电气与电子测量技术——1测量基本概念.ppt

合集下载

电子测量技术的基本概念和原理

电子测量技术的基本概念和原理

第六章:电子测量第一节:电子测量的基本概念一. 电子测量的定义:测量是用实验方法,将被测量与所选用的作为标准的同类量进行比较,从而确定它的量值的过程.电子测量是以电子技术理论为依据,以电子测量设备和仪器为手段,对待测的电量或非电量所进行的测量.二. 电子测量的内容:根据本课程的任务,这里对电子测量的主要内容加以分类介绍,以使读者在学习测量技术之前,有一个大慨的认识.1.关于电能量的测量:包括电流,电压,功率等2.关于电路参数的测量:包括电阻,电感,电容,阻抗,品质因子等.3.关于电信号波形特征的测量:包括频率,周期,时间,相位等.4.电路性能方面的测量:包括放大倍数,衰减量,灵敏度.5.半导体器件方面的测量:包括二极管,三极管,稳压管,场效应管等的各种参数.三. 电子测量的方法:采用正确的测量方法,可以得到比较精确的测量结果,否则会出现测量数据不准确或错误,甚至会损坏测量仪器或损坏被测组件和设备等现象.例如用万用表的R x1档测量,小功率三极管的发射结电阻时,由芜仪表的内阻很小,使三极管基极注入的电流过大,结果晶体管尚未使用就会在测试过程中被损坏.四. 测量数据的舍入规则:1.有效数字由于在测量中不可避免地存在误差,并且仪器的分辨能力有一定的限制,测量数据就不可能完全准确.同时,在对测量数据进行计算时,遇到像π,e 等无理数,实际计算时也只能取近似值,因此得到的数据通常只是一个进似值.当我们用这个数据表示一个量时,为了表示得确切,通常规定误差不得超过末位单位数字的一半.例如末位数字是个位,则包含的误差绝对值应不大于0.5;若末位是十位,则包含的误差绝对值应不大于5.对于这种误差不大于末位单位数字一半的数,从它左边第一个不为零的数字起,直到右面一个数字止,都叫作有效数字.例如375,123.08,3.10等,只要其中误差不大末位数字之半.它们就都是有效数字.值得注意的是,在数据左边的零不是有效数据,而数字中间和右面的零都是有效数字.例0.0038KΩ,左面的三个零就不是有效数字,因为它们可以通过单位变换变为3.8.可见只有两位有效数字.此外,对于像391000HZ这样的数,若实际上在百位数上就包含了误差,即只有四位有效数字,这时百分位数字上的零是有效数字,不能去掉,这时为了区别右面三个零的不同,10的乘幂的形式,即写为3.910*10 HZ,它清楚地表明有效数字只有四位,误差绝对值不大于50HZ.1. 数字的舍入规则当需要几位有效数字时,对超过几位的数字就根据舍入规则进行处理.例如对某电压进形四次测量,每次测量值均可用四位有效数字表示.例如四次测量值分别为U1=38.71V,U2=38.68V,U3=38.70V,U4=38.72V时,它们的平均值为:U=U1+U2+U3+U4/4=38.7052V所以在小数点后第三,四位可以根据舍入规则处理掉.五. 误差的基本慨念一个量值是本身所具有的直实大小,称为真值.在测量过程中,测量工具不准确,测量手段不完善或测量工作中的疏忽等原因,都会使测量结果与被测量的直值不同,这个差异称为误差.1. 测量误差的表示法测量的结果与被测量的直值的差异,称为测误差,用△x表示,即:△x=X-A0 (1-1)当X>A0时,△x是正值; X<A0时,△x是负值;所以△x是有大小,正负,有单位的数值,它的大小和符号分别表示测量值偏离真值的数值和方向.如:一个被测电压,其真值U0为220V,用一只电压表测量,其指示值U x 为222V,则绝对误差:△U=U X-U0=222V-220V=+2V这是正误差,比真值大了2V式(1-1)中的A0是无法测得的,故该式缺乏实用价值.实际上,可用比使用仪器的精度等级高一级的标准仪器来测量.用它所显示的实际值A来替A0.其实A中仍包含误差,只不过小一点,那么(1-1)式应改写成:△x=X-A (1-2)这是绝对误差的表达式.与绝对误差△x相等而符号相反的值称为修正值,用C表示C=-△x=A-X (1-3)通过校验,由上一级标准仪器给出受检仪器的修正值.在测量时,利用测得的结果与已知的修正值相加,即:A=X+C (1-4)如一个量程为10V的电压表,当用它进行测量时,指示值为8V,若检定时8V刻度处的修正值为-0.1V,求被测电压的实际值.解:实际值U=8V+(-0.1)V=7.9V根据国家标准GB776-65<<电气测量指示仪器通用技术条例>>的规定,常用电气测量仪表的准确度写为0.1,0.2,0.5,1.0,1.5,2.5,5.0等七个等级,0.2级仪器的引用误差在0.1%到0.2%之间;1.0级仪表的误差在0.5%到1.0%之间.△U=U*5%如:若要测一个10V左右的电压,手上有两快电压表,其中一块量程为150V,1.5级;另一块量程为1.5V,2.5级.选用哪一块合适?解:若使用量程为150V,1.5级的电压表△U=U*5%=150*(±1.5%)= ±2.25V若表头示值为10V, 则被测电压的真值是在10V±2.25V的范围内,误差值是相当大.若使用量程为15V,2.5级的电压表.△U=U*5%=15*(±2.5%)= ±0.375V若表头示值为10V,则被测电压的真值是在10V±0.375V的范围内,误差值小得很多,因此应选用1.5V的2.5 级电压表.。

