人教版八年级数学上册单元复习试题 第十三章 轴对称

合集下载

人教版八年级数学上册第13章 轴对称单元测试(配套练习附答案)

人教版八年级数学上册第13章 轴对称单元测试(配套练习附答案)
人教版八年级数学上册第13章《轴对称》单元测试
一、选择题(本大题共10小题,共40.0分)
1.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,是整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有()
A.4个B.3个C.2个D.1个
【答案】B
A. B. C. D.
【答案】B
【解析】
【详解】试题分析:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P1P2的长,∵OP=5,∴OP2=OP1=OP=5.又∵P1P2=5,,∴OP1=OP2=P1P2,∴△OP1P2是等边三角形, ∴∠P2OP1=60°,即2(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
【详解】 , ,

是 的外角,



【点睛】考查等腰三角形的性质,关键是根据三角形外角的性质以及三角形内角和定理解答.
19.已知点A(2m+n,2),B (1,n-m),当m、n分别为何值时,
(1)A、B关于x轴对称;
(2)A、B关于y轴对称.
【答案】 (2)
【解析】
【分析】(1)根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得
【分析】首先证明△ACD≌△BAE可得∠ACD=∠BAE,根据∠BAE+∠EAC=60°可得∠ACD+∠EAC=60°,再根据三角形内角与外角的关系可得∠APD=60°.
【详解】∵△ABC是等边三角形,

