统计过程控制SPC培训教材(PPT75页).pptx
合集下载
SPC统计过程控制培训教材(PPT 72页)

➢ 戴明博士对日本指导质量管理的成功,让美国 人惊醒原来日本工商经营成功的背后竟然有一 位美国人居功最大,故开始对戴明博士另眼看 待。1980年6月24日全国广播公司(NBC)在电视 播放举世闻名的“日本能为什么我们不能”(If Japan Can, Why Can‘t We?),使戴明博士一 夜成名。从此以后美国企业家重新研究戴明的 质量管理经营理念。
步骤8:运用控制限进行控制;
计数控制图和计点控制图
不良品率控制图(P图)
对产品不良品率进行监控时用的控制图 ;
质量特性良与不良,通常服从二项分 布; 当不良率P较小样本量n足够大时,该 分布趋向于正态分布
适用于全检零件或每个时期的检验样本 含量不同。
不良品率控制图(P图)
检验并记录数据 计算平均不合格品率P 计算中心线和控制界限 绘制控制图并进行分析
20世纪50年代以来,科学技术和工业生产的发展,对质量要求越来越高 ,要求人们运用“系统工程”的概念,把质量问题作为一个有机整体加以综 合分析研究,实施全员、全过程、全企业的管理。
SPC(统计过程控制)
--统计性的反馈系统
Statistical: (统计)以概率统计学为基础,用 科学的方法分析数据、得出结论; ——使用数据分析
标准正态分布函数:N(0,1)
小概率事件理解
1.例行检查身体 2.烟雾探测器
正态分布图与控制图
正态分布图与控制图
??那是不是说只有符合正态分布的特性(变量) 才可以用控制图呢?
休哈特实验
休哈特分别从矩形分布和三角分布的总体中,抽取n =4的样本,计算样本均值Xbar,经过多次实验后发 现,Xbar基本符合正态分布。
(William Edwards Deming)
步骤8:运用控制限进行控制;
计数控制图和计点控制图
不良品率控制图(P图)
对产品不良品率进行监控时用的控制图 ;
质量特性良与不良,通常服从二项分 布; 当不良率P较小样本量n足够大时,该 分布趋向于正态分布
适用于全检零件或每个时期的检验样本 含量不同。
不良品率控制图(P图)
检验并记录数据 计算平均不合格品率P 计算中心线和控制界限 绘制控制图并进行分析
20世纪50年代以来,科学技术和工业生产的发展,对质量要求越来越高 ,要求人们运用“系统工程”的概念,把质量问题作为一个有机整体加以综 合分析研究,实施全员、全过程、全企业的管理。
SPC(统计过程控制)
--统计性的反馈系统
Statistical: (统计)以概率统计学为基础,用 科学的方法分析数据、得出结论; ——使用数据分析
标准正态分布函数:N(0,1)
小概率事件理解
1.例行检查身体 2.烟雾探测器
正态分布图与控制图
正态分布图与控制图
??那是不是说只有符合正态分布的特性(变量) 才可以用控制图呢?
休哈特实验
休哈特分别从矩形分布和三角分布的总体中,抽取n =4的样本,计算样本均值Xbar,经过多次实验后发 现,Xbar基本符合正态分布。
(William Edwards Deming)
SPC统计过程控制教材ppt(37张)

– 5、确定各组的频数 – 6、作直方图 – 7、对直方图的观察: 特点, 中间高、两头低、左右对称
7
SPC
3、基础知识
(2)、正态分布 (Normal Distribution) 当抽取的数据个数趋于无穷大而区间宽度趋向于0时,外形轮廓的折线就趋向于光滑的曲
线,即:概率密度曲线。 特点:面积之和等于1。
11
SPC统计过程控制教材(PPT37页)
SPC
• (4)、使用控制图应考虑的问题
– a、控制图用于何处? – b、如何选择控制对象? – c、怎样选择控制图? – d、如何分析控制图? – e、点出界或违反其他准则的处理。 – f、控制图的重新制定。 – g、控制图的保管问题。
SPC统计过程控制教材(PPT37页)
– 1、找出最大值和最小值,确定数据分散宽度 数据分散宽度=(最大值 最小值)
– 2、确定组数 k n
– 3、确定组距 h=(最大值最小值)/组数
– 4、确定各组的边界 第一组的组下限=最小值 最小测量单位的一半 第一组的组上限=第一组的组下限+组距=第二组的组下限 第二组的组上限=第二组的组下限+组距=第三组的组下限,依此类推。
2
SPC
3、为什么要学习SPC(二)?