电工仪表与测量的基本知识ppt课件

电工仪表与测量的基本知识ppt课件

原理 方法 对象 属性 选择 仪器 被测信息 激励信号 影 响 影响 测量 环境 仪器 系统 决定 方法
测量策 略、算法
被测 对象
参数命令 数据状态
测量 人员
影响
图 1-3
测量的基本要素
2.测量过程——基本要素之间的互动关系
论证阶段
测量的主体(测量人员)根据测试任务的要求、被测对
象的特点、属性,及现有仪器设备状况,拟定合理的测 试方案。
大类。 4.测量仪器系统——量具和仪器
测量仪器系统包括量具、测试仪器、测试系统及附件等
5.测量的主体——测量人员
手动:由测量主体(测量人员)直接参与完成
自动:测量主体交给智能设备(计算机等)完成,但测
量策略、软件算法、程序编写需由测量人员事先设计好。
6.测试技术
测量中所采用的原理、方法和技术措施,总称为测试技
发展趋势

数字化 网络化 智能化 小型化

第1章 知识 第2章 第3章 第4章 第5章 第6章 第7章 第8章 第9章

电工仪表与测量的基本
电流与电压的测量 功率与电能的测量 频率与相位的测量 电路参数的的测量 磁的测量 电子电压表 电子示波器 智能仪器与虚拟仪器
第一章 电工仪表与测量的基本知识
SI基本单位的定义
米:光在真空中(1/299792458s)时间间隔内所经过路
径的长度。[第17届国际计量大会(1983)] (1889)和第3届国际计量大会(1901)]
千克:国际千克原器的质量。[第1届国际计量大会 秒:铯-133原子基态的两个超精细能级之间跃迁所对应
的辐射的9192631770个周期的持续时间。[第13届国际计 量大会(1967),决议1] 平行圆直导线内通以等量恒定电流时,若导线间相互作 用力在每米长度上为2×10-7 N,则每根导线中的电流为 1 A。[国际计量委员会(1946)决议2。第9届国际计量 大会(1948)批准]

