AUV水下机器人运动控制系统设计方案(李思乐)
《2024年水下机器人运动控制系统体系结构的研究》范文

《水下机器人运动控制系统体系结构的研究》篇一一、引言随着科技的不断进步,水下机器人运动控制系统已经成为了研究领域的热点之一。
该系统涉及到了多种学科,包括机械工程、电子工程、计算机科学等。
水下机器人运动控制系统体系结构的研究对于提高水下机器人的运动性能、稳定性和可靠性具有重要意义。
本文旨在探讨水下机器人运动控制系统的体系结构,为相关研究提供参考。
二、水下机器人运动控制系统的基本构成水下机器人运动控制系统主要由传感器系统、控制器和执行器三部分组成。
传感器系统负责获取水下机器人的位置、速度、姿态等信息;控制器根据传感器系统提供的信息,对执行器进行控制,以实现水下机器人的运动控制;执行器则负责将控制器的指令转化为机械运动,使水下机器人按照预定的轨迹进行运动。
三、水下机器人运动控制系统体系结构的研究1. 传感器系统传感器系统是水下机器人运动控制系统的关键部分之一。
传感器主要包括声呐、摄像头、多普勒测速仪等。
其中,声呐可以用于探测水下环境中的障碍物和目标;摄像头可以提供实时的视觉信息;多普勒测速仪则可以测量水下机器人的速度和方向。
在体系结构上,传感器系统应具备高精度、高稳定性和高可靠性的特点,以确保水下机器人能够准确地获取环境信息。
2. 控制器控制器是水下机器人运动控制系统的核心部分。
它根据传感器系统提供的信息,对执行器进行控制,以实现水下机器人的运动控制。
控制器的设计应考虑到多种因素,如系统的稳定性、响应速度、鲁棒性等。
在体系结构上,控制器可以采用分层控制、模糊控制、神经网络控制等多种方法。
其中,分层控制可以将控制系统分为多个层次,每个层次负责不同的任务,从而提高系统的稳定性和可靠性;模糊控制和神经网络控制则可以处理复杂的非线性问题,提高系统的鲁棒性。
3. 执行器执行器是水下机器人运动控制系统的最终执行部分。
它根据控制器的指令,将电能或液压能转化为机械能,使水下机器人按照预定的轨迹进行运动。
执行器的设计应考虑到其动力性能、效率、可靠性等因素。
水下机器人的控制系统设计及实现

水下机器人的控制系统设计及实现第一章引言随着科技的进步,水下机器人在海洋勘探、救援、海底管道维护等领域扮演着越来越重要的角色。
而一个高效稳定的控制系统是水下机器人能够顺利完成任务的关键之一。
本文将重点介绍水下机器人控制系统的设计及实现。
第二章水下机器人的控制系统概述水下机器人的控制系统主要由感知模块、数据传输模块、控制器和执行机构四部分组成。
感知模块负责收集环境信息,数据传输模块将信息传输给控制器,控制器根据接收到的信息制定控制策略,并通过执行机构实现运动控制。
第三章感知模块设计与实现感知模块的主要任务是获取水下环境的相关信息,包括水温、水压、水质、水流速度等。
针对不同的任务需求,可以采用不同的传感器,如温度传感器、压力传感器、水质传感器和流速传感器等。
这些传感器将信息传输给控制系统的数据传输模块,为后续的控制策略制定提供准确的数据支持。
第四章数据传输模块设计与实现数据传输模块起着枢纽的作用,将感知模块收集到的信息传输给控制器,并将控制器制定的控制策略传输到执行机构。
传统的通信方式包括有线通信和无线通信,对于水下机器人而言,由于受到水的传输特性的限制,无线通信往往是首选。
可以使用声波、电磁波等方式进行数据传输,同时还需要考虑通信的稳定性和抗干扰能力。
第五章控制器设计与实现控制器是整个系统的核心,其负责根据感知模块和数据传输模块提供的信息制定控制策略,并将策略传输给执行机构。
控制器的设计主要包括传感器数据处理、控制策略制定和控制指令生成等三个方面。
其中,传感器数据处理过程中需要进行数据滤波、数据融合等处理,控制策略制定需要将感知信息与任务要求进行匹配并确定最优策略,控制指令生成则需要根据策略生成具体的指令。
第六章执行机构设计与实现执行机构主要实现控制器制定的控制策略,包括机械臂、推进器等。
机械臂用于完成需要进行物体抓取、搬运等操作的任务,推进器用于水下机器人的运动控制。
执行机构的设计和选型需要考虑机械结构的稳定性、推进力的大小和方向控制等因素。
AUV水下机器人运动控制系统设计(李思乐)