• 3控制方式与6控制方式的比较:
3
SPC
4、开展SPC工程的步骤
• 培训SPC
– 正态分布等统计基础知识 – 品管七工具:调查表、分层法、散布图、排列图、直方图、因果图、控制图 – 过程控制网图的做法 – 过程控制标准的做法
• 确定关键质量因素
– 对每道工序,用因果图进行分析,造出所有关键质量因素,再用排列图找出 最终产品影响最大的因素,即关键质量因素;
7
SPC
3、基础知识
(2)、正态分布 (Normal Distribution) 当抽取的数据个数趋于无穷大而区间宽度趋向于0时,外形轮廓的折线就趋向于光滑的曲
线,即:概率密度曲线。 特点:面积之和等于1。
11
SPC统计过程控制教材(PPT37页)
SPC
• (4)、使用控制图应考虑的问题
– a、控制图用于何处? – b、如何选择控制对象? – c、怎样选择控制图? – d、如何分析控制图? – e、点出界或违反其他准则的处理。 – f、控制图的重新制定。 – g、控制图的保管问题。
SPC统计过程控制教材(PPT37页)
– 1、找出最大值和最小值,确定数据分散宽度 数据分散宽度=(最大值 最小值)
– 2、确定组数 k n
– 3、确定组距 h=(最大值最小值)/组数
– 4、确定各组的边界 第一组的组下限=最小值 最小测量单位的一半 第一组的组上限=第一组的组下限+组距=第二组的组下限 第二组的组上限=第二组的组下限+组距=第三组的组下限,依此类推。
2
SPC
3、为什么要学习SPC(二)?
• 3控制方式与6控制方式的比较:
3
SPC
4、开展SPC工程的步骤
• 培训SPC
– 正态分布等统计基础知识 – 品管七工具:调查表、分层法、散布图、排列图、直方图、因果图、控制图 – 过程控制网图的做法 – 过程控制标准的做法
• 确定关键质量因素
– 对每道工序,用因果图进行分析,造出所有关键质量因素,再用排列图找出 最终产品影响最大的因素,即关键质量因素;
spc培训资料-SPC-统计过程控制(ppt 88页)

重复这三个阶段从而不断改进过程
控制图类型
X-R 均值和极差图
P chart 不合格品
计
计 率控制图
量 X-s均值和标准差图 数 nP chart 不合格品
型
型 数控制图
数 X -R 中位值极差图 数 C chart 缺点数控
据
据 制图
X-MR 单值移动极差 图
U chart 单位缺点 数控制图
控制图的选择方法
流等。(注:数据仅代表单一刀具、冲头、模具等 生产出来的零件,即一个单一的生产流。) 1-1-2 子组频率:在适当的时间内收集足够的数据,这样子组才能 反映潜在的变化,这些变化原因可能是换班/操作人 员更换/材料批次不同等原因引起。对正在生产的产 品进行监测的子组频率可以是每班2次,或一小时一 次等。
12 34 56
计量单位:(mm, kg等)
控制图举例
X图 R图
接上页
测量方法必须保证始终产生准确和精密的结果 不精密
不准确
••••••••
准确
•••••
• ••••
精密
•••••• •••••
使用控制图的准备
1、建立适合于实施的环境 a 排除阻碍人员公正的因素 b 提供相应的资源 c 管理者支持
范围 不受控
(存在特殊原因)
受控 (消除了特殊原因)
时间
过程能力
范围
受控且有能力符合规范 (普通原因造成的变差已减少) 规范下限
规范上限 时间
受控但没有能力符合规范 (普通原因造成的变差太大)
1、分析过程 本过程应做什么? 会出现什么错误? 本过程正在做什么? 达到统计控制状态? 确定能力
计划
措施
每件产品的尺寸与别的都不同
控制图类型
X-R 均值和极差图
P chart 不合格品
计
计 率控制图
量 X-s均值和标准差图 数 nP chart 不合格品
型
型 数控制图
数 X -R 中位值极差图 数 C chart 缺点数控