《电子测量技术》教案

《电子测量技术》教案
随着科学技术的飞速发展,误差理论与数据处理在理论上和实际应用上都得到极大的提高和发展,已成为一门独立的学科。因此,对从事各种实验和研究的科技和工程技术人员一定要学习和掌握误差理论与数据处理方面的知识。
只要有测量,必须有测量结果,有测量结果必然产生误差。误差影响测量精度。
对误差的特点,性质及分类要有全面系统的了解,最后找出合理的、科学的办法加以消除。
思考题、讨论题、作业:
参考资料(含参考书、文献等):
1.《电子测量技术》夏哲雷主编,机械工业出版社
2.《电子测量技术基础》杨吉祥编著,东南大学出版社
电子测量技术课程教案
授课题目(教学章节或主题):
第3章电压测量
3.1概述
3.2电压的模拟测量
3.3电压的数字化测量
授课类型
理论课
授课时间
第1周周3第6-7节
重点:
测量误差的估计和处理,测量不确定度的评定在科学研究和生产中的重要作用。
难点:
根据误差的性质,将测量误差分为随机误差、系统误差、粗大误差三类,这三类误差的概念和来源;
与测量结果有关的三个术语:准确度、精密度、精确度,及它们与系统误差、随机误差和总误差的关系。
教学手段与方法:
教学方式:讲授
教学资源:多媒体
教学手段与方法:
教学方式:讲授
教学资源:多媒体
思考题、讨论题、作业:
3-4
参考资料(含参考书、文献等):
1.《电子测量技术》夏哲雷主编,机械工业出版社
2.《电子测量技术基础》杨吉祥编著,东南大学出版社
电子测量技术课程教案
授课题目(教学章节或主题):
第4章时间频率测量及调制域分析
4.1时间频率测量
4.2电子计数器

第1章 电子测量原理

第1章 电子测量原理

(7)测量环境
测量环境是指测量过程中人员、对象和仪器系统所处空 间的一切物理和化学条件的总和。它包括温度、湿度、重 力场、电磁场、辐射、化学气雾和粉尘,霉菌以及有关电 磁量(工作电流、电压、频率、源阻抗、负载阻抗、地磁 场、雷电等)的数值、范围及其变化。
17
电子科技大学
《电子测量原理》
(补充)计量的基本概念
方式多样化,灵活 单位自愿行为
自下而上 可越级溯源 “数据”的准确性
方式单一,不灵活 政府法制行为
自上而下 强调逐级传递 “器具”的准确性
26
电子科技大学
《电子测量原理》
• 1.1.2 电子测量的意义
它的优势表现在: (1)具有极快的速度
(2)具有极精细的分辨能力和很宽的作用范围
(3)极有利于信息传递 (4)极为灵活的变换技术,有利于信息的获取 (5)巨大的信息处理能力
1.1.1 测量的基本概念
• 3.测量的组成
(2)测量过程——基本要素之间的互动关系
测量过程是测量的主体(测量人员)获取测量客体(被测对 象)的量值信息的过程。 具体的整个过程如下图所示:
13
电子科技大学
《电子测量原理》
1.1.1 测量的基本概念
开 始 被测对象 论 证 阶 段 测量任务要求 现有仪器设备
(2)离开测量就不会有真正的科学
5
电子科技大学
《电子测量原理》
1.1.1 测量的基本概念
• 1 .测量的意义(续)
(3)在现代化的工业生产中,处处离不开测量
测量是精细加工的基础,没有测量也就没有现代化的制 造业。 生产水平越是高度发达,测量的规模就越大,需要的测 量技术与仪器也越先进。 (4)在高新技术和国防现代化建设中则更是离不开测量 比如航空航天领域,医学生物领域,农业、气象、环境、 勘探等各学科

1-1测量的基本概念、测量误差1-2传感器及其基本特性

1-1测量的基本概念、测量误差1-2传感器及其基本特性

作图法求灵敏度过程 切点 y Δy
传感器 特性曲线
x1
y K x
0 Δx
xmax
x
2、分辨力:
指传感器能检出被测信 号的最小变化量,是有量纲 的数。当被测量的变化小于 分辨力时,传感器对输入量 的变化无任何反应。对数字 仪表而言,如果没有其他附 加说明,可以认为该表的最 后一位所表示的数值就是它 的分辨力。一般地说,分辨 力的数值小于等于仪表的最 大绝对误差。
传感器实例
温度传感器
压力传感器
液位传感器
三、传感器基本特性
传感器的特性一般指输入、输出特性。 包括:灵敏度、分辨力、线性度、稳定度、 电磁兼容性、可靠性等。
1、灵敏度 :
灵敏度是指传感器在稳态下输出变化值与 输入变化值之比,用K 来表示:
dy y K dx x
(1-6)
对线性传感器而言,灵敏度为一常数;对非 线性传感器而言,灵敏度随输入量的变化而变 化。
产生粗大误差的一个例子
2.系统误差:
系统误差也称装置误差,它反映 了测量值偏离真值的程度。凡误差的 数值固定或按一定规律变化者,均属 于系统误差。
系统误差是有规律性的,因此可 以通过实验的方法或引入修正值的方 法计算修正,也可以重新调整测量仪 表的有关部件予以消除。
夏天摆钟变慢的原 因是什么?
3.随机误差
误差产生的因素:
1.粗大误差
明显偏离真值的误差称为粗大误差,也叫 过失误差。粗大误差主要是由于测量人员的粗 心大意及电子测量仪器受到突然而强大的干扰 所引起的。如测错、读错、记错、外界过电压 尖峰干扰等造成的误差。就数值大小而言,粗 大误差明显超过正常条件下的误差。当发现粗 大误差时,应予以剔除。