中国海洋大学工程学院机械电子工程研究生课程考核论文题目:AUV水下机器人运动控制系统研究报告课程名称:运动控制技术*名:***学号:***********院系:工程学院机电工程系专业:机械电子工程时间:2010-12-26课程成绩:任课老师:谭俊哲AUV水下机器人运动控制系统设计摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。
根据机器人结构的特点,对模型进行了必要的简化。
设计了机器人的运动控制系统。
以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。
最后展示了它的运行实验结果。
关键词:水下机器人;总体设计方案;运动控制系统;电机仿真1 引言近年来国外水下机器人技术发展迅速,技术水平较高。
其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。
随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。
小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。
自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。
系统基本模块组成设计如图1-1 所示[1]。
自治水下机器人的非线性控制方法

设备名称
AUV-2000自治水下机器人
设备特点
具有较高的自主性、稳定性和适应性,可用于各 种复杂水下环境中的科研和探测任务。
实验平台
基于AUV-2000搭建的实验平台,包括各种传感 器、导航系统、控制系统和电源系统等。
实验数据采集与处理
数据采集
通过AUV-2000上的传感器采集水下环境数 据,如水温、水深、流速等。
06
结论与展望
研究成果总结
01
02
03
深度控制
高性能导航
实时优化
通过引入非线性反馈,成功实现 了AUV在水下复杂环境中的精确 深度控制。
利用非线性模型预测算法,AUV 在复杂海洋环境中实现了高性能 导航。
通过实时优化算法,AUV在运行 过程中有效应对了各种动态干扰 和环境变化。
研究不足与展望
控制算法的鲁棒性
滑模法仿真分析
滑模法原理
滑模法是一种变结构控制方法,通过设计滑 模面和滑模控制律,使得系统状态能够快速 收敛到预设的滑模面上。
仿真模型建立
根据自治水下机器人的动力学模型,建立相应的滑 模法仿真模型,包括滑模面设计和滑模控制律设计 。
仿真结果分析
通过对比分析加入滑模法控制律前后的仿真 结果,验证滑模法在水下机器人控制中的有 效性。
自治水下机器方人法的非线性控制
汇报人: 日期:
目录
• 引言 • 自治水下机器人模型建立 • 非线性控制方法设计 • 仿真分析与验证 • 实验研究与结果展示 • 结论与展望
01
引言
研究背景与意义
自治水下机器人(AUV)的应用领域不断扩大,如海洋资源 开发、水下考古、海底管道检测等。
针对复杂多变的海洋环境,非线性控制方法对于AUV的运动 控制具有重要意义。
AUV浮力调节系统及深度自适应控制研究的开题报告

AUV浮力调节系统及深度自适应控制研究的开题报告一、研究背景和意义随着海洋资源的日益枯竭和人类对深海开发的要求越来越高,自主水下机器人(AUV)的应用范围日趋广泛。
由于AUV的特殊工作环境和高性能要求,对其浮力调节和深度自适应控制等技术的研究成为了当前AUV技术研究的热点领域。
本研究旨在设计一种AUV浮力调节系统及深度自适应控制方法,通过对AUV的浮力和深度的控制,提高AUV的稳定性和控制精度,从而实现AUV在复杂水下环境下的长时间工作和高效探测。
二、研究内容和计划1. AUV浮力调节系统设计基于氢气浮力和电池功率等参数,设计AUV浮力调节系统,包括氢气供应系统、氢气泄漏检测系统、氢气泄漏处理系统等,并通过数值模拟和试验验证其可行性和稳定性。
2. AUV深度自适应控制方法研究采用自适应控制算法和深度传感器,设计AUV深度自适应控制方法,通过对AUV深度变化的实时监测和控制,提高AUV对海洋环境变化的适应性和稳定性,降低系统能耗,同时改善AUV的运动性能和工作效率。
3. 系统整合和测试对设计的AUV浮力调节系统和深度自适应控制方法进行系统整合和测试,验证其稳定性和控制精度,并在不同环境下测试AUV的工作效率和探测性能。