在△ACD和△BAE中,

人教版八年级数学上册 第十三章 轴对称 单元复习练习题

人教版八年级数学上册 第十三章 轴对称 单元复习练习题

人教版八年级数学上册 第十三章 轴对称 单元复习练习题一、选择题1.如图,已知△ABC 中,AB =6,BC =5,AC =4,∠ABC ,∠ACB 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,连AF ,则下列结论:①DE =BD+CE ;②∠BFC =90°+12∠ABC ;③△ADE 的周长为10;④S △ABF :S △ACF :S △BCF =6:4:5.正确的是( )A .①③④B .①②③C .①②③④D .②③④2.如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,60ABO ∠=︒,在坐标轴上找一点P ,使得PAB ∆是等腰三角形,则符合条件的P 点的个数是( )A .5B .6C .7D .83.如图,已知Rt OAB ,∠OAB =30°,∠AOB =90°,O 点与坐标系原点重合,若点P 在坐标轴上,且APB △是等腰三角形,则点P 的坐标可能有( )A .5个B .6个C .7个D .8个4.如图,已知AC 平分∠DAB ,CE ⊥AB 于E ,AB =AD +2BE ,则下列结论:①AB +AD =2AE ;②∠DAB +∠DCB =180°;③CD =CB ;④S △ACE ﹣2S △BCE =S △ADC ;其中正确结论的个数是( )A .1个B .2个C .3个D .4个5.如图,三角形ABC 的面积是15,最长边10AB =,BD 平分ABC ∠,点M ,N 分别是BD ,BC 上的动点,则CM MN +的最小值为( )A .4B .3C .2.8D .2.56.如图,直线是一条河,A 、B 是两个新农村定居点.欲在l 上的某点处修建一个水泵站,直接向A 、B 两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是( )A .B .C .D .7.如图,在△ABC 和△CDE 中.CA=CB ,CD=CE ,∠ACB=∠DCE=α,AD ,BE 相交于点O .点M ,N 分别是线段AD ,BE 的中点.以下结论:①AD=BE ;②∠DOE=α;③△CMN 是等边三角形;④连接OC .则OC 平分∠AOE .其中正确的结论是( )A .①②④B .①③④C .②③④D .①②③8.如图,已知等腰△ABC 中,AB=AC ,∠BAC=120°,AD ⊥BC 于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP=OC ,下面的结论:①∠APO+∠DCO=30°;②△OPC 是等边三角形;③AC=AO+AP ;④S △ABC =S 四边形AOCP ,其中正确的个数是( )A .①②③B .①③④C .②③④D .①②③④9.如图,ABC ∆中,BD 平分ABC ∠,BC 的垂直平分线交BC 于点E ,交BD 于点F ,连接CF .若60A ∠=︒,24ABD ∠=︒,则ACF ∠的度数为( )A .48︒B .36︒C .30D .24︒10.如图,在等腰△ABC 与等腰△ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE=α,连接BD 和CE 相交于点P ,交AC 于点M ,交AD 与点N .下列结论:①BD=CE;②∠BPE=180∘−2α;③AP 平分∠BPE;④若α=60∘,则PE=AP+PD .其中一定正确的结论的个数是( )A .1B .2C .3D .4二、填空题 11.如图,Rt ABC 中,90,CBA CAB ︒∠=∠的角平分线AP 和ACB ∠的外角平分线CF 相交于点,D AD 交CB 于,P CF 交AB 的延长线于F ,过D 作DE CF ⊥交CB 的延长线于点G ,交AB 的延长线于点最连接CE 并延长交FG 于点H ,则下列结论:①45CDA ︒∠=;②AF CG CA -=;③DE DC =;④FH CD GH =+;⑤2CF CD EG =+;其中正确的有___(填正确选项的序号).12.如图,在∠ABC 中,AB =AC ,∠B =40°,D 为线段BC 上一动点(不与点BC 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E .以下四个结论: ∠∠CDE =∠BAD ;∠当D 为BC 中点时,DE ∠AC ;∠当∠BAD =30°时,BD =CE ;∠当∠ADE 为等腰三角形时,∠BAD =30°.其中正确的结论是_________(把你认为正确结论的序号都填上).13.如图,△ABC 中,E 在BC 上,D 在BA 上,过E 作EF ⊥AB 于F ,∠B =∠1+∠2,AB =CD ,BF =43,则AD 的长为________.14.如图,点E 是等边△ABC 内一点,且EA ∠EB ∠△ABC 外一点D 满足BD ∠AC ,且BE 平分∠DBC ,则∠D ∠__________.15.在∠ABC 中,AH 是BC 边上的高,若CH -BH=AB ,∠ABH=78°,则∠BAC=____三、解答题16.(1)探索 1:如图 1,点 A 是线段 BC 外一动点,若 AB =2,BC =4,填空:当点 A 位于 线段 AC 长取得最大值,且最大值为 ;(2)探索 2:如图 2,点 A 是线段 BC 外一动点,且 AB =1,BC =3,分别以 AB 、B C 为直角边作等腰直角三角形 ABD 和等腰直角三角形 CBE ,连接 A C 、D E .①请找出图中与 AC 相等的线段,并说明理由;②直接写出线段 D E 长的最大值;类比应用:(3)如图 3,在平面直角坐标系中,已知点 A (2,0)、B (5,0),点 P 、M 是线段 AB 外的两个动点,且 P A =2,PM =PB ,∠BPM =90°,求线段AM 长的最大值及此时点 P 的坐标.(提示:在图 4 中作 PN ⊥PA ,PN=PA ,连接 BN 后,利用探索 1 和探索 2中的结论,可以解决这个问题)17.如图所示,A(-3,5),B(-5,2),C(-1,3),直线l 经过点(0,1),并且与x 轴平行,△A 'B 'C '与△ABC 关于线l 对称.(1)画出△A 'B 'C ',并写出△A 'B 'C '三个顶点的坐标: ;(2)观察图中对应点坐标之向的关系,写出点P(a ,b)关于直线l 的对称点P '的坐标: .18.我们知道:三角形中,等角对等边,等边对等角.已知ABC 中,AB=AC ,BD 是ABC 的角平分线. (1)若BC=AB+AD ,请你猜想∠A 的度数,并证明.(2)若BC=AB+CD ,求∠A 的度数.(3)若∠A=100°,求证:BC=BD+DA .19.(1)如图1,已知120EOF ∠=,OM 平分EOF ∠,A 是OM 上一点,60BAC ∠=,且与OF 、OE 分别相交于点B 、C ,求证:AB AC =;(2)如图2,在如上的(1)中,当BAC ∠绕点A 逆时针旋转使得点B 落在OF 的反向延长线上时,(1)中的结论是否还成立?若成立,给出证明;若不成立,说明理由;(3)如图3,已知60AOC BOC BAC ∠=∠=∠=,求证:①ABC ∆是等边三角形;②OC OA OB =+.20.已知:如图,在等腰直角三角形ABC 中,90ACB ∠=︒,D 为BC 的中点,且DE AB ⊥,垂足为点E ,过点B 作BF AC 交DE 的延长线于点F ,联结CF .(1)求证:AD CF ⊥;(2)连接AF ,试判断ACF ∆的形状,并说明理由.21.如图,在ABC 中,2ACB B ∠=∠,BAC ∠平分线AO 交BC 于点D ,点H 为AO 上一动点,过H 作直线l AO ⊥于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .(1)当直线l 经过点C 时(如图2),求证:BN CD =;(2)当M 是线段BC 的中点时,写出线段CE 和线段CD 之间的数量关系,并证明;(3)请直接写出BN 、CE 和CD 之间的数量关系.22.动手操作(1)图①、图2均是88⨯的正方形网格.每个小正方形的顶点称为格点,线段OM ON 、的端点均在格点上.在图①、图②给定的网格中以OM ON 、为邻边各画一个四边形,使第四个顶点在格点上.要求:①所画的两个四边形均是轴对称图形,②所画的两个四边形不全等.(2)如图③,在长度为1个单位长度的小正方形组成的正方形网格中,点、、A B C 、在小正方形的顶点上. ①在图中画出ABC 关于直线l 成轴对称的A B C ''';②线段CC '被直线l ___________;③求ABC 的面积;④在直线l 上找一点P ,使PB PC +的长最短,标出点P .23.数学课上,李老师出示了如下的题目:“在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且,ED EC =如图,试确定线段AE 与DB 的大小关系,并说明理由.”小敏与同桌小聪讨论后,进行了如下解答:()1特殊情况,探索结论:当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论:AE ____________DB (选填“>”、“<”或“=”).()2特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE _________________DB (选填“>”、“<”或“=”). 理由如下:如图2,过点E 作//EF BC ,交AC 于点F······(请你完成后面的解答过程)【参考答案】1.A 2.B 3.B 4.C 5.B 6.D 7.A 8.D 9.A 10.C11.∠∠∠∠.12.①②③13.8314.30°15.63°或39°.16.