据
据 制图
X-MR 单值移动极差 图
U chart 单位缺点 数控制图
控制图的选择方法
流等。(注:数据仅代表单一刀具、冲头、模具等 生产出来的零件,即一个单一的生产流。) 1-1-2 子组频率:在适当的时间内收集足够的数据,这样子组才能 反映潜在的变化,这些变化原因可能是换班/操作人 员更换/材料批次不同等原因引起。对正在生产的产 品进行监测的子组频率可以是每班2次,或一小时一 次等。
12 34 56
计量单位:(mm, kg等)
控制图举例
X图 R图
接上页
测量方法必须保证始终产生准确和精密的结果 不精密
不准确
••••••••
准确
•••••
• ••••
精密
•••••• •••••
使用控制图的准备
1、建立适合于实施的环境 a 排除阻碍人员公正的因素 b 提供相应的资源 c 管理者支持
范围 不受控
(存在特殊原因)
受控 (消除了特殊原因)
时间
过程能力
范围
受控且有能力符合规范 (普通原因造成的变差已减少) 规范下限
规范上限 时间
受控但没有能力符合规范 (普通原因造成的变差太大)
1、分析过程 本过程应做什么? 会出现什么错误? 本过程正在做什么? 达到统计控制状态? 确定能力
计划
措施
每件产品的尺寸与别的都不同
统计过程控制SPC培训教材(PPT89页).pptx

(不可以容許的偏差→要排除)
16
如果制程中, 只有普通原因的變異存在, 則其成品將形成依各很穩定 的分佈,而且是可以預測的
如果制程中,
範圍 →
有特殊原因的變異存在,
則其成品將為不穩定的分佈, 而且是無法預測的
範圍 →
可預測
無法 預測
17
局部措施→改善特殊原因
特殊原因的变异
簡單的統計分 析可發現
如管制圖
直接負責制程的人 員去改善
局部措施改善 對策
牽涉到消除產生变异的特殊原因
可由製程人員直接加以改善
大約可以解決15%之制程上的問題
18
系統措施 → 改善普通原因
普通原因的变异
製程能力分 析可發現
如Ca,Cp, Cpk,及管制 圖上點的變化
管理當局參與及製 程人員合作去改善
系統改善對策
必須改善造成变异的普通原因 經常需要管理階層的努力與對策 大約可以解決85%之制程上的問題
(可以容許的偏差)
15
❖ 特殊原因(系统性,易识别,可以消除) :
指的是造成不是始终作用于过程的变差的原因,即当 它们出现时将造成(整个)过程的分布改变。除非所有 的特殊原因都被查找出来并且采取了措施,否則它们 将继续用不可预测的方式来影响过程的输出。如果系 统內存在变差的特殊原因,随时间的推移,过程的输 出将不稳定。
7
4.SPC 的焦點 → 制程 ( Process ) ❖ 品質變異的大小,也是決定產品優劣的關鍵
制程起伏條件 因
品質異常 果
因
產品優劣
果
8
三.SPC目的
❖ 对异常因素分类和控制,当制程有问题,立即 停止并找出原因,解决异常因素。
❖ 使制程稳定 ❖ 提高制程能力 ❖ 预防品质问题
16
如果制程中, 只有普通原因的變異存在, 則其成品將形成依各很穩定 的分佈,而且是可以預測的
如果制程中,
範圍 →
有特殊原因的變異存在,
則其成品將為不穩定的分佈, 而且是無法預測的
範圍 →
可預測
無法 預測
17
局部措施→改善特殊原因
特殊原因的变异
簡單的統計分 析可發現
如管制圖
直接負責制程的人 員去改善
局部措施改善 對策
牽涉到消除產生变异的特殊原因
可由製程人員直接加以改善
大約可以解決15%之制程上的問題
18
系統措施 → 改善普通原因
普通原因的变异
製程能力分 析可發現
如Ca,Cp, Cpk,及管制 圖上點的變化
管理當局參與及製 程人員合作去改善
系統改善對策
必須改善造成变异的普通原因 經常需要管理階層的努力與對策 大約可以解決85%之制程上的問題
(可以容許的偏差)
