ++⎛⎫⎛⎫⎪ ⎪+- ⎪ ⎪→= ⎪ ⎪+- ⎪ ⎪⎪ ⎪+-⎝⎭⎝⎭当0a =时, ()14r A =<, 故方程组有非零解, 其同解方程组为 12340x x x x +++=. 由此得基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)Tη=-,于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数. 当0a ≠时,111110000210021003010301040014001a a B ++⎛⎫⎛⎫⎪⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭当10a =-时, ()34r A =<, 故方程组也有非零解, 其同解方程组为12131420,30,40,x x x x x x -+=⎧⎪-+=⎨⎪-+=⎩由此得基础解系为(1,2,3,4)Tη=, 所以所求方程组的通解为x k η=, 其中k 为任意常数.【详解2】方程组的系数行列式311112222(10)33334444aa A a a a a +⎛⎫ ⎪+ ⎪==+ ⎪+ ⎪ ⎪+⎝⎭. 当0A =, 即0a =或10a =-时, 方程组有非零解. 当0a =时, 对系数矩阵A 作初等行变换, 有11111111222200003333000044440000A ⎛⎫⎛⎫⎪⎪⎪⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故方程组的同解方程组为12340x x x x +++=. 其基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)Tη=-,于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数. 当10a =-时, 对A 作初等行变换, 有91119111282220100033733001004446400010A --⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 91110000210021003010301040014001-⎛⎫⎛⎫⎪⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭故方程组的同解方程组为2131412,3,4,x x x x x x =⎧⎪=⎨⎪=⎩其基础解系为(1,2,3,4)Tη=,所以所求方程组的通解为x k η=, 其中k 为任意常数【评注】解此题的方法是先根据齐次方程有非零解的条件确定方程组中的参数,再对求得的参数对应的方程组求解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.【分析】由矩阵特征根的定义确定a 的值,由线性无关特征向量的个数与E A λ-秩之间的关系确定A 是否可对角化.【详解】A 的特征多项式为1232201431431515aaλλλλλλλ-----=-------110100(2)143(2)13315115aa λλλλλλ-=--=---------2(2)(8183)a λλλ=--++.若2λ=是特征方程的二重根, 则有22161830a -++=, 解得2a =-.当2a =-时, A 的特征值为2, 2, 6, 矩阵1232123123E A -⎛⎫ ⎪-=- ⎪ ⎪--⎝⎭的秩为1,故2λ=对应的线性无关的特征向量有两个, 从而A 可相似对角化.若2λ=不是特征方程的二重根, 则28183a λλ-++为完全平方, 从而18316a +=, 解得23a =-. 当23a =-时, A 的特征值为2, 4, 4, 矩阵32321032113E A ⎛⎫ ⎪- ⎪-= ⎪ ⎪-- ⎪⎝⎭的秩为2,故4λ=对应的线性无关的特征向量只有一个, 从而A 不可相似对角化.【评注】此题的考点是由特征根及重数的定义确定a 的值, 对a 的取值讨论对应矩阵的特征根及对应E A λ-的秩, 进而由E A λ-的秩与线性无关特征向量的个数关系确定A 是否可相似对角化.。

2004高考数学试题(全国4理)及答案

2004高考数学试题(全国4理)及答案

2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512,图2Cy所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x ex f x x x----=+-++-='由,0)(='x f 得.0sin 2=--x e x解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(a)(T) Every context-free language is recursive.
解析:上下文无关语言包含于递归语言,所以正确,反之不成立,另外正则语言包含于上下文无关语言。

所以说正则的也是递归的也是正确的。

(b) (T) Language is context free.
解析:因为证明语言是上下文无关的,可以根据引理 3.4.2 ,构造一个下推自动机来接受它,或者,利用定理3.5.1,上下文无关语言对于并封闭,把原来的语言分解为几个语言的并,证明这几个语言是上下文无关,并回来也是context free。

这条题目可以用第一个方法。

遇到a和b都入栈,当然不按顺序就要拒绝了,然后遇到一个c就出栈三个,如果字符串读完之后栈不空,那么就接受。

于是得证。

(c) (T) Every language in NPis recursive.
解析:因为递归语言包含了NP语言,所以正确。

(d) (F) All languages on an alphabet are recursively enumerable.
解析:存在非递归可枚举的语言。

例如课本上P164 的H1的补,它不是递归可枚举的。

因此,不能说所有字母表上的语言都是递归可枚举的。

(e) (F) There's a language L such that L is undecidable, yet L and its complement are both semi-decided by the some Turing machine.
解析:定理5.7.1 语言是递归的当且仅当它和它的补都是递归可枚举的。

