《分式方程的相关概念》课件

合集下载

分式方程课件初中数学PPT课件(2024)

分式方程课件初中数学PPT课件(2024)
甲的工作量 + 乙的工作量 = 总工作量
典型例题
一项工程,甲单独做需要20天完成,乙单独做需要30天完成。如果两人合作,需要多少 天完成?
17
行程问题
01 路程、速度、时间之间的关系
路程 = 速度 × 时间
02 行程问题中常见的等量关系
甲的路程 + 乙的路程 = 总路程
03 典型例题
两辆汽车同时从相距360千米的两地相对开出, 经过2.4小时相遇。已知甲车每小时行70千米,乙 车每小时行多少千米?
高次分式方程
对于高次分式方程,可以先将其降次,转化为低次分式 方程或整式方程进行求解。具体方法包括因式分解、配 方法等。
2024/1/28
15
03
分式方程应用举例
2024/1/28
16
工程问题
2024/1/28
工作总量、工作时间、工作效率之间的关系
工作总量 = 工作时间 × 工作效率
工程问题中常见的等量关系
为整式方程。
步骤
找出分母中的最小公倍数。
2024/1/28
两边同时乘以最小公倍数,消去分母 。
解整式方程,得到未知数的值。
检验未知数的值是否符合原方程的约 束条件。
8
换元法
• 原理:通过引入新的变量,将分式方程转化为整式方程或更简单的分式方程。
2024/1/28
9
换元法
步骤
2024/1/28
将原方程中的相关项用新 变量表示,得到新的方程 。
质。
消元法
02
通过消去部分未知数,将多元分式方程组转化为低元方程组或
整式方程组进行求解。
变量有界法
03
利用已知条件对变量进行有界限制,从而简化多元分式方程组

《分式方程》_课件-完美版

《分式方程》_课件-完美版
小结:工程问题,若没有告诉总工作量,通常设总工作量为1;工程问题的等量关系通 常根据“各分工作量之和等于总工作量”来确定。
【获奖课件ppt】《分式方程》_课件- 完美版 1-课件 分析下 载
【获奖课件ppt】《分式方程》_课件- 完美版 1-课件 分析下 载
巩固新知
1.解分式方程 x 2 3 ,去分母后的结果是( )
运用新知
例4 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一, 这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快? 追问1:工程问题中有哪几个基本量,其关系是什么?通常把工作总量看作多少? 追问2:由题意可知,甲队的工作效率是多少?若设乙队独做x天完成,则乙队的工作 效率是多少? 追问3:此题中的等量关系是什么?你能用题中的一句话或一个等式来表示吗? 追问4:工程类问题常用的等量关系是什么?
x2
x2
A.x=2+3
B.x=2(x-2)+3
C.x(x-2)=2+3(x-2) D.x=3(x-2)+2
答案:B
2.解下列方程:(1)
x
1 5
10 x2 25
7
1
6
;(2)
x2
x x2
x x2
x。
答案:(1)无解;(2)x=3。
【获奖课件ppt】《分式方程》_课件- 完美版 1-课件 分析下 载
此方程中含有分式,即方程的分母中含有未知数,而整式方程的左右两边都是整式。 归纳:分式方程的概念:像这样 分母中含有未知数的方程 叫分式方程。
追问:分式方程与整式方程有何区别?
小结:分式方程中含有分式,即分母中含有未知数的方程;整式方程是指方程的左右 两边都是整式,不含有分式。

分式方程 课件

分式方程   课件

检验:当x=5时,(x+5)(x-5)=0 X=5不是原分式方程的解, 所以原分式方程无解
解法反思
1、分式方程解题思路: 转化
分式方程 去分母 整式方程
2、分式方程为什么要检验? 如何检验?
例2.解方程: 2 3
x3 x
解:方程两边乘x(x-3) 得 2x=3x-9 解得:x=9
检验:当x=9时,x(x-3) ≠0 所以,原分式方程的解为X=9 。
例2.解方程: 2 4 x 1 x2 1
解:方程两边乘 (x+1) (x-1) 得 2x+2=4
解得:x=1
检验:当x=1时,(x+1)(x-1)=0 X=1不是原分式方程的解, 所以原分式方程无解
巩固提高
教材: 152页练习
【课堂小结】
这节课我们学习了哪些知识? 你有什么体会?还有什么疑惑?
x2
则m的取值范围。
达标测试:
1.下列式子中是分式方程的是(C )
A. 1 2 2x 1 2x 1
C. 2x 1 1 x 1 x 1
B. x2 1 5 32
D. x 3 x x 4
2
3
达标测试:
2.解下列方程:
X=3 无解
课堂延伸:
已知关于x的方程 2x m 3的解是正数,
与 x 2 2x 1 1
46
有什么区别?
分式方程:分母中含有未知数的方程
【加深理解】
分式方程的定义: 分母 中含有 未知数 的 方程叫做分式方程。
辨析:判断下列各式哪个是分式方程?X NhomakorabeaX
X