15
❖ 特殊原因(系统性,易识别,可以消除) :
指的是造成不是始终作用于过程的变差的原因,即当 它们出现时将造成(整个)过程的分布改变。除非所有 的特殊原因都被查找出来并且采取了措施,否則它们 将继续用不可预测的方式来影响过程的输出。如果系 统內存在变差的特殊原因,随时间的推移,过程的输 出将不稳定。
7
4.SPC 的焦點 → 制程 ( Process ) ❖ 品質變異的大小,也是決定產品優劣的關鍵
制程起伏條件 因
品質異常 果
因
產品優劣
果
8
三.SPC目的
❖ 对异常因素分类和控制,当制程有问题,立即 停止并找出原因,解决异常因素。
❖ 使制程稳定 ❖ 提高制程能力 ❖ 预防品质问题
2024版SPC培训教材全课件

假设检验的基本概念
明确假设检验的定义、原假设与备择假设的设立原则及两类错误 的含义。
参数假设检验
掌握正态总体均值、方差的假设检验方法及步骤,理解t检验和F 检验的原理及应用场景。
非参数假设检验
了解非参数假设检验的适用条件及常用方法,如秩和检验、符号 检验等。
16
方差分析、回归分析应用举例
方差分析
掌握方差分析的基本原理、计算步骤及结果解释,理解其在多因素实验设计中的应用。
化。
大数据在SPC中的应用
大数据技术的不断发展将为SPC提供更丰富的数据来源和分析手段,有助于提高SPC的 应用效果。
2024/1/30
SPC在服务业的拓展
随着服务业的不断发展,SPC的应用领域将逐渐拓展到服务业领域,为服务业的质量管 理提供新的思路和方法。
36
下一讲预告及预备知识
2024/1/30
01
02
03
04
明确数据收集目标
根据业务需求,明确所需数据 的类型、范围和质量要求。
2024/1/30
制定数据收集计划
设计合理的数据收集流程,包 括数据源选择、采集频率、存
储方式等。
执行数据收集
运用合适的数据收集工具和技 术,按照计划进行数据采集。
数据质量监控
建立数据质量评估机制,确保 数据的准确性、完整性和一致
下一讲内容
下一讲将介绍SPC在企业中的实际应 用案例,包括不同行业和不同场景下 的SPC应用实践。
预备知识
为了更好地理解下一讲内容,建议学 员提前了解相关行业的生产流程和质 量管理要求,以及SPC在实际应用中 的挑战和解决方案。
37
THANKS
感谢观看
2024/1/30
SPC统计过程控制培训(PPT64页).pptx

4.1.1 正态分布曲线
f (x)
y
2
1
(
x
)
2
2
e ( x , 0)
2
---平均值
--- 标准差
4.1.2 正态分布的参数 、
4.1.3 正态分布的特点
• 曲线以 x = 直线为轴,左右对称 • 曲线与横坐标轴所围成的面积等于1
其中 在±范围内的面积占68.26 % 在±2范围内的面积占95.45 % 在±3范围内的面积占99.73 %
例:疵点数、沙眼数等
3、总体和样本(子组)
3.1 总体 研究对象的全体 总体含量记为 N
3.2 样本(子组) 总体中的部分样品 样本含量记为 n
4、常见的典型分布
4.1 正态分布 —— 计量值数据 4.2 二项分布 —— 计件值数据 4.3 泊松分布 —— 计点值数据
4.1 正态分布
X ~ N(, 2)
不同类型控制图的适用范围
适用范围
计 产品批量较大,稳定正常工序 量 产品批量较大,稳定正常工序 数 据 产品批量较大,稳定正常工序
每次只能得一个数据,见效快
计
样本含量可以不等
件 样本含量相等
计
样本含量相等
点 样本含量可以不等
用符号表示的控制图
X?R 图 均值极差图ቤተ መጻሕፍቲ ባይዱ
X桽 图 均值标准差图
X桽 图 中位数极差图
4 . 3 泊松分布: (常见于计点分布) 二项分布的极限分布 — P()
• 分布列
•P(均X值、x方)差和标x e准差 , (x 0,1,)
x!