三、预期成果和意义1. AUV浮力调节系统和深度自适应控制方法的设计和实现,提高AUV在海洋环境中的适应性和稳定性,为其高效运作和探测提供技术支持。
2. AUV浮力调节系统和深度自适应控制方法的成功实现,为深入研究和开拓AUV技术的研究提供有益的参考和经验。
3. 通过本研究的实施,提高我国AUV技术水平,加快深海开发和海洋资源保护的进程,促进我国经济和科技的发展。
小型自主水下机器人运动控制系统设计与实现的开题报告

小型自主水下机器人运动控制系统设计与实现的开题报告一、选题背景与意义随着科技的不断发展,水下机器人的应用越来越广泛。
现代水下机器人分为远程无人水下机器人和近程有人水下机器人两种。
近程有人水下机器人是指搭载有人工控制系统的机器人,由人工遥控实现机器人的运动控制。
但是这种方式存在一些弊端,如操作受限、效率低下、安全隐患等。
因此,自主水下机器人的研究和应用具有重要意义。
本课题旨在设计和实现一种小型自主水下机器人运动控制系统,提高水下机器人的智能化、自主化水平,为水下探测、维修、救援等领域提供技术支持。
二、研究内容本课题的主要研究内容包括以下方面:1. 自主水下机器人运动控制系统的设计与实现;2. 机器人运动控制算法的研究与优化;3. 机器人传感器数据的采集与处理;4. 远程控制系统的设计与实现。
三、研究方法和步骤1. 系统架构设计:设计自主水下机器人的硬件框架和软件架构,确定运动控制系统的组成部分;2. 运动控制算法研究:研究机器人运动控制的算法,根据机器人的运动状态及周围环境信息实时调整机器人的运动轨迹,以实现自主运动;3. 传感器数据采集与处理:选取合适的传感器,采集并处理数据,提取有用信息;4. 远程控制系统设计:设计远程控制系统,实现对机器人的远程遥控和监控。
四、预期目标和研究意义本研究的预期目标是完成小型自主水下机器人运动控制系统的设计与实现,以提高水下机器人的智能化、自主化水平,为水下探测、维修、救援等领域提供技术支持。
本研究的意义在于:1. 探索水下机器人自主运动的方法和技术,提高机器人自主化水平;2. 提高水下机器人在水下领域的应用能力,扩大其应用范围;3. 推动自主水下机器人技术的发展和创新。
五、拟解决的关键问题本研究拟解决的关键问题包括:1. 如何实现机器人的自主运动,如何控制机器人的运动轨迹;2. 如何选择适合水下环境的传感器,如何采集并处理传感器数据;3. 如何设计远程控制系统,实现远程遥控和监控。
水翼法推进的仿生AUV研制及实验

水翼法推进的仿生AUV研制及实验随着科技的不断发展,水下机器人在海洋资源勘探、教育、环境保护等领域发挥着越来越重要的作用。
而仿生学作为一门跨学科综合性的学科,也在水下机器人研究中得到了广泛应用。
本文介绍的是一种采用水翼法推进的仿生AUV,包括其研制过程和实验结果。
一、研制过程1. 设计原理仿生学中的鱼类水平移动是通过振动鳍鳍膜来完成的。
水翼法推进是将鱼类水平移动的原理转化为机械运动,使用机械运动来模拟水动力学,以提高AUV的效率。
水翼法推进采用两片水翼齐刻,倾斜角度相对大的设计,同时采用对称式,使得AUV的灵活性更高。
通过控制两片水翼的相位差,从而达到前后推进和转变航向方向的效果。
2. 实验过程在研发过程中,我们采用仿真软件对AUV进行设计和仿真。
首先,我们建立了AUV三维模型,并将水翼法推进的结构设计进去。
然后,通过改变水翼的相位差和倾斜角度等参数,在仿真软件中进行模拟实验。
最终获得了合适的设计参数。
接下来,我们开始进行实际的试验。
在试验过程中,我们选择了一个足够大的水池,并将AUV放入水池中。
通过遥控,我们控制了AUV的前后推进和左右方向的调整,并测量了其运动速度、转向精度等性能指标。
实验结果表明,我们的水翼法推进AUV可以通过相位差的控制,轻松地实现前后推进和转变方向的操作,而且具有高速度、更好的灵活性和稳定性等优点。
二、实验结果经过实验,我们获得了以下几点成果:1. 水翼法推进的仿生AUV结构设计得到实现。
2. 实现了水翼法推进的简单控制系统。
3. 实验结果表明,水翼法推进的仿生AUV可以实现较高速度、稳定性和优秀的灵活性。
通过本次实验,我们进一步验证了水翼法推进在仿生AUV中的应用优势,这对于进一步推进水下机器人的研发将具有一定的意义。