电子测量技术

电子测量技术

(2.7.4) (2.7.5)
[例2.7.1]已知电阻上的电压及电流的相对误差分别为 γU=±3%, γI=±2%,问电阻消耗功率P的相对误差 是多少? γP= γU+ γI =±5%
2.商函数的合成误差 Y=A/B Δy=Δ A/B-(AΔB)/B2 γy=Δy/y = Δ A/A-Δ B /B=γA-γB (2.7.6) (1)测量频率时,取闸门时间为T,在此时间内填充的 脉冲个数为N,则频率fx=N/T γf=Δfx/fx=γN-γT 式中γN= Δ N/N=±1/N=±1/TfX γT=ΔT/T= -Δf0/f0
2.3.1 测量值的数学期望与标准差
1、数学期望
在相同条件下,用相同的仪器和方法,由同 一测量者以同样细心的程度进行多次测量,称为
等精密度测量。
设对某一被测量x 进行测量次数为n的等精密 度测量,得到的测量值xi(i=1,2,…,n)为随机变 量。其算术平均值为(也称为样本平均值):
x 1 n
n i 1
(2)分贝误差:用对数形式表示的误差称为分贝 误差。设输出量与输入量测得值之比为U0/Ui, 则增益的分贝值:
Gx
20 log
U0 Ui
20LgAu (dB)
(2.1.8)
• 式中,Au,是电压放大倍数的测得值。又因为 • Au =A+ ΔΑ • 式中,A是放大倍数的实际值。则
• Gx=20Lg(A+ ΔΑ)=20Lg[A(1+ ΔΑ/A)]
x / n
(2.3.25)
2.3.3均匀分布情况下的标准差 1.均匀分布的概率密度
2.均匀分布的数学期望与方差
由于在均匀分布区间内数值是相等的,所以它的 数学期望:
Ex

电子测量第一章第三节

电子测量第一章第三节

第1章 电子测量的基本概念
只要零示器的灵敏度足够高, 零位式测量法的测量准确度几乎等于标准 量的准确度, 因而这种方法的测量准确度很高, 这是它的主要优点, 常用在
实验室作为精密测量的一种方法。 但由于测量过程中为了获得平衡状态需要
进行反复调节, 因此即使采用一些自动平衡技术, 测量速度仍然较慢, 这是 这种方法的一个不足之处。
第1章 电子测量的基本概念
图1.3-2 微差式测量法示意图
第1章 电子测量的基本概念
因此, 该法兼有偏差式测量法的测量速度快和零位式测量法测量准确度高的 优点。 微差式测量法除在实验室中用作精密测量外, 还广泛地应用在生产线控 制参数的测量上, 如监测连续轧钢机生产线上的钢板厚度等。 图1.3-3 是用微差 法测量直流稳压电源输出电压稳定度的测量原理图。 图中, Uo为直流稳压电源 的输出电压, 它随着50 Hz、 220 V市电的波动和负载RL的变化而有微小起伏 V2 为量程不大但灵敏度很高的电压表; UB表示由标准电源Us获得的标准电压; Uδ 是由 V2 电压表测得的Uo与UB的差值, 即输出电压Uo随着市电波动和负载变化而
第1章 电子测量的基本概念
图1.3-1 利用惠斯登电桥测量电阻示意图
第1章 电子测量的基本概念
当电桥平衡时, 可以得到:
R1 Rx R4 R2
(1.3-3)
通常是先大致调整比率R1/R2, 再调整标准电阻R4, 直至电桥平衡, 充 当零示器的检流计PA指示为零, 此时即可根据式(1.3-3)由比率和R4值得到被 测电阻Rx值。
准量具对仪表读数、 刻度进行校准, 实际测量时根据指针偏转大小确定被测
量量值。
第1章 电子测量的基本概念
2) 零位式测量法 零位式测量法又称做零示法或平衡式测量法。 测量时将被测量与标准量