均值: E(X)= ;
方差: V(X)= ;
标准差:
;
SPC统计过程控制培训课程(PPT 87页)
製程能力指標Ca
Ca
X
(T / 2)
(雙邊規格)
ˆ R
d2
製程能力指標C p
Cp
USL LSL
6ˆ
(雙邊規格)
Cp
USL
3ˆ
X
(單邊規格上規格界限)
Cp
X
LSL (單邊規格下規格界限)
3ˆ
ˆ R
d2 只考慮到固定變差或組內變差
製程能力指標C pk
C pk min(C pu , C pl )
C1分析极差图上的数据点
超出控制限的 点
C2识別并标注特殊原因(极差图链)
明显的非随机
C3重新计算控制界限(极差图)超图出形控制限的点
C4分析均值图上的数据点 链
明显的非随机图形 C5识別并标注特殊原因(均值图)
C6重新计算控制界限(均值图)
C7为了继续进行控制延长控制限
控制图的判读
超出控制界限的点:出现一个或多个点超出任何 一个控制界限是该点处于失控状态的主要证据
作控制图的目的是为了使生产过程或工作过程 处于“控制状态”. 控制状态即稳定状态, 指 生产过程或工作过程仅受偶然因素的影响, 产 产品质量特性的分布基本上不随时间而变化的 状态. 反之, 则为非控制状态或异常状态.
控制状态的标准可归纳为二條:
第一條, 控制图上点不超过控制界限; 第二條, 控制图上点的排列分布沒有缺陷.
产品的质量特性有时不止一个, 则应同时采 取几个特性作为控制項目.
使用控制图的注意事項
分组问题
主要是使在大致相同的条件下所收集的质量 特性值分在一组, 组中不应有不同本质的数 据, 以保证组内仅有偶然因素的影响.
我们所使用的控制图是以影响过程的许多变 动因素中的偶然因素所造成的波动为基准来 找出异常因素的, 因此, 必须先找出过程中 偶然因素波动这个基准.
SPC统计过程控制培训课程(PPT97页).pptx
“”及“”风险定义
根据控制限作出的判断也可能产生错误。可能产生的错误
有两类。
第一类错误是把正常判为异常,它的概率为,也就是说 ,工序过程并没有发生异常,只是由于随机的原因引起了数据 过大波动,少数数据越出了控制限,使人误将正常判为异常。 虛发警报, 由于徒劳地查找原因并为此采取了相应的措施,从 而造成损失. 因此, 第一种错误又称为徒劳错误.