在水翼法推进的仿生AUV研制及实验中,需要对相关数据进行采集和分析,以评估其性能表现。
以下将列出所涉及到的数据并进行分析。
1.速度数据在实验中,我们通过计时器和距离测量仪器,测量了水翼法推进的仿生AUV运动的速度。
水下机器人及探测观测设备研发生产方案(一)

水下机器人及探测观测设备研发生产方案一、实施背景随着中国海洋经济的持续发展,海洋探测与观测技术的需求日益增长。
目前,我国海洋探测技术装备主要依赖于进口,自主研发能力弱,亟需通过技术突破来满足国家对海洋经济、科研和安全的需求。
因此,从产业结构改革的角度出发,本方案旨在推动中国水下机器人及探测观测设备的自主研发和生产。
二、工作原理1.水下机器人(AUV)工作原理:AUV主要采用电池供电,通过内置的电动机和推进器进行航行。
其核心部件包括防水壳体、内部电路板、传感器、导航设备等。
防水壳体保护机器内部电路板和传感器不受水压和水流的影响;内部电路板控制机器的行为,并收集和处理传感器数据;传感器用于收集环境信息,如水温、水深、水流等;导航设备则负责定位和导航。
2.探测观测设备工作原理:探测观测设备主要采用声纳技术进行海底地形地貌的探测,同时还可以观测海洋生物、水质等信息。
声纳技术利用声波在水中的传播特性,将声波发射到水中,然后根据声波的反射情况来判断目标物的位置、大小和形状。
观测设备则通过内置的高清相机和光谱分析仪来获取海洋生物和水质信息。
三、实施计划步骤1.技术研究:开展AUV和探测观测设备的关键技术研究,包括防水壳体材料、电动机及推进器设计、传感器技术、导航设备技术、声纳技术等。
2.实验室测试:在实验室环境中对AUV和探测观测设备进行测试,验证其功能和性能是否达到预期目标。
3.现场试验:选择合适的海域进行现场试验,验证AUV和探测观测设备在实际环境中的运行情况和数据收集能力。
4.产业化生产:经过上述步骤后,开始进行产业化生产,形成具有自主知识产权的水下机器人和探测观测设备系列产品。
5.市场推广:通过宣传和推广活动,提高产品的知名度和市场占有率。
四、适用范围本方案适用于海洋科研、海洋资源开发、海洋环境保护、海洋安全等领域。
具体应用包括但不限于:海洋地质调查、海底矿产资源勘探、海洋生态研究、海洋环境监测与保护、海洋工程勘察与设计、海洋救援与打捞等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国海洋大学工程学院机械电子工程研究生课程考核论文题目: AUV水下机器人运动控制系统研究报告课程名称:运动控制技术******学号: ***********院系:工程学院机电工程系专业:机械电子工程时间:2010-12-26课程成绩:任课老师:谭俊哲AUV水下机器人运动控制系统设计摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。
根据机器人结构的特点,对模型进行了必要的简化。
设计了机器人的运动控制系统。
以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。
最后展示了它的运行实验结果。
关键词:水下机器人;总体设计方案;运动控制系统;电机仿真1 引言近年来国外水下机器人技术发展迅速,技术水平较高。
其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。
随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。
小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。
自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。
系统基本模块组成设计如图1-1所示[1]。
它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。
这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。
在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。