解:(1)∵点A 为线段BC 外一动点,且AB=2,BC=4,∴当点A 位于CB 的延长线上时,线段AC 的长取最大值,最大值为246+=,故答案是:CB 的延长线上,6;(2)①∵ABD △和CBE △是等腰直角三角形,∴AB DB =,CB EC =,90ABD CBE ∠=∠=︒,∴ABD ABE CBE ABE ∠-∠=∠-∠,即DBE ABC ∠=∠,在BAC 和BDE 中,BA BD ABC DBE BC BE =⎧⎪∠=∠⎨⎪=⎩,∴()BAC BDE SAS ≅,∴AC DE =;②由(1)知AC 的最大值是AB+BC=4,∵DE AC =,∴DE 长的最大值是4;(3)如图,过点P 作 PN ⊥PA ,PN=PA ,连接BN ,根据(2)中的方法,同理可以证明AMP NBP ≅,∴AM=BN ,当点N 在线段BA 的延长线上时,线段BN 取最大值,也就是线段AM 取最大值,最大值是AB AN +, ∵()2,0A ,()5,0B ,∴AB=3,∵APN 是等腰直角三角形,∴AN ==∴最大值是3,如图,过点P 作PE x ⊥轴于点E ,∵APN 是等腰直角三角形,∴PE AE ==∴532OE BO AB AE =--=-=- ∴22,2P ,如图,点P 也有可能在x 轴下方,与刚刚的点P 关于x 轴对称,(2P ,综上:点P 的坐标是(2或(2.17.∵A(-3,5),B(-5,2),C(-1,3),直线l 经过点(0,1),并且与x 轴平行,∠A 'B 'C '与∠ABC 关于线l 对称, ∴点A '(-3,-3),B '(-5,0),C '(-1,-1);故答案为:A '(-3,-3),B '(-5,0),C '(-1,-1);(2)由(1)得各对称点的横坐标相等,纵坐标为1-(纵坐标-1),∴点P 对称点P '的坐标为(a ,2-b ),故答案为:(a ,2-b ).18.(1)猜想90A ∠=︒,证明如下:如图,在BC 边上取点E ,使EB AB =,连接DE ,BD 是ABC 的角平分线,ABD EBD ∴∠=∠,在ABD △和EBD △中,AB EB ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩,()ABD EBD SAS ∴≅,,AD ED A BED ∴=∠=∠,BC AB AD BC EB CE =+⎧⎨=+⎩, AD CE ∴=,ED CE ∴=,C CDE ∴∠=∠,2A BED C CDE C ∴∠=∠=∠+∠=∠,又AB AC =,ABC C ∴∠=∠,在ABC 中,180A ABC C ∠+∠+∠=︒,即2180C C C ∠+∠+∠=︒,解得45C ∠=︒,则290A C ∠=∠=︒;(2)如图,在BC 边上取点E ,使EB AB =,连接DE , BD 是ABC 的角平分线,ABD EBD ∴∠=∠,在ABD △和EBD △中,AB EB ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩,()ABD EBD SAS ∴≅,A BED ∴∠=∠,BC AB CD BC EB CE=+⎧⎨=+⎩, CD CE ∴=,CED CDE ∴∠=∠,设A BED x ∠=∠=,180180CDE CED BED x ∠=∠=︒-∠=︒-∴,又AB AC =,()()1118018022C ABC A x ∴∠=∠=︒-∠=︒-, 在CDE △中,180CDE CED C ∠+∠+∠=︒, 即()18018011801802x x x ++︒--=︒-︒︒, 解得108x =︒,即108A ∠=︒;(3)如图,在BC 边上取点E ,使BE BD =,连接DE ,延长BA 到点F ,使BF BE =,连接DF , ,100AB AC BAC =∠=︒,()1180402C ABC BAC ∴∠=∠=︒-∠=︒, BD 是ABC 的角平分线,1202ABD EBD ABC ∴∠=∠=∠=︒, BE BD =,()1180802BED BDE EBD ∴∠=∠=︒-∠=︒, 40CDE BED C C ∴∠=∠-∠=︒=∠,CE DE ∴=,在FBD 和EBD △中,BF BE FBD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩,()FBD EBD SAS ∴≅,,80DF DE CE F BED ∴==∠=∠=︒,又100BAC ∠=︒,18080DAF BAC F ∴∠=︒-∠=︒=∠,DA DF CE ∴==,BC BE CE BD DA ∴=+=+,即BC BD DA =+.19.解:(1)证明:过A 作AG ⊥OF 于G ,AH ⊥OE 于H ,则∠AHO=∠AGO=90°,∵∠EOF=120°,∴∠HAG=60°=∠BAC ,∴∠HAG -∠BAH=∠BAC -∠BAH ,∴∠BAG=∠CAH ,∵OM 平分∠EOF ,AG ⊥OF ,AH ⊥OE ,∴AG=AH ,在△BAG 和△CAH 中,AGB AHC AG AHBAG CAH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BAG ≌△CAH (ASA ),∴AB=AC ;(2)结论还成立,证明:过A 作AG ⊥OF 于G ,AH ⊥OE 于H ,与(1)证法类似根据ASA 证△BAG ≌△CAH (ASA ),则AB=AC ;(3)证明:①如图,∠FOA=180°-120°=60°,∠FOC=60°+60°=120°,即OM 平分∠COF ,由(2)知:AC=AB ,∵∠CAB=60°,∴△ABC 是等边三角形;②在OC 上截取BO=ON ,连接BN ,∵∠COB=60°,∴△BON 是等边三角形,∴ON=OB ,∠OBN=60°,∵△ABC 是等边三角形,∴∠ABC=60°=∠NBO ,∴都减去∠ABN 得:∠ABO=∠CBN ,在△AOB 和△CNB 中,BC AB CBN OBA BN OB =⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△CNB (SAS ),∴NC=OA ,∴OC=ON+CN=OB+OA ,即OC=OA+OB .20.(1)证明:BF AC ∥,90ACB ∠=︒,CBF=ACB=9045FBE CAB ∴︒∠=∠=︒∠∠,,∵DE AB ⊥,∴∠FEB=90°,∴∠BFE=45°,∴△DBF=等腰直角三角形,∴DB=BF ,∵D 为BC 的中点,∴DC=BD ,∴DC=FB ,在△ACD 和△CBF 中AC=CB ACD=CBF CD=BF ⎧⎪∠∠⎨⎪⎩()SAS ACD CBF ∴∆∆≌,CAD BCF ∴∠=∠,90CAD ACF ∴∠+∠=︒,AD CF ∴⊥;(2)连接AF ,由(1)知△DBF 等腰直角三角形,AE DF ⊥,∴DE=FE ,在△ADE 和△AFE 中AE=AE AED=AEF DE=FE ⎧⎪∠∠⎨⎪⎩()SAS ADE AFE ∴∆∆≌,AD AF ∴=,由(1)知ACD CBF ∆∆≌,AD CF ∴=,CF AF ∴=,ACF ∴∆是等腰三角形.21.(1)证明:连接ND ,如图2所示:∵AO平分∠BAC,∴∠BAD=∠CAD,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,∴∠ANH=∠AEH,∴AN=AC,∴NH=CH,∴AH是线段NC的中垂线,∴DN=DC,∴∠DNH=∠DCH,∴∠AND=∠ACB,∵∠AND=∠B+∠BDN,∠ACB=2∠B,∴∠B=∠BDN,∴BN=DN,∴BN=DC;(2)解:当M是BC中点时,CE和CD之间的数量关系为CD=2CE,理由如下:过点C作CN'⊥AO交AB于N',过点C作CG∥AB交直线l于点G,如图3所示:由(1)得:BN'=CD,AN'=AC,AN=AE,∴∠ANE=∠AEN,NN'=CE,∵CG∥AB,∴∠ANE=∠CGE,∠B=∠BCG,∴∠CGE=∠AEN,∴CG=CE,∵M是BC中点,∴BM=CM,在△BNM和△CGM中,B BCGBM CMNMB GMC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BNM≌△CGM(ASA),∴BN=CG,∴BN=CE,∴CD=BN'=NN'+BN=2CE;(3)解:BN、CE、CD之间的等量关系:当点M在线段BC上时,CD=BN+CE;理由如下:过点C作CN'⊥AO交AB于N',如图3所示:由(2)得:NN'=CE,CD=BN'=BN+CE;当点M在BC的延长线上时,CD=BN-CE;理由如下:过点C作CN'⊥AO交AB于N',如图4所示:同(2)得:NN'=CE,CD=BN'=BN-CE;当点M在CB的延长线上时,CD=CE-BN;理由如下:过点C作CN'⊥AO交AB于N',如图5所示:同(2)得:NN'=CE,CD=BN'=CE-BN.22.解:(1)如图所示:四边形MOND即为所求;(2)①如图③所示:△A′B′C′,即为所求;②由轴对称的性质得:线段CC′被直线l 垂直平分; 故答案为:垂直平分;③△ABC 的面积=2×4-12×1×2-12×2×2-12×1×4=8-1-2-2=3; ④如图③所示:点P 即为所求.23.(1)ABC 是等边三角形,,AE EB = 30,60,BCE ACE ABC ∴∠=∠=︒∠=︒ ,ED EC =30,D ECD ∴∠=∠=︒,EBC D BED ∠=∠+∠30,D BED ∴∠=∠=︒BD BE AE ∴==∴AE=BD(2)∵三角形AEF 为等边三角形,则AE EF =//EF BC ,,FEC ECB ∴∠=∠,EC ED =,ECB EDB ∴∠=∠FEC EDB ∴∠=∠ 60,ABC ∠=︒ 120,DBE ∴∠=︒ 60,AFE ∠=︒ 120EFC ∴∠= 又,ED EC = DBE EFC ∴≅ ,DB EF ∴= DB AE ∴=。