普通原因/异常原因
~
基础的统计量——平均值X、中位数X、极差R 标准偏差、S
1、数据的种类
计量型
特点:可以连续取值也 称连续型数据。
如:零件的尺寸、强度、 重量、时间、温度等
计数型
特点:不可以连续 取值,也称离散型数据 。
如:废品的件数、缺陷数
2、波动(变差)的概念:
波动的概念是指在现实生活中没有两件东西是完全一样的。生产 实践证明,无论用多么精密的设备和工具,多么高超的操作技术,甚至 由同一操作工,在同一设备上,用相同的工具,生产相同材料的同种产 品,其加工后的产品质量特性(如:重量、尺寸等)总是有差异,这种 差异称为波动。公差制度实际上就是对这个事实的客观承认。
消除波动不是SPC的目的,但通过SPC可以对波动进行预测和控制 。
波动的原因:
材料
机器
人员
• 正常波动:是由普通(偶然)
原因造成的。如操作方法的微 小变动、机床的微小振动、刀 具的正常磨损、夹具的微小松 动、材质上的微量差异等。正 常波动引起工序质量微小变化, 难以查明或难以消除。它不能 被操作工人控制,只能由技术、 管理人员控制在公差范围内。
原料
PROCESS
测量 结果
针对产品所做的仍 只是在做SQC
二、SPC的目的
SPC统计过程控制培训教材
2-1 计算平均极差(R)及过程均值(X)
R=(R1+R2+…+Rk)/ k(K表示子组数量)
X =(X1+X2+…+Xk)/ k
2-2 计算控制限 计算控制限是为了显示仅存在变差的普通原因时子组的均
值和极差的变化和范围。控制限是由子组的样本容量以及反
映在极差上的子组内的变差的量来决定的。
计算公式:
• 什么是过程控制? 过程控制是为了确保满足顾客的要求而对过程所执行的一套程序和经过 策划的措施。这些程序和措施包括: - 经过策划的用以收集有关输入和输出信息的检验和监控 - 基于所收集信息而对过程进行的调整
• 什么是统计过程控制? 使用诸如控制图等统计技术来分析过程或其输出,以便采取适当的措施 来达到并保持统计控制状态,从而提高过程能力。 -
有反馈的过程控制系统模型
过程的呼声 人 设备 材料 方法 环境
统计方法
我们工作 产品或 的方式/资服务 源的融合
பைடு நூலகம்
输入
过程/系统 顾客的呼声
输出
顾客
识别不断变化的 需求量和期望
过程的状态的衡量
过程控制: 操作员培训、变换材料 设备修理 人员沟通 改变车间温度、湿度
输出控制: 返修、返工、特采 退步放行、降级、报废
UCLx=X+ A2R
UCLR=D4R
LCLx=X - A2R
LCLR=D3R
接上页
注:式中A2,D3,D4为常系数,决定于子组样本容量。其系数值
见下表 :
n2
3
4
5
6
7
8
9 10
D4 3.27 2.57 2.28 2.11 2.00 1.92 1.86 1.82 1.78
统计过程控制(SPC) ppt课件
措施或对系统采取措施的指南
28
ppt课件
4.5控制图的分类
按照用途分类:
分析用控制图:过程分析(制程解析)
控制用控制图:变化的范围用到现场去,根据给定的界限进行分 析
分析用控制图和控制用控制图的区别:
应用的地点不一样,分析用控制图用在了解制程,控制用控制图 用在生产现场
是否需要计算控制界限
13
ppt课件
2.3局部措施和系统措施
措施 对比
对象
系统措施
通常用来消除变差的普 通原因
局部措施
通常用来消除变 差的特殊原因
实施人员
几乎总是要求管理措施, 以便纠正
通常由与过程直 接相关的人员实 施
效果
大约可纠正85%的过程 问题
通常可纠正大约 15%的过程问题
14
ppt课件
3.统计过程的控制思想
样本不一样,控制用控制图针对每个子组进行控制,收集一个判 定一个
分析的时间不一样,分析用控制图在收集25个子组之后进行,控 制用控制图每个子组进行分析和判断
目的不一样:分析用控制图用来了解制程是否受控,能力是否满 足顾客要求,控制用控制图已经了解顾客要求和控制界限,维持 和保持这种状态
29
9
ppt课件
3.对过程采取措施对重要的 特性采取措施从而避免它们 偏离目标值太远是很经济的 4 .对输出采取措施如果仅限 于对输出检测并纠正不符合 规范的产品,常常是最不经 济的