控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。
图1-1 系统基本模块组成设计2机器人物理模型2.1 AUV 物理模型为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV 的动力学模型。
为了便于分析,建立适合于描述AUV 运动的两种参考坐标系,即固定坐标系Eξηζ 和运动坐标系Oxyz,如图2-1 所示:包含5 个推进器,分别是艉部的2 个主推进器、艉部的1 个垂向推进器和艏部的2 个垂向推进器。
左右对称于纵中剖面,上和下、前和后都不对称[2]。
图2-1AUV水下机器人物理模型1.2微小型水下机器人动力学分析微小型水下机器人总长 1.5m,采用锂电池作为能源,尾部为一对水平舵和一对垂直舵,单桨推进,可携带惯导设备、探测声纳、水下摄像机、深度计等设备,设计巡航速度约2 节。
首先建立适合描述水下机器人空间运动的坐标系,其定义如图2-2所示,惯性坐标系为E −ξης ,运动坐标系为o − xyz 。
建立的坐标系,如图 1 所示。
图中:E-ξηζ—惯性坐标系;Oxyz—载体坐标系。
因为机器人在航行时速度不高(<4 节),可以对机器人模型进行线性化及一些简化。
载体坐标系原点取于载体浮心处,在此坐标系下,载体在三个方向上的受力及运动量表达为:力:F=[X,Y,Z]T力矩:M=[K,M,N]T速度:V=[u,v,w]T角速率:ω=[p,q,r]T。
图2-2惯性和载体坐标系在图2-2定义的惯性坐标系和运动坐标系中,机器人的空间运动向量表达为:η1=[xyz]T;η2=[φθψ]Tυ1=[uvw]T;υ2=[pqr]T式中:向量η1—机器人在惯性坐标系中的位置;η2—其在惯性坐标系中的姿态;φ—横滚角;θ—俯仰角;ψ—航向角;υ1—机器人在载体坐标系中的线速度(V);2—其在载体坐标系中的转动角速度(ω)[3]。
2总体方案设计2.1 系统组成及工作原理小型水下观测机器人主要由人机交互平台、上位系统、下位系统、摄像机四部分组成,操作人员通过有线遥控,结合人机交互界面上的水下视频图像,只需扳动上位系统控制面板上相应的运动控制按钮即可实现对水下机器人的运动控制,操作简单、实用。
图2-3为水下机器人控制系统框图:图2-3水下机器人控制系统框图2.2导航系统设计捷联惯性导航是最常见和应用最广泛的导航系统,捷联式惯性导航系统在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏,是一种自主式导航系统。
但单独使用很难满足水下航行所需的导航精度与定位要求,仅靠提高惯性传感器的性能来提高的导航、定位精度是非常有限的。
组合导航系统融合不同类型的导航传感器的信息,使它们优势互补,经过卡尔曼滤波,得出系统导航参数的最优估计,以获得比使用单一导航系统更高的性能和导航精度。
采用磁罗盘和深度计分别与捷联惯导系统构成的组合量测值作为卡尔曼滤波的量测值,既可以用精度高的子系统的信息修正惯导误差,又可以用惯导对动态响应慢的子系统作补偿和校正,从而综合发挥各自优点。
导航计算机在保证导航运算速度和精度的同时,还要具有丰富的外设接口,方便与外部多传感器进行数据通信[4]。
导航系统的传感器包括惯性测量器件IMU (陀螺仪和加速度计)、磁罗盘、深度计。
其中IMU 通过三陀螺仪、三加速度计捷联解算后获得位置、速度、姿态共9 维信息,通过RS232 串口与导航计算机相连。
以NEMA0183 格式传输信息到导航计算机。
磁罗盘可以获取当前载体三维姿态信息,通过RS232 串口与导航计算机相连,以NEMA0183 格式传输信息到导航计算机。
深度计为液压变送器,通过膜片感应内外侧水压差来确定水深,其输出为4~20mA 模拟电流信号,转换为0~5V 的电压信号后经过16 位ADC 转换模块,串行传送到导航计算机。
如图2-4所示。
图2-4组合导航系统总体设计框图2.3驱动方式的选用几乎所有的水下机器人都采用螺旋桨式推进器。
80% 以上采用电机推进器,其余采用油压电机推进器。
水下机器人要实现水下空间的六维(六自由度)运动,即三个平移运动:推进(Surge,沿x 轴)、升沉(Heave,沿z 轴)、横移(Sway,沿y 轴)和三个回转运动:转首(Yaw,绕z 轴)、纵倾(Pitch,绕y 轴)、横摇(Roll,绕x 轴)。