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【答案】C
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,

人教版初中八年级数学上册第十三章《轴对称》经典复习题(含答案解析)

人教版初中八年级数学上册第十三章《轴对称》经典复习题(含答案解析)

一、选择题1.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75°B .90°C .105°D .120°或20°D解析:D【分析】设两内角的度数为x 、4x ,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x 、4x ,当等腰三角形的顶角为x 时,x +4x +4x =180°,x =20°;当等腰三角形的顶角为4x 时,4x +x +x =180°,x =30°,4x =120°;因此等腰三角形的顶角度数为20°或120°.故选:D .【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键. 2.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1-B .1C .0D .2021- A解析:A【分析】 关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案.【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020.解得a=2018,b=-2019,∴()()()202120212021=2018201911a b +-=-=- 故选:A . 【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 3.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…,在射线ON 上,点B ,1B ,2B ,3B ,…,在射线OM 上,112A B B ,223A B B △,334A B B △,…,均为等边三角形.若11OB =,则202020202021A B B △的边长为( )A .20192B .20202C .20212D .20222 A解析:A【分析】 先求出∠O=∠OA 1B 1=30°,从而A 1B 1=A 1B 2= OB 1=1,然后根据含30°角的直角三角形的性质求解即可.【详解】解:∵△A 1B 1B 2是等边三角形,∴∠A 1B 1B 2=∠A 1B 2O=60°,A 1B 1=A 1B 2,∵∠O=30°,∴∠A 2A 1B 2=∠O+∠A 1B 2O=90°,∵∠A 1B 1B 2=∠O+∠OA 1B 1,∴∠O=∠OA 1B 1=30°,∴OB 1=A 1B 1=A 1B 2=1,在Rt △A 2A 1B 2中,∵∠A 1A 2B 2=30°,∴A 2B 2=2A 1B 2=2,同法可得A 3B 3=22,A 4B 4=23,…,A n B n =2n-1,∴202020202021A B B △的边长=22019,故选:A .【点睛】本题考查了图形类规律探究,等边三角形的性质,三角形外角的性质,含30角的直角三角形的性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.4.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒B解析:B【分析】分∠A 是顶角和底角两种情况分类讨论求得∠B 的度数,即可得到答案.【详解】当∠A 是顶角时,则∠B=(180°-∠A)÷2=(180°-80°)÷2=50°,当∠B 是顶角时,则∠A 是底角,∴∠B=180°-80°-80°=20°,当∠C 是顶角时,则∠A 和∠B 都是底角,∴∠B=∠A=80°,综上所述:∠B 的度数为:50°或20°或80°.观察各选项可知∠B 不可能是60°.故选B .【点睛】本题主要考查等腰三角形的性质,掌握分类讨论思想方法,是解题的关键.5.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.6.如图,在△ABC 纸片中,AB=9cm ,BC=5cm ,AC=7cm ,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△ADE 的周长为是( )A .9cmB .11cmC .12cmD .14cm B解析:B【分析】 根据折叠的性质得到:DE=CD ,BE=BC=5cm ,求出AE=4cm ,根据△ADE 的周长为AD+DE+AE=AC+AE 代入数值计算即可得解.【详解】由折叠得:DE=CD ,BE=BC=5cm ,∵AB=9cm ,∴AE=AB-BE=9cm-5cm=4cm ,∴△ADE 的周长为AD+DE+AE=AC+AE=7cm+4cm=11cm ,故选:B .【点睛】此题考查折叠的性质:折叠前后对应边相等,正确理解折叠的性质是解题的关键.7.平面直角坐标系中,已知()1,1A ,()2,0B .若在x 轴上取点C ,使ABC 为等腰三角形,则满足条件的点C 的个数是( )A .2个B .3个C .4个D .5个C解析:C【分析】分三种情况:当AB=AC 时,当BA=BC 时,当AC=AB 时,根据等腰三角形两边相等的性质分别作图即可得解.【详解】当AB=AC 时,点C 与点O 重合;当BA=BC 时,以点B 为圆心,AB 长为半径画弧,与x 轴有两个交点;当AC=AB 时,作线段AB 的垂直平分线,与x 轴有一个交点,共有4个点C ,故选:C . .【点睛】此题考查等腰三角形的性质,直角坐标系中作等腰三角形的方法,熟记等腰三角形的性质并利用其作图是解题的关键.8.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒C解析:C【分析】 根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.下列图案是轴对称图形的是有( )A .①②B .①③C .①④D .②③C解析:C【分析】 根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:①是轴对称图形,②不是轴对称图形,③不是轴对称图形,④是轴对称图形. 故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.如果等腰三角形两边长分别是8cm 和4cm ,那么它的周长( )A .8cmB .20cmC .16cm 或20cmD .16cm B解析:B【分析】解决本题要注意分为两种情况4cm 为底或8cm 为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.【详解】解:∵等腰三角形有两边分别分别是4cm 和8cm ,∴此题有两种情况:①4cm 为底边,那么8cm 就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4cm 是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20cm .故选:B .【点睛】本题考查了等腰三角形性质;解题时涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.二、填空题11.如图,已知∠AOB=30°,点P在射线OA上,OP=16,点E、点F在射线OB上,PE=PF,EF=6.若点D是射线OB上一动点,当∠PDE=45°时,DF的长为___________.5或11【分析】过点P作PH⊥OB于点H根据PE=PF可得EH=FH=EF=3根据∠AOB=30°OP=16可得PH=OP=8当点D运动到点F右侧或当点D运动到点F左侧时分别计算可得DF的长【详解】解析:5或11【分析】过点P作PH⊥OB于点H,根据PE=PF,可得EH=FH=12EF=3,根据∠AOB=30°,OP=16,可得PH=12OP=8,当点D运动到点F右侧或当点D运动到点F左侧时,分别计算可得DF的长.【详解】如图,过点P作PH⊥OB于点H,∵PE=PF,∴EH=FH=12EF=3,∵∠AOB=30°,OP=16,∴PH=12OP=8,当点D运动到点F右侧时,∵∠PDE=45°,∴∠DPH=45°,∴PH=DH=8,∴DF=DH-FH=8-3=5;当点D 运动到点F 左侧时,D′F=D′H+FH=8+3=11.所以DF 的长为5或11.故答案为:5或11.【点睛】本题考查了含30度角的直角三角形的性质、等腰三角形的性质,解决本题的关键是分两种情况画图解答.12.如图,点C 在线段AB 上(不与点A ,B 重合),在AB 的上方分别作△ACD 和△BCE ,且AC =DC ,BC=EC ,∠ACD =∠BCE =α,连接AE ,BD 交于点P .下列结论:①AE=DB ;②当α=60°时,AD =BE ;③∠APB =2∠ADC ;④连接PC ,则PC 平分∠APB .其中正确的是__________.(把你认为正确结论的序号都填上)①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD 根据全等三角形的解析:①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形,但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD ,根据全等三角形的面积相等,从而证得AE 和BD 边上的高相等,即CH=CG ,最后根据角的平分线定理的逆定理即可证得∠APC=∠BPC ,故可判断④.【详解】解:①∵∠ACD=∠BCE ,∴∠ACD+∠DCE=∠DCE+∠BCE ,∴∠ACE=∠DCB ,在△ACE 和△DCB 中CA CD ACE DCB CE CB ⎧⎪∠∠⎨⎪⎩===,∴△ACE ≌△DCB (SAS ),∴AE=DG ,故①正确;②∵AC =DC ,BC=EC ,∠ACD =∠BCE =60°,∴△ACD 和△BCE 是等边三角形,∴AD=AC=DC,BE=BC=EC,但AC不一定等于BC,故AD不一定等于BE,所以②错误;③∵∠APB是△APD的外角,∴∠APD=∠ADP+∠DAP由①得△ACE≌△DCB∴∠CAE=∠CDB∵AC=DC∴∠CAD=∠CDA∴∠APD=∠ADC+∠DAC=2∠ADC,故③正确;④如图,分别过点C作CH⊥AE于H,CG⊥BD于G,∵△ACE≌△DCB,∴AE=BD,S△ACE=S△DCB,∴AE和BD边上的高相等,即CH=CG,∴∠APC=∠BPC,故④正确;故答案为:①③④.【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质,全等三角形的判定和性质,角的平分线定理及其逆定理,本题的关键是借助三角形的面积相等求得对应高相等.∠=︒,13.如图,点D、E是ABC的边BC上的点,且AED n∠∠∠=,若点D在边AC的垂直平分线上,点E在边AB的垂直CAD DAE BAE::1:3:2平分线上,则n=________.80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C∠BEA=∠B再根据比例关系设根据三角形内角和定理可求得x再根据三角形外角的性质可得∠AED【详解】解:∵点D在边AC的垂直平分线上点解析:80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C,∠BEA=∠B,再根据比例关系设∠=∠=∠=,根据三角形内角和定理可求得x,再根据三角形外CAD x DAE x BAE x,3,2角的性质可得∠AED.【详解】解:∵点D在边AC的垂直平分线上,点E在边AB的垂直平分线上,∴AD=CD ,AE=BE ,∴∠DAC=∠C ,∠BAE=∠B ,∵::1:3:2CAD DAE BAE ∠∠∠=,∴设,3,2CAD x DAE x BAE x ∠=∠=∠=,∴,2C x B x ∠=∠=,∵∠B+∠C+∠BAC=180°,∴322180x x x x x ++++=︒,解得20x =︒,∴22480AED BAE B x x x ∠=∠+∠=+==︒,即n=80,故答案为:80.【点睛】本题考查垂直平分线的性质,等边对等角,三角形内角和定理和三角形外角的性质.理解线段垂直平分线上的点到线段两端距离相等是解题关键.14.如图,长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF ,将BEF ∠对折B 落在直线EF 上的点'B 处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点'A 得折痕EN ,若6215'BEM ∠=︒,则AEN ∠=____.【分析】先根据折叠的性质求出∠B′EM 根据邻补角求出∠AEA′再根据折叠的性质即可求出∠AEN 【详解】解:根据折叠可知:EM 平分∠BEB′∴∠B′EM=∠BEM=62°15′∴∠AEA′=180°-解析:2745'︒【分析】先根据折叠的性质求出∠B′EM ,根据邻补角求出∠AEA′,再根据折叠的性质即可求出∠AEN .【详解】解:根据折叠可知:EM 平分∠BEB′,∴∠B′EM=∠BEM=62°15′,∴∠AEA′=180°-2×62°15′=55°30′,EN 平分∠AEA′,∴∠AEN=∠A′EN=12∠AEA′=12×55°30′=27°45′, 故答案为:27°45′.【点睛】本题考查了折叠的性质,邻补角的定义,以及角的计算、度分秒的换算,解决本题的关键是掌握折叠的性质.15.如图,在ABC 中,BD 平分ABC ∠交AC 于点D ,//EF BC 交BD 于点G ,若130BEG ∠=︒,则DGF ∠=______.25°【分析】由角平分线和平行线的性质证明则是等腰三角形由顶角的度数算出底角的度数即可得出结果【详解】解:∵BD 平分∴∵∴∴∴是等腰三角形∵∴∴故答案是:【点睛】本题考查等腰三角形的性质和判定解题的解析:25°【分析】由角平分线和平行线的性质证明EBG EGB ∠=∠,则BEG 是等腰三角形,由顶角的度数算出底角EGB ∠的度数,即可得出结果.【详解】解:∵BD 平分ABC ∠,∴EBG CBG ∠=∠,∵//EF BC ,∴CBG EGB ∠=∠,∴EBG EGB ∠=∠,∴BEG 是等腰三角形,∵130BEG ∠=︒, ∴180130252EGB ︒-︒∠==︒, ∴25DGF EGB ∠=∠=︒.故答案是:25︒.【点睛】本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定定理. 16.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90°∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4 ∵48OA =∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.17.若等腰三角形的一条边长为5cm ,另一条边长为10cm ,则此三角形第三条边长为__________cm .10【分析】因为等腰三角形的两边分别为5cm 和10cm 但没有明确哪是底边哪是腰所以有两种情况需要分类讨论【详解】当5cm 为底时其它两边都为10cm5cm10cm10cm 可以构成三角形;当5cm 为腰时解析:10【分析】因为等腰三角形的两边分别为5cm 和10cm ,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】当5cm 为底时,其它两边都为10cm ,5cm 、10cm 、10cm 可以构成三角形;当5cm 为腰时,其它两边为5cm 和10cm ,因为5+5=10,所以不能构成三角形,故舍去.所以三角形三边长只能是5cm 、10cm 、10cm ,所以第三边是10cm .故答案为:10.【点睛】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论. 18.已知等边三角形ABC .