例1:解方程:
1 10 x5 x2 25

《分式方程》PPT课件

《分式方程》PPT课件

(来自《典中点》)
知识点 3 分式方程的根(解)
知3-导
使得分式方程等号两端相等的未知数的值 叫做分式方程的解(也叫做分式方程的根).
知3-讲
例3 [中考·遵义]若x=3是分式方程 a 2 1 x x2
=0的根,则a的值是( A )
A.5 B.-5 C.3
D.-3
导引:把x=3代入分式方程,得到关于a的一元一次方
C.m=3
D.m=0或m=3
3
若关于x的分式方程
6
( x 1)( x 1)
m
x 1 有增
根,则它的增根是( )
A.0
B.1 C.-1 D.1和-1
(来自《典中点》)
1.分式方程的定义:分母中含有未知数的方程. 2.列分式方程的步骤:
(1)审清题意; (2)设未知数; (3)找到相等关系; (4)列分式方程.
漏乘.
(来自《点拨》)
1 解方程: (1) x 5 4; 2x 3 3 2x
3
x
(2) x2 9 x 3 1.
知2-练
(来自《点拨》)
知2-练
2
【中考·济宁】解分式方程
2 x1
x2 1 x
3
时,去分母后变形正确的为( )
A.2+(x+2)=3(x-1)
B.2-x+2=3(x-1)
C.2-(x+2)=3
38 2 2 1. 9x x
如果设小红步行的时间为x h,那么她乘公共汽 车的时间为(1-x) h, 根据等量关系(2),可得到方程
38 2 9 2 .
1 x
x
知1-导
讨论: 上面得到的方程与我们已学过的方程有什么 不同?这两个方程有哪些共同特点?

《分式方程》PPT教学课件

《分式方程》PPT教学课件

是原分式方程的解呢?我们来观察去分母的过程
= 100
20+V
2600-V当两v=边5时同,乘(2(02+0v+)v()2(02-0v-)v≠)0100(20-v)=60(20+v)
分式两边同乘了不为0的式子,所得整式方程的
解与分式方程的解相同.
= 1
x-5
10 x2-25
两边同乘(x+5)(x-5) 当x=5时, (x+5)(x-5)=0
去分母
整式方程
解分式方程的一般步骤
分式方程 去分母 整式方程
一化
解整式方程
二解
目标
X=a
检验
三检验
a是分式 最简公分母不为0 最简公分母为0 a不是分式
方程的解
方程的解
例1 解方程 2 3 x3 x
例2
解方程
x x-1
-1 =
3 (x-1)(x+2)
练习:解方程
1. 1 2 2x x 3
2. x 2x 1
100(20 v) 60(20 v), 解得: v 5.
检验:将v=5代入分式方程,左边=4=右边,∴v=5是原分式方程 的解.
分式方程的解
使得分式方程等号两端相等的未知数的值叫做分式方程的解 (也叫做分式方程的根).
解分式方程的步骤 (1)去分母,在方程的两边同时乘以最简公分母,把分式 方法转化为整式方程; (2)解这个整式方程; (3)检验,把一元一次方程的根代入所乘的最简公分母中, 看结果是否为0; (4)写出是原分式方程的解.
x+5=10
分式两边同乘了等于0的式子,所得整式方程的
解使分母为0,这个整式方程的解就不是原分式