为使水下机器人在所有六维上的运动都是可控的,须适当选用推进器的数量和给予不同的布置。
根据本水下机器人的使用目的,不需要使用六维运动,只要三个自由度即可,即推进、升沉和转首。
我们选用了五个直流电机推进器,分别布置在机器人本体的水平左右两侧和后部部垂直处,左右推进器完成推进和转首两个动作,垂推进器完成升沉动作。
2.4推力器的组成推力器是由电机和螺旋桨组成的,水下机器人用的电机需要密封。
密封主要有两种方式,一种是机械密封,另一种采用磁耦合器。
机械密封相对而言比较简单,但因密封处要承受海水的压力,其特性因摩擦力的增加而变坏。
对电机来说,则表现为电机的空载电流增大(有时会增大1-3倍),这样的电机用于推力器,会使启动电压升高,从而加重推力器非线性。
为了改善这种情况可以采用充油电机,由于电机内部充油,因而耐水压的性能得到极大的改善,而且电机因密封而引起的摩擦力要小得多,其空载电流的增加也很小,故可以忽略不计。
采用磁耦合器就是利用电磁力传递扭矩,这样减速器和螺旋桨之间没有直接的机械联系。
依据磁场传递扭矩,密封问题很容易解决,只要用非导磁材料将电机、减速器包围起来就解决了动密封难题。
采用磁耦合器,推力器的效率略有下降,但性能基本上不受影响。
电机的转速与螺旋桨的转速不一定完全匹配,为了得到较高的效率,需要采用减速器,有时为了减小尺寸,采用高速电机(例如采用10000转/分以上的高速电机),这时也需要减速器。
这样组成的推力器如图2-5所示。
图2-5 推力器组成图2-6 螺旋桨与推进器示意图考虑带定子的导管桨在无限宽广的静止流体域中工作的情况。
设流体为理想且不可压缩。
如图2-6所示,建立固定于导管上的直角坐标系O-xyz,以螺旋桨桨叶参考线与桨轴交点为原点,x 轴与桨轴中心线重合,指向桨的下游,y 轴垂直向上,z 轴方向由右手法则确定。
推进器工作时,导管、定子与桨共同沿x 轴负方向以匀速V0 前进,同时桨叶绕x 轴以等角速度Ω旋转[5]。
2.5 能源供给方式的选用其能源供给方式有两种选择:有缆方式或无缆方式,对于无缆水下机器人能源供给一般在机器人舱体安装蓄电池或是带燃油发电机组,这就造成水下机器人本体体积庞大、超重,此外蓄电池所储存的能力有限,且受电池质量、充电工艺等因素的影响。
根据实际应用环境,此机器人工作所要求的行走距离不是很大,故设计时采用了有缆远程遥控方式,这样既可减小本体尺寸、重量,又保证了控制操作的有效性和可靠性,当设备出现不可预料的故障时可通过缆线撤回安全区域,不至于丢失。
3控制系统设计3.1水下机器人控制系统设计主要包含主处理器核心模块、电机驱动模块、传感器模块和视频切换模块等,实现对机器人推进器的动力驱动、上下位机的通讯以及视频图像的切换等。
水下机器人本体的左右两边各安装2个主推进器,分别由2 个直流电机通过联动轴与螺旋桨相连,实现水下机器人前进、后退、左转、右转运动;垂直方向安装有3个垂推进器,实现机器人上升、下沉运动。
前变焦摄像机安装有垂直方向一维云台,避免摄像死区。
在机器人电子舱内安装有深度计、温度计和数字式电子罗盘传感器,满足实际作业环境需要,为检修人员提供了丰富的作业环境信息。
根据功能需要,我们选择了TI 公司推出的MSP430 系列的MSP430F149 作为主处理器,这是一类具有16 位总线的带FLASH 的单片机,由于其性价比和集成度高,受到了广大技术开发人员的青睐。
该控制器可以在超低功耗模式下工作,对环境和人体的辐射小,可靠性能好,加强电干扰运行不受影响,适应工业级的运行环境[6]。
利用MSP430F149 定时器B 比较单元产生的6 路PWM 信号和5 路方向信号,分别控制主推进器、垂推进器、机械手、摄像机云台电机速度和照明灯亮度;两路串口实现了罗盘数据的采集和上位系统的通讯;外部传感器反馈的模拟信息通过ADC 模块实现转化,使芯片丰富的外设资源得以充分利用。
总线型结构的所有节点都共享一个公共的物理通道(即总线)。
具有延迟小、速度快、易扩展、单个节点故障影响小的优点。
本系统即采用总线型拓扑结构, 系统采用单片机作为控制单元完成机器人控制系统中的各种控制任务(如传感器控制、电机驱动器控制和通信模块控制等)。