如图,(1)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点; (2)作直线MN 交AB 于点D ;(3)分别以点A ,C 为圆心,大于12AB 的长为半径作弧,两弧相交于H ,L 两点; (4)作直线HL 交AC 于点E ; (5)直线MN 与直线HL 相交于点O ;(6)连接OA ,OB ,OC .根据以上作图过程及所作图形,下列结论:①2OC OD =;②2AB OA =;③OA OB OC ==;④120DOE ∠=︒,正确的是____________.①③④【分析】根据题意可得点O 是三边中垂线的交点从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可【详解】由题可得点O 为等边三角形ABC 三边中垂线的交点即:MN ⊥ABHL ⊥AC ∴根据等边三角形 解析:①③④【分析】根据题意可得点O 是三边中垂线的交点,从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可.【详解】由题可得点O 为等边三角形ABC 三边中垂线的交点,即:MN ⊥AB ,HL ⊥AC , ∴根据等边三角形的性质可得:∠DAO=∠EAO=30°,AD=AE ,∴△ADO ≌△AEO ,∴OD=OE ,又根据中垂线的性质得∠EAO=∠ECO=30°,∴在Rt △COE 中,OC=2OE ,∴OC=2OD,故①正确;在Rt△ABE中,显然AB=2AE,而OA>AE,∴AB≠2OA,故②错误;根据中垂线性质可得OA=OB,OA=OC,∴OA=OB=OC,故③正确;在四边形ADOE中,∠ADO=∠AEO=90°,∠DAE=60°,∴∠DOE=360°-90°×2-60°=120°,故④正确;故答案为:①③④.【点睛】本题考查等边三角形的性质以及垂直平分线的画法和性质,以及全等三角形判定与性质,理解题意中所作图形的本质是解题关键.19.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是______.10°【分析】设∠B=∠C=x∠CDE=y分别表示出∠DAE构建方程解方程即可求解【详解】解:设∠B=∠C=x∠EDC=y∵AD=AE∴∠ADE =∠AED=x+y∵∠DAE=180°−2(x+y)=解析:10°【分析】设∠B=∠C=x,∠CDE=y,分别表示出∠DAE,构建方程解方程即可求解.【详解】解:设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180 °−2(x+y)=180 °−20 °−2x,∴2y=20 °,∴y=10 °,∴∠CDE=10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.20.如图,在△ABC中,AB=AC,∠BAC=36°,AD、CE是△ABC的两条角平分线,BD=5,P 是AD 上的一个动点,则线段BP +EP 最小值的是____________.10【分析】连结CP 利用等腰三角形顶角平分线所在直线为对称轴得BP=CPBD=CD=5当点CPE 在一直线是BP +EP 最小值最小值为BP +EP=EC 由∠BAC=36°AB=AC 求出∠ABC=∠ACB=解析:10【分析】连结CP ,利用等腰三角形顶角平分线所在直线为对称轴得 BP=CP ,BD=CD=5,当点C 、P 、E 在一直线是BP +EP 最小值,最小值为BP +EP= EC ,由∠BAC=36°,AB=AC ,求出∠ABC=∠ACB=72°,又CE 是△ABC 的角平分线有∠BCE=36°,求出∠BEC=72º,得CE=BC =10即可.【详解】连结CP ,点P 在AD 上运动,∵AB=AC ,AD 平分∠BAC ,∴AD 所在直线为对称轴,∴BP=CP ,BD=CD=5,当点C 、P 、E 在一直线是BP +EP 最小值,∴BP +EP=PC+EP=EC ,∵∠BAC=36°,AB=AC ,∴∠ABC=∠ACB=()1180-36=722︒︒︒, ∵CE 是△ABC 的角平分线, ∴∠BCE=1ACB=362∠︒, ∴∠BEC=180º-∠EBC-∠BCE =180º-72º-36º=72º,∴∠BEC=∠EBC ,∴CE=BC=BD+CD=10.故答案为:10.【点睛】本题考查等腰三角形的判定和性质,角平分线性质,轴对称性质,掌握等腰三角形的判定和性质,角平分线性质,线段和最短问题经常利用轴对称性质作出对称线段,三点在一线时最短作出图形是解题关键.三、解答题21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度所得到的△A1B1C1,并写出点A1,B1的坐标;(2)画出△DEF关于x轴对称后所得到的△D1E1F1,并写出点E1,F1的坐标;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形,请画出它的对称轴.解析:(1)图见解析,A1(3,2),B1(4,1);(2)图见解析,E1(﹣2,﹣3),F1(0,﹣2);(3)见解析【分析】(1)利用点平移的坐标变换规律写出点A1,B1,C1的坐标,然后描点即可;(2)利用关于x轴对称的点的坐标特征写出点D1,E1,F1的坐标,然后描点即可;(3)直线C1F1和C1F1的垂直平分线都是△A1B1C1和△D1E1F1组成的图形的对称轴.【详解】解:(1)如图,△A1B1C1为所作,A1(3,2),B1(4,1);(2)如图,△D1E1F1为所作,E1(﹣2,﹣3),F1(0,﹣2);(3)如图,直线l和直线l′为所作.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了平移变换.22.如图,,A B AE BE ∠=∠=,点D 在AC 边上,12,AE ∠=∠和BD 相交于点O . (1)求证:AEC BED ∆≅∆(2)若70BDE ︒∠=,求1∠的度数.解析:(1)见解析;(2)40°【分析】(1)由12∠=∠得到BED AEC ∠=∠,然后根据ASA 即可证明AEC BED ∆≅∆; (2)由(1)得DE=CE ,70C BDE ∠=∠=︒,由三角形内角和即可求出1∠的度数.【详解】解:()11=2∠∠,BED AEC ∠=∠∴又,A B AE BE ∠=∠=()AEC BED ASA ∴∆≅∆;()2AEC BED ∆≅∆70,BDE C DE CE ∴∠=∠=︒=70C EDC ︒∴∠=∠=118027040︒︒︒∴∠=-⨯=;【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的内角和定理,解题的关键是掌握全等三角形的判定和性质进行解题.23.如图,在ABC 中,60A ∠=︒,ABC ∠、ACB ∠的平分线分别交AC 、AB 于点D 、E ,CE 、BD 相交于点F ,连接DE .(1)若7AC BC ==,求DE 的长;(2)求证:BE CD BC +=.解析:(1) 3.5DE =;(2)见解析.【分析】(1)证明△ADE 为等边三角形,即可得结论;(2)在BC 上截取BH=BE ,证明两对三角形全等:△EBF ≌△HBF ,△CDF ≌△CHF ,可得结论.【详解】(1)∵AC=BC=7,∠A=60°,∴△ABC 为等边三角形,∴AC=AB=7,又∵BD 、CE 分别是∠ABC 、∠ACB 的平分线,∴D 、E 分别是AC 、AB 的中点, ∴11=3.5,=3.522==AD AC AE AB , ∴AD=AE ,∵∠A=60°,∴△ADE 为等边三角形,∴DE=AE=3.5;(2)证明:在BC 上截取BH=BE ,∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵BF=BF∴△EBF ≌△HBF (SAS ),∴∠EFB=∠HFB=60°.∵∠A=60°,∴∠ABC+∠ACB=120°,∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠ABD=∠CBD ,∠ACE=∠BCE ,∴∠CBD+∠BCE=60°,∴∠BFE=60°,∴∠CFB=120°,∴∠CFH=60°,∵∠BFE=∠CFD=60°,∴∠CFH=∠CFD=60°,∵CF=CF ,∴△CDF ≌△CHF (ASA ).∴CD=CH ,∵CH+BH=BC ,∴BE+CD=BC .【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质.解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.24.已知,在四边形ABCD 中,AB AD =,CB CD =,连接,AC BD ,判断,AC BD 的位置关系,并加以证明.解析:AC BD ⊥,见解析【分析】根据垂直平分线的判定证明即可.【详解】解:AC BD ⊥;证明:∵AB AD =,∴点A 在BD 的垂直平分线上,∵CB CD =,∴点C 在BD 的垂直平分线上,∴AC 垂直平分BD ,即AC BD ⊥.【点睛】本题考查了线段的垂直平分线的性质,根据与一条线段两个端点距离相等的点,在这条线段的垂直平分线上和两点确定一条直线证明是解题关键.25.如图,ABC 和ADE 均为等边三角形,连接BD 并延长,交AC 于点F ,连接CD 并延长,交AB 于点G ,连接CE .(1)求证:ABD ACE △≌△;(2)若ADG CED ∠=∠,求证:AG CF =.解析:(1)证明见详解;(2)证明见详解.【分析】(1)根据等边三角形的性质得,,AB AC AD AE BAC DAE ==∠=∠,CAD ∠为公共角得出BAD CAE ∠=∠,根据SAS 可证全等.(2)根据全等三角形的性质,,ACE ABD ADB AEC ==∠∠∠∠联立题目条件ADG CED ∠=∠可得60BDG AED ==∠∠,根据三角形外角的性质得到AGD BFC ∠=∠证明()AGC BFC AAS ≅,即可证AG CF =.【详解】(1)∵ABC 和ADE 均为等边三角形,∴,,AB AC AD AE BAC DAE ==∠=∠, ∵CAD ∠为公共角,∴BAD CAE ∠=∠∴()ABD ACE SAS ≅△△(2)∵ABD ACE ≅,∴,,ACE ABD ADB AEC ==∠∠∠∠ ∵ADG CED ∠=∠,∴60BDG AED ==∠∠,∴GBD GDB GBD BAF +=+∠∠∠∠,即AGD BFC ∠=∠,在AGC 与BFC △中AGD BFC GAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AGC BFC AAS ≅∴AG CF =【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形外角的性质等知识点;解题的关键是熟练掌握以上知识点.26.如图1,在ABC 中,AB AC =,点D 是BC 的中点,连接AD ,点E 在AD 上.(1)连接BE ,CE ,求证:BE CE =;(2)如图2,若BE 的延长线交AC 于点F ,且BF AC ⊥,45BAC ∠=︒,原题设其他条件不变.求证:AB BF EF =+.解析:(1)见解析;(2)见解析【分析】(1)先根据等腰三角形的性质得出∠BAE=∠CAE ,再根据SAS 证明△ABE ≌△ACE 即可; (2)由BF ⊥AC ,∠BAC=45°就可以求出AF=BF ,在由条件证明△AEF ≌△BCF 就可以得出EF=CF ,结合已知AB=AC 即可得出结论.【详解】证明:(1)∵AB=AC ,D 是BC 的中点,∴∠BAE=∠CAE ,在△ABE 和△ACE 中,AB AC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ACE (SAS ),∴BE=CE ;(2)∵BF ⊥AF ,∴∠AFB=∠CFB=90°.∵∠BAC=45°,∴∠ABF=45°,∴∠ABF=∠BAC ,∴AF=BF .∵AB=AC ,点D 是BC 的中点,∴AD ⊥BC ,∴∠EAF+∠C=90°,∵BF ⊥AC ,∴∠CBF+∠C=90°,∴∠EAF=∠CBF ,在△AEF 和△BCF 中,EAF CBF AF BFAFE BFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEF ≌△BCF (ASA )∴EF=CF .∴AB=AC=AF+FC=BF+EF【点睛】本题考查了全等三角形的判定性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.27.在ABC 中,AB AC =,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作ADE ,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当点D 在线段BC 上,如果90BAC ∠=︒,则BCE ∠=______度.(2)设BAC α∠=,BCE β∠=.①如图,当点D 在线段BC 上移动时,α、β之间有怎样的数量关系?请直接写出你的结论.②如图,当点D 在线段BC 的反向延长线上移动时,α、β之间有怎样的数量关系?请说明理由.解析:(1)90;(2)①180αβ+=︒,理由见解析;②αβ=,理由见解析【分析】(1)由等腰直角三角形的性质可得∠ABC=∠ACB=45°,由“SAS”可证△BAD ≌△CAE ,可得∠ABC=∠ACE=45°,可求∠BCE 的度数;(2)①由“SAS”可证△ABD ≌△ACE 得出∠ABD=∠ACE ,再用三角形的内角和即可得出结论;②由“SAS”可证△ADB ≌△AEC 得出∠ABD=∠ACE ,再用三角形外角的性质即可得出结论.【详解】(1)∵AB=AC ,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC ,∴∠BAD=∠CAE ,在△BAD 和△CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS )∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)①180αβ+=︒.理由:∵∠BAC=∠DAE ,∴∠BAC-∠DAC=∠DAE-∠DAC .即∠BAD=∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠B=∠ACE .∴∠B+∠ACB=∠ACE+∠ACB .∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;② 当点D 在射线BC 的反向延长线上时,αβ=.理由如下:∵DAE BAC ∠=∠,∴DAB EAC ∠=∠,在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△≌△ADB AEC(SAS), ∴ABD ACE ∠=∠,∵ABD BAC ACB ∠=∠+∠,ACE BCE ACB ∠=∠+∠,∴BAC ABD ACB ∠=∠-∠,BCE ACE ACB ∠=∠-∠,∴BAC BCE ∠=∠,即αβ=.【点睛】此题考查了全等三角形的判定和性质,等腰直角三角形的性质,三角形的内角和定理,以及三角形外交的性质,证明△ABD ≌△ACE 是解本题的关键.28.如图,在平面直角坐标系xOy 中点(6,8)A ,点(6,0)B .(1)只用直尺(没有刻度)和圆规,求作一个点P ,使点P 同时满足下列两个条件(要求保留作图痕迹,不必写出作法);①点P 到A ,B 两点的距离相等;②点P 到xOy ∠的两边的距离相等.(2)在(1)作出点P 后,直接写出点P 的坐标______.解析:(1)作图见解析;(2)(4,4)【分析】(1)作AB 的垂轴平分线和∠xOy 的角平分线,它们的交点即为P 点;(2)由于点P在AB的垂轴平分线上,则P点的纵坐标为4,再利用点P在第一象限的角平分线上,则点P的横纵坐标相同,从而得到P点坐标.【详解】(1)如图,点P为所作;(2)P点坐标为(4,4).故答案为(4,4).【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.。