过程控制的必要: 检测——容忍浪费 预防——避免浪费
10
ppt课件
2.2波动及波动的原因
过程的单个输出间不可避免的差异任何过程都存在产生 变差的原因产生变差的原因可以分为两类,即:
28
ppt课件
4.5控制图的分类
按照用途分类:
分析用控制图:过程分析(制程解析)
控制用控制图:变化的范围用到现场去,根据给定的界限进行分 析
分析用控制图和控制用控制图的区别:
应用的地点不一样,分析用控制图用在了解制程,控制用控制图 用在生产现场
是否需要计算控制界限
13
ppt课件
2.3局部措施和系统措施
措施 对比
对象
系统措施
通常用来消除变差的普 通原因
局部措施
通常用来消除变 差的特殊原因
实施人员
几乎总是要求管理措施, 以便纠正
通常由与过程直 接相关的人员实 施
效果
大约可纠正85%的过程 问题
通常可纠正大约 15%的过程问题
14
ppt课件
3.统计过程的控制思想
样本不一样,控制用控制图针对每个子组进行控制,收集一个判 定一个
分析的时间不一样,分析用控制图在收集25个子组之后进行,控 制用控制图每个子组进行分析和判断
目的不一样:分析用控制图用来了解制程是否受控,能力是否满 足顾客要求,控制用控制图已经了解顾客要求和控制界限,维持 和保持这种状态
29
9
ppt课件
3.对过程采取措施对重要的 特性采取措施从而避免它们 偏离目标值太远是很经济的 4 .对输出采取措施如果仅限 于对输出检测并纠正不符合 规范的产品,常常是最不经 济的
过程控制的必要: 检测——容忍浪费 预防——避免浪费
10
ppt课件
2.2波动及波动的原因
过程的单个输出间不可避免的差异任何过程都存在产生 变差的原因产生变差的原因可以分为两类,即:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Process:(过程)
制程控制系统 -- 有反馈的过程控制系统模型
过程的呼声
人员 设备 材料 方法 环境
输入
统计方法
我们工作 的方式/资 源的融合
过程/系统
产品或服务
顾客
识别不断变化的需 求量和期望
输出
顾客的呼声
过程的稳定性:
■稳定过程:产品质量 质量特性的变异是在 可预测的统计控制 范围之内;
?
1.极差(Range)-R:度量样本数据分散范围的量,
公式:R=Xmax-Xmin(样本或总体中的最大值减最小值)。 2.标准差(σ.S):样本数据离散程度的统计量,利用每个样本数据偏离其中心位置 的大小来表示离散程度,较精确。
国际标准化组织规定,把样本方差的正平方根作为样本标准偏差,用符号S 来表示。其计算公式:
Statistical Process control
统计过程控制 SPC
课程目标
➢ 了解ห้องสมุดไป่ตู้计基本概念 ➢ 了解控制图原理 ➢ 计量型与计数型控制图的作法与适用范围 ➢ 控制图的选用原则 ➢ 过程的特性及过程能力 ➢ Ppk 和 Cpk 之间的区别以及了解如何计算这些指
数。
课程重点
Statistical Process
二、样本(子样):是指从总体中随机抽取出来并且要对它进行详细 研究分析的一部分个体(产品);
1.样本是由1个或若干个样品组成的。 2.样本容量(样本大小):样本中所含的样品数目,常用n表示。
N
n
抽样:是指从总体中随机 抽取样品组成样本
μ
的活动过程。
σ
x s
数据、样本和总体的关系
目的
总体
对工序进行分析
二、控制图诞生
1. 美国W. A. Shewhart博士于1924年5月16日发明了第一 张管制图,开启了统计品管的新时代.
• 区分过程中的正常变异或异常变异,并判断过程是否处 于控制状态的一种工具.
控制图是:
• 1. 实时图表化反馈过程的工具。 • 2. 设计的目的是告诉操作者什么时候做什么或不做
二、差异量数:以一个数字来代表一群统计数据内差异或离散程度。离散趋 势指标。
目的:若一群数据差异量大,则平均数代表性小,反之则大,因此为 了了解一群数据之特性,除了计算平均数外,还必须计算差异量数的 大小。
种类:极差、标准差
案例说明:
组别 1
2
3
4
结果
A 50 50 50 50
?