《电气测量》PPT课件

《电气测量》PPT课件
张丝
四、低功率因数功率表的使用
➢ 要正确接线; ➢ 要正确读数:低功率因数功率表提供三个额定值, 即额定电压、额定电流和额定功率因数。使用时除电 压、电流不得超过额定值外,还应注意:
若被测功率因数大于额定功率因数,要注意指针是否超过
满度; 若被测功率因数小于额定功率因数,要注意指针虽未超过 满度,电流圈的电流可能超过额定值。为此测量功率时最好 再用一个电流表监视电流状态。
KI1
U Rad
cos
cos(
)
上式与无感抗的功率表
指针偏转角相比其误差为
补偿电容
cos
cos( - ) - cos cos
(cos
tg
sin ) cos
1
功率因数越低 ,tg 越大,造成的误差就越大,对于测量低功率因
数的功率,十分不利,加接补偿电容后,可消除感抗影响,使 减少,
误差下降。
D34—W型功率表
同时,要采取措施消除
示值中的表耗功率部分。
解决办法是在电压电路
中,串联一个补偿线圈
产生附加力矩以抵消表
耗功率。使得所减少的
读数值正好等于表耗功
率读数的增加值。
二、带补偿电容的低功率因数功率表
由于功率表的电压线圈存
在感抗,通过电压线圈的电
流与电压的相位差为 ,功
率表指针偏转角为
KI1I2 cos
三表法
适用于三相四线制,电压、负载不对称的系 统,被测三相总功率为三表读数之和,即
P P1 P2 P3
二、用三相功率表测三相功率
将两只或三只或 单相功率表的可动线 圈装在一个公共转轴 上即组成两元件或三 元件的三相功率表, 分别用于三相三线制 与三相四线制。其公 共转轴的转矩直接反 映三相总功率,因此 可从标尺上直接读出 三相功率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



12
测量在电力行业中的应用
电网运行:
成千上万个电气量测量传感器
电厂发电机组:
检测参数: 电气量---电压、电流、功率因 数、频率、谐波、相角等,
非电量-发电机振动、温度、 压力、流量、液位、 声音等
3000-5000个测量传感器
13
智能电网
传统电网升级换代 (安全、可靠、高效、大量接纳 新能源、用户互动等)
6. 7. 8. 9.
S13油中水分 S14铁芯接地电流 C冷却系统 OLTC有载调压系统
16
测量仪器的发展
17
测量仪器的发展历程
测量仪器发展至今.大致可分为五个阶段。
第一代 模拟指针式仪表 (上世纪50年代以前)

基于电磁机械式机构, 测量结果是依靠指针显示

18
测量仪器的发展历程

第二代 分立电子仪器 (上世纪5、60年代)

欧洲和美国均提出各自发展智 能电网的目标和路线图 国家电网公司和南方电网公司 均提出了全面建设智能电网的 发展规划
14

智能电网目标

IBM: 利用传感器对发电、输电、配电、供电等关键设备的运行状 况进行实时监控,把获得的数据通过网络系统进行收集、整 合,通过对数据的分析、挖掘,达到对电网运行的优化管理 埃森哲: 利用传感、嵌入式处理器、数字通信等技术,使电网可观测 (监测电网所有元件的状态)、可控制(控制电网所有元件的 状态)、自动化(可自适应并实现自愈) 我国国家电网公司 以特高压电网为骨干网架、各电压等级电网协调发展的坚强电 网为基础,将现代先进的传感测量技术、通讯技术、信息技术、 计算机技术和控制技术与物理电网高度集成而形成的新型电网。
英呎——feet
1 米(1790年,法国政府规定:通过巴黎地球子午线长度的4千万分子1) (1983年,国际计量大会:光在真空中1s时间内传播距离的1/299792485)
27
Hale Waihona Puke 单位制由基本单位与导出单位共同组成的一个完整 的单位体系。 基本量与基本单位:少数相互独立的并可通 过其组合定义其他所有物理量被称为“基本 量”。这些量的单位被称为“基本单位”。
实验 20% (3次实验)
考试 70%
习题、试验内容:
ftp://202.120.36.175:3000/电气与电子测量技术 用户名,密码:cljs
5
绪论
6
绪论
测量地位和作用
测量仪器发展历程
7
测量的地位和作用
8
测量在科学研究中作用
门捷列夫 (1834-1907)
科学始于测量,没有测 量,便没有精密的科学。
15