人教版八年级数学上册《第十三章轴对称》单元练习题(含答案)

第十三章《轴对称》单元练习题一、选择题1.如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是()A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2.如图,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于()A. 40°B. 50°C. 70°D. 80°3.若A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),则P(a,b)关于x轴对称点P1的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)4.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A. 13B. 15C. 18D. 215.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB6.已知a,b,c是三角形的三边长,如果满足(a﹣b)2++|c2﹣64|=0,则三角形的形状是()A.底和腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形7.以下列各组数据为边长,可以构成等腰三角形的是()A. 2,3,4B. 5,5,10C. 2,2,1D. 1,2,38.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+∠B=90°二、填空题(9.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=.10.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选点(C或D).11.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为.12.如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为.13.如图,在△ABC中,D为AB上的一点,且DE垂直平分AC,∠B=115°,且∠ACD:∠BCD=5:3,则∠ACB=__________度.14.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=____________.15.如图,△ABC是等边三角形,则∠ABD=度.16.如图将边长为5cm的等边△ABC,沿BC向右平移3cm,得到△DEF,DE交AC于M,则△MEC 是三角形,DM=cm.三、解答题17.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)画出点B关于直线AC的对称点D.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(2,3),B(3,1),C(-2,-2).(1)请在图中作出△ABC关于y轴的轴对称图形△A′B′C′(A,B,C的对称点分别是A′,B′,C′),并直接写出A′,B′,C′的坐标.(2)求△A′B′C′的面积.20.如图,已知五边形ABCDE是轴对称图形,点B,E是一对对称点,请用无刻度的直尺画出该图形的对称轴.(保留作图痕迹,不要求写作法)21.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.第十三章《轴对称》单元练习题答案解析1.【答案】B【解析】可依据题意线作出简单的图形,结合图形可得∠B=∠A,进而可得其为等腰三角形.解:如图,DC平分∠ACE,且AB∥CD,∴∠ACD=∠DCE,∠A=∠ACD,∠B=∠DCE∴∠B=∠A,∴△ABC为等腰三角形.故选B2.【答案】C【解析】由已知AB=AC,∠ABC=70°,根据等腰三角形的性质,得出∠C的度数,再利用DE∥AC,可得∠CBE=70°,答案可得.解:∵AB=AC(已知),∴∠C=∠ABC=70°(等边对等角),又∵DE∥AC(已知),∴∠CBE=∠C=70°(两直线平行,内错角相等)故选C.3.【答案】C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得方程组,根据解方程组,可得P点坐标,根据关于关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:由A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),得2a-b=-3,a+b=-3,所以a=-2,b=-1,∴P(﹣2,﹣1).P(a,b)关于x轴对称点P1的坐标是(﹣2,1),故选:C.4.【答案】A【解析】根据线段垂直平分线的性质得出AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC求出即可.解:∵AB=AC=8,BC=5,AB的垂直平分线交AC于D,∴AD=BD,∴△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.5.【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,∠FPD=∠Q,∠FDE=∠CDQ,PF=CQ∴△PFD≌△QCD,∴PD=DQ,DF=CE,∴A选项正确,∵AE=EF,∴DE=AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=AP=CQ,∴C选项正确,故选D.6.【答案】B【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.解:由(a﹣b)2++|c2﹣64|=0得:a﹣b=0,b﹣8=0,c2﹣64=0,又a,b,c是三角形的三边长,∴a=8,b=8,c=8,所以三角形的形状是等边三角形,故选:B.7.【答案】C【解析】根据三角形的三边关系对以下选项进行一一分析、判断.解:A.∵2≠3≠4,∴本组数据不可以构成等腰三角形;故本选项错误;B.∵5+5=10,∴本组数据不可以构成三角形;故本选项错误;C.∵1+2>2,∴本组数据可以构成等腰三角形;故本选项正确;D.∵1+2=3,∴本组数据不可以构成三角形;故本选项错误.故选C.8.【答案】D【解析】等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解:A、若∠A是顶角时,则50°+120°<180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在50°+50°+160°<180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;B、若∠A是顶角时,则50°+200°>180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在100°+100°>180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;C、当∠A+∠B=90°时,∠C=90°;但∠A=10°,∠B=80°时,三角形ABC的三个内角没有那两个相等,所以构不成等腰三角形;故本选项错误;D、当∠B是顶角时,则2∠A+∠B=180°,∴∠A+∠B=90°;故本选项正确;故选D.9.【答案】2【解析】根据等边三角形的性质求得BD=CD,并且求得边BC的长度,进而即可求得BD的长.解:∵△ABC是等边三角形,AD是∠BAC的平分线,∴AB=BC=CA,BD=CD,∵等边△ABC周长是12,∴BC=4,∴BD=2.故答案为2.10.【答案】C【解析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.11.【答案】1或3【解析】当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB﹣BC=12,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=12BE=12,∴CF=BC+FB=32,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3.12.【答案】20°【解析】根据轴对称的性质求出∠A′,再利用三角形的内角和等于180°列式计算即可得解.解:∵△ABC与△A′B′C′关于直线l对称,∴∠A′=∠A=50°,在△A′B′C′中,∠C′=180°﹣∠A′﹣∠B′=180°﹣50°﹣110°=20°.故答案为:20°.13.【答案】40【解析】根据垂直平分线的性质与三角形的全等可以得出∠A=∠ACD,再根据三角形的内角和和角的比计算.解:∵DE垂直平分AC,∴EA=EC,AD=CD,∠ADE=∠CDE=90°∴Rt△ADE≌Rt△CDE∴∠A=∠ACD又∵∠ACD:∠BCD=5:3,∴∠ACD:∠ACB=5:8∴∠A:∠ACB=5:8又∵∠B=115°。