B 0 100 0 100
过程受控
■不稳定过程:产品质量质 量特性的变异无法以统计 方法来预测;
过程失控
过程变差:包含普通原因和特殊原因
控制 Control
一、 控制图概述
控制图(Control chart)就是对生产过程的 关键质量特性值进行测定、记录、评估并监测过 程是否处于控制状态的一种图形方法。 根据假设 检验的原理构造一种图,用于监测生产过程是否 处于控制状态。它是统计质量管理的一种重要手 段和工具。
什么是SPC?
■ Statistical:(统计)
以概率统计学为基础,用科学的方法分析数据,得出结论;
■ Process: (过程)有输入-输出的一系列的活动; ■ Control: (控制)事物的发展和变化是可预测的;
抽
样
生产过程
检
验
样本
数据
在管制图中发现不正常状态
管制图
调整品质
UCL
CL
LCL
统计分析的基本概念
一、总体(母体):是指在某一次统计分析中研究对象的全体。 1.有限总体:被研究对象是有限的,如一批产品的总数; 2.无限总体:被研究对象是无限的,如某个企业、某个生产过程 从前、现在、将来生产的全部产品。 3.个体:组成总体的每个单元(产品)叫做个体 4.总体含量(总体大小):总体中所含的个体数,常用N表示。
三、控制图目的
• 运用控制图的目的之一就是,通过观察控制图上产品质 量特性值的分布状况,分析和判断生产过程是否发生了异 常,一旦发现异常就要及时采取必要的措施加以消除,使 生产过程恢复稳定状态。也可以应用控制图来使生产过程 达到统计控制的状态。产品质量特性值的分布是一种统计 分布.因此,绘制控制图需要应用概率论的相关理论和知 识。
意义:1.次数分配中心的位置,又称位置量数。 2.计算法由【平均方式】而得。 3.各种结果皆向其中心集中,也称集中趋势量数。
种类:平均数、中位数、众数
3.众数(Mode):-Mo
一群数据中,出现次数最多次的数值。若二相邻两数值均为出现次数最多的数值, 则取平均值。
频数最大的数量,用以消除极大及极小值的影响。
(sigma) (mu)
对于服从或近似服从正态分布的统计量,大约有99.73%的数据点会落在 上下控制限之内。数据点落在上下控制限之外的概率约为0.27%,根据小 概率原则,可判为异常点。
什么。 • 3. 按时间序列展示过程的个性/表现。 • 4. 设计用来区分信号与噪音。 • 5. 侦测均值及/或标准差的变化。 • 6. 用于决定过程是稳定的(可预测的)或 失控的
(不可预测的)。
控制图不是
• 1. 不是能力分析的替代工具。 • 2. 在来料检验的过程中很难用到(没有时间序列)。 • 3. 控制图不是高效的比较分析工具。 • 4. 不应与运行图或预控制图混淆。
总体-N
样本-n
μ 总体平均值
X- bar 样本平均值
规格 过程
USL
UCL
SL
CL
LSL
LCL
Ca Cp Cpk
Control
计量值: 均值-极差控制图 中位数-极差控制图 单值-移动极差控制图 均值-标准差控制图
计数值 不合格品率控制图(P图) 不合格品数控制图(Pn图) 缺陷数控制图(c图) 单位缺陷数控制图( µ图)
系统抽样:将20箱零件倒在一起,混合均匀,并将零件从1~ 1000编号,然后用查随机数表或抽签的办法先决定 起始编号,按相同的尾数抽取100个零件组成样 本。
分层抽样:20箱零件,每箱都随机抽取5个零件,共100个组成 样本。
整群抽样:先从20箱零件随机抽出2箱,该2箱零件组成样本。
一、集中量数:一群数据之代表值,表示数据的集中位置。
无 限
工序
控制
总 体
对一批产品质量进 有 一批
行判断,确定是否
限 总
产品
合格
体
样本
一批 半成品
样本
判断
数据
数据
样本 判断
数据
案例
某种成品零件分装在20个零件箱装,每箱各装50个,总共是 1000个。如果想从中取100个零件作为样本进行测试研究。
简单随机抽样:将20箱零件倒在一起,混合均匀,并将零件从 1~ 1000编号,然后用查随机数表或抽签的办 法从中抽出编号毫无规律的100个零件组成样 本。