所以如果L和其补都可能被图灵机半判定,等价于存在TM判定L。

(f) (T) There's a function φ s uch that φ can be computed by some Turing machines, yet φ is not a primitive recursive function.
解析:原始递归函数真包含于μ递归的,μ递归的函数就是递归的函数,可以被图灵机计算。

这句话的意思是,存在非原始递归的可计算函数,因此是正确的。

(g) (F) Let be languages, recursive function t is a reduction from L1 to L2, if L1
is decidable, then so is L2.
解析:如果L1通过一个递归函数归约到L2,那么如果L2是递归的则L1也是递归的。

归约和判断的方向是相反的。

另外可以有逆否命题,如果L1不是递归的那么L2也不是递归的
(h) (F) A language L is recursive if and only if it is Turing-enumerable.
解析:定理5.7.2 ,语言是递归可枚举的当且仅当它是Turing可枚举的。

所以这题错误。

另外,定理5.7.3 语言是递归的当且仅当它是以字典序Turing可枚举的。

(i) (F) Suppose A, B are two languages and there is a polynomial-time reductions from A to B. If A is NP-complete, then B is NP-complete.
解析:应该是反过来说。

如果A多项式时间归约到B,那么如果B是NPC,那么A也是NPC。

把NPC换成P或NP同理。

另外根据定义7.1.2 ,可以说若B是NPC的,那么A是
NP的。

(j) (T) Every language in NP-complete can be reducible to the 3-SAT problem in polynomial time. 解析:定理7.2.3,三元可满足性是NP完全的。

所以,所有NP问题都可以多项式时间归约到NPC,而三元可满足性是NP完全的,所以所有NPC都可归约到3-SAT。

(a) Decide whether the following language is regular or not and provide a formal proof for your answer.
解析:首先这不是正则的。

然后,证明非正则大概有两种办法,第一是用定理2.4.1,也就是正则版本的泵定理,证明其不是变成xy i z,第二就是用补运算的封闭性,证明其补不是正则的,然后其本身也不是正则。

这条题目用泵定理。

把w=a m b n∈L重写成xyz,使得|xy|≤n且y≠e,那么让y=a i,但是xz=a m-i b n 不一定∈L,让y=b i同理,所以不是正则的。

(b) Let Σbe an alphabet and let be languages so that L1 is not regular but L2 is regular. Assume L1∩L2 is finite. Prove that L1并L2 is not regular.
解析:按题目要求写出响应的文法并不难,只需要记着格式,就是G={V,Σ,R,S},然后分别说明V里面有什么字母,Σ里面有什么非终结符,R里面是什么规则,S就是起始符了。

然后,根据上下文无关语法构造相应下推自动机的方法,可以参照引理 3.4.1,注意格式。

M={K,Σ,Γ,Δ,s,F},然后K是机器会处于的状态,Σ是终结符,Γ是字母,s是其实状态,F是终结状态,都一一说明,并列出表格。

解析:P(x,y)是原始递归谓词。

显然,任意的y≤u,P(x,y)都成立,等价于,因为原始递归谓词的合取(或析取)都是原始递归谓词,因此得证。

解析:因为输入的字符串是空格x;y,都是二进制的
因此,循环向右,直到遇到分号;
然后把分号变成空格,向右寻找空格,找到之后向左移一格
如果是0,那么表示y是偶数,然后把当前位置变空格并左移,改空格并左移,直到遇到空格,这是x要变成2x+1,其实就是左移一位加一,这里就是把原来分号的地方(现在是空格)变成1,然后左移直到找到空格
如果是1,那么表示y是奇数,同样把y消灭了,然后4x就是在最后加两个0,然后左移直到找到空格。

解析:suffice的意思是足够,最后一句就是非正式的描述都ok了。

证明一个语言是递归可枚举的,只要找到一个半判定这个语言的图灵机就可以了。

这条题目就可以用通用图灵机UTM。

稍微说说通用图灵机,简称通灵机。

举个例子,大家知道Java,Java的代码编译成字节码,然后在不同系统上的Java虚拟机JVM上运行,而JVM本身就是个程序,我们的电脑可以根据JVM这个程序处理给定输入给出结果。

同样的,我们把一个图灵机现在变成一个程序,通用图灵机就是我们的电脑,它接受输入就是图灵机的程序及给这个程序的输入,然后通用图灵机就告诉我们结果。

可以这么说,“M”是虚拟机,通用图灵机就是虚拟机的宿主机。

相关文档
最新文档