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。

人教版八年级上册第十三章《轴对称》单元知识点测试卷内含答案与解析

第十三章《轴对称》单元知识点测试卷(时间:120 分钟满分:120 分)第Ⅰ卷选择题(共42 分)一、选择题(本大题共16个小题,1~6小题,每小题2 分;7~16 小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填入后面的括号里)1.下列图形中,不是轴对称图形的是【】答案:A解析:判断是否为轴对称图形关键是找对称轴,选项A 无对称轴,故不是轴对称图形.难易度:知识点:2.点(3,-2)关与x 轴的对称点的坐标为【】A.(-3,-2)B.(3,2)C.(-3,-2)D.(3,-2)答案:B解析:点(x,y)关于x 轴对称的点的坐标为(x,-y),关于y 轴对称的点的坐标为(-x,y).难易度:知识点:3.等腰三角形的一个外角为60°,则底角为【】A.120°B.30°C.30°或120°D.30°或60°答案:B解析:60°的外角只能是顶角的外角,故底角=1×60°=30°.2难易度:知识点:4.如图,直角三角形ABC 中,∠C=90°,AB 的垂直平分线交AC于D,则AD与BC 的大小关系是【】A.AD<BCB.AD=BCC.AD>BCD.不能确定答案:C解析:连接BD,则BD=AD,又在直角三角形BDC 中,BD>BC,故AD>BC.难易度:知识点:第4题图第6题图5.等腰三角形的周长为13,其中一边的长为5,则其他两边的长可能是【】A.5 和3B.4 和4C.5和3 或4 和4D.不能确定答案:C解析:本题应分情况讨论:当长为5 的边为腰时,另两条边的长为5 和3;当长为5的边为底边时,另两条边的长为4 和4.难易度:知识点:6.如图,梯形ABCD 与梯形EFGH 成轴对称,则它们组成的图形的对称轴有【】A.1 条B.2 条C.3 条D.4条答案:A解析:难易度:知识点:7.如图,公路BC 所在的直线恰为书店与学校连线AD 的垂直平分线,小花家与小梅家住在公路边,则下列说法中正确的是【】①小梅从家到书店与小花从家到书店的距离一样远;②小梅从家到书店与从家到学校一样远;③小花从家到书店与从家到学校一样远;④小梅从家到学校与小花从家到学校一样远.A.①②B.②③C.③④D.①④答案:B解析:∵BC 垂直平分AD,∴AB=BD,AC=CD,但AB 不一定等于AC,BD不一定等于CD.难易度:知识点:第7题图第8题图第9题图8.如图,在△ABC 中,CD⊥AB,∠A=30°,AB=6,△ACB 的面积为6,则AC的长为【】A.2B.4C.12D.16答案:B解析:∵∠A =30°,∠CDA =90°,∴AC=2CD. 又∵S△ACB =12CD·AB=6,AB=6,∴CD=2.∴AC=2CD=2×2=4.难易度:知识点:9.如图,四边形ABCD 中,AC 垂直平分BD,垂足为E,下列结论不一定成立的是【】A.AB=ADB.AC平分∠BCDC.AB=BDD.△BEC≌△DEC答案:C解析:由中垂线定理,知AB=AD,故A 正确,由三线合一知B正确,且有BC=CD,故D也正确,只有C 不一定成立.难易度:知识点:10.如图,在△ABC中,边AB的垂直平分线分别交AB,BC点于D,E,边AC的垂直平分线分别交AC,BC于点F,G,若BC=4,则△AEG的周长为【】A.12B.10C.8D.4 答案:D解析:本题主要考查线段垂直平分线的性质,△AEG 的周长等于BC的长.难易度:知识点:第10题图第11 题图11.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO 的大小为【】A.70°B.110°C.140°D.150°答案:D解析:因为OA=OB=OC,∴∠BAO=∠ABO,∠CBO=∠BCO,∴∠BAO+∠BCO=∠ABO+∠CBO=∠ABC=70°,∴∠DAO+∠DCO=360°-∠ABC-(∠BAO+∠BCO)-∠ADC=150°.难易度:知识点:12.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,过点D 作DE ∥AB交AC于点E,则△CDE 的周长为【】A.20B.12C.14D.13答案:C解析:由AB=AC及AD 平分∠BAC得BD=CD= 1BC=4.由DE∥AB及AD平分∠BAC得∠2ADE=∠EAD,∴AE=DE. 故△CDE 的周长=CE+DE+CD=CE+AE+CD=AC+CD=14.难易度:知识点:第12 题图第13题图13.如图,小华把长方形纸片ABCD沿对角线折叠,重叠部分为△EBD,那么以下四种说法:①△EBD 是等腰三角形,EB=ED;②折叠后∠ABE 和∠CBD 一定相等;③折叠后得到的图形是轴对称图形;④△EBA 和△EDC 一定是全等三角形.其中正确的有【】A.1 个B.2 个C.3个D.4 个答案:C解析:①③④正确,②中两角不一定相等.难易度:知识点:14.将一张等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是【】A B C D答案:A解析:通过两次对折后,得到的三角形仍是等腰直角三角形.对于这个题目,可以通过动手操作解决问题,也可以利用轴对称的性质进行分析.难易度:知识点:15.如图,在网格中有一个直角三角形(网格中的每一个小正方形的边长均为1个单位长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其他的公共点,新三角形的顶点不一定在格点上,那么符合要求的新三角形有【】A.4 个B.6 个C.7个D.9 个第15题图第16 题图答案:C解析:解:如图所示,∵根据题意可知:以4 为腰的等腰三角形有2 个,以5 为腰的三角形有4 个,以5 为底边的等腰三角形有1个,∴符合要求的新三角形有2+4+1=7 个.第15 题图难易度:知识点:16.如图,在直角坐标系中,点A、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A、B、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是【】A.(0,0)B.(0,1)C.(0,2)D.(0,3)答案:D解析:本题考查最短路线问题. 作B 点关于y 轴对称点B´点,连接AB´,交y 轴于点C,此时△ABC 的周长最小,∵点A、B 的坐标分别为(1,4)和(3,0),∴B´点坐标为:(-3,0),点C 的坐标是(0,3),故选D.难易度:知识点:第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填入题内的横线上)17.在十二地支“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”这12 个字中,可以看作接近于轴对称图形的有个.答案:4解析:“寅、未、申、酉”可以看作接近于轴对称图形.难易度:知识点:18.等腰三角形的对称轴有条.答案:1 或3解析:本题应分类讨论,当等腰三角形底与腰不相等时,其对称轴只有1 条;当等腰三角形底与腰相等,即为等边三角形时,其对称轴有3 条.考虑问题不全面时,易漏掉其中的一种情况.难易度:知识点:19.将一张长方形纸片ABCD按如图所示的方式折叠,EF、EG 是折痕,且使AE与BE 折叠后所对应的边EA´和EB´重合在同一条直线上.如果∠CFE=110°,那么∠AEG=°.答案:20解析:由折叠易知∠GEF=90°,∠FEB=180°-110°=70°,∴∠AEG=90°-70°=20°.知识点:第19题图第20题图20.在三角形纸片ABC 中,AB=10 cm,BC=7 cm,AC=6 cm,沿过点B的直线折叠这个三角形,使点C 落在AB边上的点E 处,折痕为BD(如图),则△AED 的周长为__________.答案:9 cm解析:由折叠易知BE=BC=7,DE=CD.故△AED 的周长=AD+DE+AE=AC+(AB-BE)=AC+(AB-BC)=6+(10-7)=9(cm).难易度:知识点:三、解答题(本大题共6个小题,共66 分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9 分)如图,∠A =90°,BD 是△ABC 的角平分线,DE 是BC 的垂直平分线,请分别求∠CDE 和∠ABC 的度数.答案:解:因为DE 垂直平分BC,所以DB=DC.所以∠C=∠DBC.又因为BD 平分∠ABC,所以∠ABD=∠DBC. 所以∠C=∠ABD=∠DBC=13×(180°-90°)=30°.所以∠CDE=90°-30°=60°,∠ABC=2∠ABD=2×30°=60°.解析:难易度:知识点:22.(本小题满分10 分)找出下图中的轴对称图形,并画出它们的对称轴.答案:解:第1个和第4个为轴对称图形.图略.难易度:知识点:23.(本小题满分10 分)如图,在游艺室的水平地面上,沿着地面AB边放一行球,参赛者从起点C 起步,跑向边AB任取一球,再折向D点跑去,将球放入D 点的纸箱内便完成任务,完成任务的时间最短者获得胜利.如果邀请你参加,你将跑去选取什么位置上的球?为什么?答案:解:作点D 关于AB 的对称点M,连接C酝交AB于点P,则点P所在的球就是选取的球.利用了轴对称的知识.解析:难易度:知识点:24.(本小题满分11 分)将一个等腰三角形沿对称轴对折后,剪掉一个60°的角,展开后得到如图所示形状.若∠B=15°,求∠A 的度数.答案:解:∠A=30°.解析:难易度:知识点:25.(本小题满分12 分)如图,△ABC 是等腰直角三角形,∠BAC=90°,BE 是∠ABC 的平分线,DE⊥BC,垂足为D.(1)请写出图中所有等腰三角形;(2)请判断AD与BE 是否垂直?为什么?(3)请比较AB垣AE与BC 的大小,并说明理由.答案:解:(1)△ABC,△ABD,△ADE,△CDE都是等腰三角形;(2)AD与BE互相垂直.理由是:因为BE 平分∠ABC,DE⊥BC,AE ⊥AB,所以AE =DE(角平分线上的点到这个角两边的距离相等),所以∠DAE=∠ADE,从而∠BAD=∠BDA,所以AB=BD,所以BE⊥AD(“三线合一”);(3)AB+AE=BC.理由如下:因为△ABC 是等腰直角三角形,所以∠C=45°,因为∠CDE=90°,所以∠DEC=45°,所以CD=DE(等角对等边),由(2)知AB=BD,BE⊥AD.所以AF=DF,∠AFE=∠DFE=90°.又EF=EF.所以△AFE≌△DFE.所以AE=DE.所以AE=CD,所以AB+AE=BD+DC=BC.解析:难易度:知识点:26.(本小题满分14 分)如图,△ABC 是边长为6 的等边三角形,P是AC 边上一动点,由A 向C 运动(与A、C 不重合),Q 是CB 延长线上一动点,与点P 同时以相同的速度由B 沿CB 延长线方向运动(Q 不与B重合),过P 作PE⊥AB于E,连接PQ 交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段DE的长是否发生变化?如果不变,求出线段DE 的长;如果发生改变,请说明理由答案:解:(1)过P 作PF∥QC 交AB 于点F,则△AFP是等边三角形.因为P,Q 同时出发,速度相同,即BQ=AP,所以BQ=PF,所以△DBQ≌△DFP,所以BD=DF.因为∠BQD=∠BDQ=∠FDP=∠FPD=30°,所以BD=DF=FP=AF=13AB=13×6=2,所以AP=2.(2)由(1)知BD=DF,而△APF是等边三角形,PE⊥AF,因为AE=EF,又DE+(BD+AE)=AB=6,所以DE+(DF+EF)=6,即DE+DE=6,所以DE=3 为定值,即DE 的长不变.解析:难易度:知识点:。

2022-2023学年人教版八年级数学上册《第13章轴对称》单元综合测试题(附答案)