智能变压器
电压、电流 局部放电 电压、电流 顶层油温
S5 S6 S1
S7
S9 S10 S2 S11
气体继电器
C S12 S13 OLTC S3 S4
油中溶解气体 油中水分
系统网络
底层油温
智能 组件
S8
S14
铁芯接地电流 局部放电 有载调压 冷却系统
注: 1. S1、S2顶层油温,S3、S4底层油温 2. S5、S6、S9、S10电压、电流 3. S7、S8局部放电 4. S11气体继电器 5. S12油中溶解气体
一 测量基础知识(第1章) 二 误差基本理论(第2章) 三 常用的传感器(第3章)
四 测量系统中的调理电路(第4章)
五 电气测量技术(第5章)
六 干扰与抑制 (第8章)
七 试验(虚拟仪器,传感器实验等) (第7章)
4
课程基本情况
课时: 共34学时 课堂授课 28学时 试验 考核成绩: 6学时
平时 10%(作业,课堂提问,考勤)
9
测量在科学研究中作用
钱学森(1911-2009 ) 信息技术包括测量技 术、计算机技术和通信 技术,测量技术是信息 技术的关键和基础。
10
日常生活中处处离不开测量
家用电器 空调、冰箱、电饭煲:温度测量 自动感应灯:亮度测量 数码相机、数码摄像机:自 动对焦(红外测距)
医疗卫生
数字体温计:温度测量 电子血压计:压力检测
汽车
普通轿车:约安装几十到近百只测量传感器. 豪华轿车:测量传感器数量可多达二百余只.
11
测量在工农业生产中的应用

农业生产中,需要丈量土地、衡量谷 物,就产生了长度、面积、容积和重 量的测量;
中国:秦始皇,商鞅变法,统一度量衡


现代化的工业生产中处处需要测量
一架飞机中: 3000个测量传感器; 一个大型石油化工厂:6000个测量传感器; 一个大型钢铁厂: 20000个测量传感器。
以电子管,晶体管为基础
采用了电子测量技术测量模 拟信号
19
测量仪器的发展历程
第三代 数字式仪表 (上世纪70年代)


将模拟信号转化为数字信号, 以数字形式输出与显示出结果 一般采用中规模的集成电路

20
测量仪器的发展历程

第四代 智能仪器 (上世纪80年代)
内部有微处理器,可以进行自动测 量和数据处理。
其他:传感器和电气测量的相关书籍
2
课程目标
通过本课程的学习,了解电气和电子测
量技术的基本概念、测量系统的构成和分析
方法,掌握常用测量系统的工作原理及动静
态特性,学会根据实际要求选用传感器和调
理电路,掌握建立电气测量系统的原则与方 法,并对电气测量技术的发展趋势有所了解。
3
课程主要内容(7个部分)
22
第一章 测量的基础知识
23
第一章 测量基础知识

测量的基本概念 测量方法 现代测量系统的组成 静态特性 动态特性
24
测量的基本概念
25
测量概念和定义

测量:人们借助专门的设备,将被测量量和同类标准量进 行比较,得到测量结果的一个过程。
26
单位

有明确定义和名称并命其数值为1的固定量; 单位量值大小是约定或法定的
电气与电子测量技术
盛戈皞 Email:shenghe@ 办公室: 电信群楼1号楼237室
教材和参考书目
1 电气与电子测量技术
自编教材
电子工业出版社
2现代测试技术与系统设计 申忠如 西安交大出版社
3 电气测试技术 第3版 林德杰 机械工业出版社
4 现代检测技术与测试系统设计 刘君华 西安交大出版社 5 电气测量 陈立周 机械工业出版社


采用大规模集成电路
主要由硬件与固化的软件组成 主要问题是功能固定,应用不灵活


21
测量仪器的发展历程

第五代 虚拟仪器
以计算机技术为基础,是测量 技术新的革命。 利用高性能的标准模块化硬件 和高效灵活的软件来完成各种 测试和测量的应用。



软件是虚拟仪器的关键, “软 件即仪器” (不同的软件构成不同的仪器)
相关文档
最新文档