2022-2023学年人教版八年级数学上册《第13章轴对称》单元综合测试题(附答案)一.选择题(共8小题,满分32分)1.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AC、∠ABC=72°,CD∥AB,BD交AC于E,且CE=DE,则∠D的度数是()A..36°B.30°C..22.5°D.40°3.如图,在△ABC中,∠C=90°,AP是角平分线,AP=5,CP=2,则P到AB的距离是()A.5B.2C.3D.44.等腰三角形两边长分别为3和6,则该三角形的周长为()A.12B.15C.12或15D.条件不够无法计算5.如图,∠ABC是一个锐角,以点A为圆心,适当长度为半径画弧,交射线BC于点D,E.若∠ABC=40°,∠BAD=25°,则∠DAE的度数是()A.40°B.50°C.60°D.70°6.如图,在△ABC中,边AB,AC的垂直平分线交于点P,连结BP,CP,若∠A=50°,则∠BPC=()A.50°B.100°C.130°D.150°7.如图,已知长方形纸片ABCD,点E,F在AD边上,点G,H在BC边上,分别沿EG,FH折叠,使点D和点A都落在点M处,若α+β=118°,则∠EMF的度数为()A.56°B.58°C.60°D.62°8.如图,在△ABC中,∠A=90°,BE是△ABC的角平分线,ED⊥BC于点D,CD=4,△CDE周长为12,则AC的长是()A.14B.8C.16D.6二.填空题(共8小题,满分40分)9.已知三角形的三边长分别为5、a、10,则a的取值范围是;如果这个三角形中有两条边相等,那么它的周长为.10.等腰三角形的一个底角为50°,则该等腰三角形的顶角度数为度.11.如图,将一张长方形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C′的位置上,若∠BFE=68°,则∠ABE的度数为.12.如图,在△ABC中,AB=AC,且AE=AD,∠EDC=α,则∠BAD=.13.如图,点P为∠AOB内一点,分别作出P点关于OA,OB的对称点P1,P2,连结P1P2交OA于M,交OB于N,若线段P1P2的长为12cm,则△PMN的周长为cm.14.如图,在直角三角形ABC中,∠C=90°,点D在AB上,点G在BC上,将△BDG 沿直线DG翻折后,点B落在点F处,联结DF,如果DF∥AC,那么∠B与∠BDG的数量关系是.15.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,则∠1+∠2=度.16.如图,在四边形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分别取一点M、N,使△AMN的周长最小,则∠MAN=°.三.解答题(共7小题,满分48分)17.如图,∠AOB=40°,点D在OA边上,点C,E在OB边上,连接CD,DE.若OC =OD=DE,求∠CDE的度数.18.如图,已知M、N分别是∠AOB的边OA上任意两点.(1)尺规作图:作∠AOB的平分线OC;(2)在∠AOB的平分线OC上求作一点P,使PM+PN的值最小.(保留作图痕迹,不写画法)19.如图,在△ABC中,∠ABC=20°,∠ACB=65°,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)求∠DAF的度数.(2)若BC的长为50,求△DAF的周长.20.在8×6的网格中,A,B,C是格点,D是AB与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示:(1)在线段AC上取点E,使DE=CD;(2)画格点F,使EF∥AB;(3)画点E关于AB的对称点G;(4)在射线AG上画点P,使∠PDE与∠GAE互补.21.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将△ACB沿CD折叠,使点A 恰好落在BC边上的点E处.(1)求△BDE的周长;(2)若∠B=37°,求∠CDE的度数.22.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,求∠BAC的大小.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小,若存在,标出点P的位置并求PB+CP的最小值,若不存在,说明理由.23.如图,点D在等边△ABC的外部,E为BC边上的一点,AD=CD,DE交AC于点F,AB∥DE.(1)判断△CEF的形状,并说明理由;(2)若BC=10,CF=4,求DE的长.参考答案一.选择题(共8小题,满分32分)1.解:A.风,不是轴对称图形,故此选项不合题意;B.和,不是轴对称图形,故此选项不合题意;C.日,是轴对称图形,故此选项符合题意;D.丽,不是轴对称图形,故此选项不合题意;故选:C.2.解:∵AB=AC,∠ABC=72°,∴∠ACB=∠ABC=72°,∵CD∥AB,∴∠BCD=180°﹣∠ABC=108°,∴∠ACD=∠BCD﹣∠ACB=36°,∵CE=DE,∴∠D=∠ACD=36°,故选:A.3.解:过P作PD⊥AB于D,∵∠C=90°,∴PC⊥AC,∴AP平分∠CAB,∴PD=PC,∵PC=2,∴PD=2,∴点P到边AB的距离是2,故选:B.4.解:当等腰三角形的腰为3时,三边为3,3,6,3+3=6,三边关系不成立,当等腰三角形的腰为6时,三边为3,6,6,三边关系成立,周长为3+6+6=15.故选:B.5.解:根据题意,得AD=AE,∴∠ADE=∠AED,∵∠ABC=40°,∠BAD=25°,∴∠ADE=40°+25°=65°,∴∠AED=65°,∴∠DAE=180°﹣65°﹣65°=50°,故选:B.6.解:连接AP,延长BP交AC于D,∴∠BPC=∠PDA+∠ACP=∠BAC+∠ABP+∠ACP,∵点P是AB,AC的垂直平分线的交点,∴P A=PB=PC,∴∠ABP=∠BAP,∠ACP=∠CAP,∴∠BPC=∠BAC+∠BAP+∠CAP=∠BAC+∠BAC=2∠BAC=2×50°=100°,故选B.7.解:∵AD∥BC,∴∠DEG=α,∠AFH=β,∴∠DEG+∠AFH=α+β=118°,由折叠得:∠DEM=2∠DEG,∠AFM=2∠AFH,∴∠DEM+∠AFM=2×118°=236°,∴∠FEM+∠EFM=360°﹣236°=124°,在△EFM中,∠EMF=180°﹣(∠FEM+∠EFM)=180°﹣124°=56°,故选:A.8.解:∵BE是△ABC的角平分线,ED⊥BC,∠A=90°,∴AE=DE,∵△CDE的周长为12,CD=4,∴DE+EC=8,∴AC=AE+EC=8,故选:B.二.填空题(共8小题,满分40分)9.解:根据三角形的三边关系可得:10﹣5<a<10+5,即5<a<15,∵这个三角形中有两条边相等,∴a=10或a=5(不符合三角形的三边关系,不合题意,舍去)∴周长为5+10+10=25,故答案为:5<a<15;25.10.解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故答案为:80.11.解:∵AD∥BC,∴∠DEF=∠BFE=68°,根据折叠的性质得,∠BEF=∠DEF=68°,∴∠AEB=180°﹣∠BEF﹣∠DEF=180°﹣68°﹣68°=44°,∵∠A=90°,∴∠ABE=90°﹣44°=46°,故答案为:46°.12.解:∵∠AED=∠C+∠EDC=∠C+α,AE=AD,∴∠ADE=∠AED=∠C+α,∴∠ADC=∠C+2α,∵AB=AC,∴∠B=∠C,∴∠BAD=∠ADC﹣∠B=∠ADC﹣∠C=∠ADC﹣(∠C+2α)=2α.故答案为:2α.13.解:∵P点关于OA、OB的对称点P1,P2,∴NP=NP2,MP=MP1,∴△PMN的周长=PN+MN+MP=P2N+NM+MP1=P1P2=12cm,故答案为:12.14.解:∠B与∠BDG的数量关系是:∠B+2∠BDG=90°,∵AC∥DF,∴∠DEB=∠C=90°,∴∠B+∠FDB=90°,由翻折可得:∠BDG=∠FDG,∴∠B+2∠BDG=90°,故答案为:∠B+2∠BDG=90°.15.解:延长AF、BE交于点D,∵∠A=65°,∠B=75°,∴∠D=180°﹣∠A﹣∠B=40°,∴∠DFE+∠DEF=180°﹣∠D=140°,∵将纸片的一角折叠,使点C落在△ABC内,∴∠CFE=∠DFE,∠CEF=∠DEF,∴∠DFC+∠DEC=2(∠DFE+∠DEF)=280°,∴∠1+∠2=(180°﹣∠DFC)+(180°﹣∠DEC)=360°﹣(∠DFC+∠DEC)=360°﹣280°=80°,故答案为:80.16.解:如图,作点A关于BC、CD的对称点A1、A2,连接A1、A2分别交BC、DC于点M、N,连接AM、AN,则此时△AMN的周长最小,∵∠BCD=50°,∠B=∠D=90°,∴∠BAD=360°﹣90°﹣90°﹣50°=130°,∴∠A1+∠A2=180°﹣130°=50°,∵点A关于BC、CD的对称点为A1、A2,∴NA=NA2,MA=MA1,∴∠A2=∠NAD,∠A1=∠MAB,∴∠NAD+∠MAB=∠A1+∠A2=50°,∴∠MAN=∠BAD﹣(∠NAD+∠MAB)=130°﹣50°=80°,故答案为:80°.三.解答题(共7小题,满分48分)17.解:∵OC=OD,∴∠OCD=∠ODC,∵∠AOB=40°,∴∠ODC=(180°﹣∠AOB)÷2=(180°﹣40°)÷2=70°,∵OD=DE,∴∠OED=∠AOB=40°,∴∠ODE=180°﹣40°×2=100°,∴∠CDE=∠ODE﹣∠ODC=100°﹣70°=30°.18.解:(1)如图1所示,OC即为所求作的∠AOB的平分线.(2)如图2,作点M关于OC的对称点M′,连接M′N交OC于点P,则点P即为所求.19.解:(1)∵∠ABC=20°,∠ACB=65°,∴∠BAC=180°﹣∠ABC﹣∠ACB=95°,∵DE,FG分别为AB,AC的垂直平分线,∴DA=DB,F A=FC,∴∠DAB=∠ABC=20°,∠F AC=∠ACB=65°,∴∠DAF=∠BAC﹣∠DAB﹣∠F AC=10°;(2)由(1)可知,DA=DB,F A=FC,∴△DAF的周长=DA+DF+F A=DB+DF+FC=BC=50.20.解:(1)如图,点E即为所求;(2)如图,线段EF即为所求;(3)如图,点G即为所求;(4)如图,点P即为所求.21.解:(1)由折叠可得,AC=CE,DE=AD,∵AC=6,BC=8,∴CE=6,AB=10,∵BC=8,∴BE=2,∴△BDE的周长=DE+EB+BD=AD+BD+EB=AB+EB,∵AB=10,∴△BDE的周长=10+2=12;(2)∵∠B=37°,∴∠CED=37°+∠BDE,∵∠A=∠CED,∴∠CED=37°+∠BDE,∵∠ACB=90°,∴37°+∠BDE+37°=90°,∴∠BDE=16°,∴∠ADE=180°﹣16°=164°,∴∠CDE=∠ADE=82°.22.解:(1)∵AB=AC,∠B=70°,∴∠BAC=180°﹣70°×2=40°;(2)∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.(3)当点P与点M重合时,PB+CP的值最小,为AC长,最小值是8cm.23.解:(1)△CEF是等边三角形,理由:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC,∵AB∥DE,∴∠CEF=∠ABC,∠CFE=∠CAB,∴∠CEF=∠CFE=∠ECF∴△CEF是等边三角形;(2)连接BD,∵△ABC是等边三角形,∴AB=BC=AC,∵AD=CD,∴BD是线段AC的垂直平分线,∴BD平分∠ABC,∴∠ABD=∠CBD,∵AB∥DE∴∠ABD=∠BDE,∴∠BDE=∠CBD,∴BE=DE,∴BC=BE+EC=DE+CF∴DE=BC﹣CF=10﹣4=6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册单元复习试题第十三章轴对称
一、选择题
1.下列瑜伽动作中,可以看成轴对称图形的是()
2.平面直角坐标系中,点(-2,4)关于x轴的对称点在()
A.第一象限B.第二象限
C.第三象限D.第四象限
3.如图,△ABC是等边三角形,则∠1+∠2的度数为()
A.60° B.90° C.120° D.180°
4.如图,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()
A.40° B.35° C.25° D.20°
5.如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,AC的长为12cm,则△BCE的周长等于()
A.16cm B.20cm
C.24cm D.26cm
6.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()
A.40海里B.60海里
C.70海里D.80海里
7.等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为()
A.50° B.65° C.80° D.50°或80°
8.如图,在△ABC中,∠B=30°,AB=4,BC=5,则△ABC的面积为()
A.5 B.10 C.15 D.20
9.如图,在△ABC中,AB=AC,以AB、AC为边在△ABC的外侧作两个等边三角形△ABE和△ACD,且∠EDC=45°,则∠ABC的度数为()
A.75° B.80° C.70° D.85°
10.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF的度数为()。

相关文档
最新文档