分式方程及其应用课件

分式方程及其应用课件

04
分式方程的练习题及解答
分式方程的练习题
总结词:巩固提高
练习题2:某种植物生长速度很快,已知它1天前的高 度,求现在的高度。
练习题1:小明打篮球,每场得分相同,已知他1场比 赛得分,求他打了多少场。
练习题3:已知一个矩形的面积和长,求宽。
分式方程的解答
总结词:解题技巧
解答1:通过观察, 发现分母可以约掉, 化简得分式方程即可 。
03
分式方程的注意事项
解分式方程的步骤
整理方程
将方程化为最简形式,以便后 续步骤。
确定根
通过交叉相乘等方法,确定方程 的根。
验根
通过代入法,验证方程的根是否正 确。
分式方程的局限性
适用范围有限
分式方程适用于可以化成分母 中带有未知数的形式的问题, 但有些问题可能无法使用分式
方程求解。
解法有限
分式方程的解法有限,常用的 只有几种,如部分分式、对数
超越分式方程:分母是超越式的分式方 程,如 $\frac{x}{e^x}$
分式方程的解法
约分法:将方程中的因子约掉, 化简方程
图象法:画出方程中变量的图象 ,通过交点求解方程
分式方程的求解方法包括以下几 种
换元法:引入新的变量,将方程 转化为容易求解的形式
逐步迭代法:通过逐步迭代,逼 近方程的解
02
2023
分式方程及其应用课件
目录
• 分式方程的基本概念 • 分式方程的应用 • 分式方程的注意事项 • 分式方程的练习题及解答 • 分式方程的应用实例
01
分式方程的基本概念
分式方程的定义
1
分式方程是一种描述两个变量之间关系的数学 模型
2
它的一般形式为 $f(x) = \frac{B}{A}$,其中A 和B是两个整式

分式方程ppt

分式方程ppt
分式方程ppt
xx年xx月xx日
目 录
• 分式方程概述 • 分式方程的解法 • 分式方程的应用 • 分式方程的注意事项 • 分式方程的优化建议 • 分式方程的发展趋势
01
分式方程概述
分式方程定义
定义
分式方程是方程的一种,是指含有分母的方程式。它只适用 于解决某些特定的问题,如分数计算、应用题等。
度。
采用迭代法
02
使用牛顿迭代法或二分法等迭代方法,能够更快速地求解分式
方程。
选用合适的多项式
03
使用多项式逼近法进行求解时,选择适当的多项式,可以提高
求解精度和速度。
减少计算误差
控制舍入误差
合理控制舍入误差,避免误差累积导致求解结果 失真。
采用误差控制函数
使用误差控制函数,限制计算过程中产生的误差 ,确保求解结果的精度。
数学领域的发展
分式方程在数学领域中得到了进一步的发展,研究者们不断探索新的理论和 方法,例如分形几何、分数阶微积分等,为解决实际问题提供了更为复杂和 深刻的数学工具。
其他领域的发展
分式方程在其他领域中也得到了不断的发展和完善,例如经济学、生态学、 社会学等,为解决实际问题提供了更为广泛的应用前景。
THANKS
06
分式方程的发展趋势
理论研究
分式方程基本理论和研究方法的发展
分式方程理论的发展经历了多个阶段,研究者们不断探索新的理论和方法,例如微分方程、差分方程等,为解 决实际问题提供了更为精确和高效的工具。
分式方程算法的改进和优化
为了提高计算效率,研究者们不断尝试改进和优化算法,例如迭代法、牛顿法等,使得求解分式方程的速度和 精度不断提高。
有多个解的情况
检查分式方程是否有多个解

第8讲-分式方程PPT课件

第8讲-分式方程PPT课件

宇轩图书
3.解分式方程的步骤 (1)去分母(不能忘记乘没有分母的项),转化为整 式方程;(2)解整式方程;(3)验根. 4.验根 解分式方程时,有可能产生增根,因此解分式方 程要验根,其方法是将根代入最简公分母中,使最简 公分母为 0 的根是增根,应舍去.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
量关系、列方程、解方程、检验、作答.但与整式方
程不同的是求得方程的解后,要进行两次检验:(1)检
验所求的解是否是所列分式方程的解;(2)检验所求的
解是否符合实际意义.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
2.分式方程的应用题主要涉及工程问题、行程 问题等,每个问题中涉及三个量,如工作总量=工作 效率×工作时间,路程=速度×时间.在工作总量或 路程是已知条件时,一般建立分式方程解决问题.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
方法总结: 列分式方程解应用题必须进行“双检验”,既要 检验去分母化成的整式方程的解是否为分式方程的 解,又要检验分式方程的解是否符合实际意义.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
宇轩图书
考点二 增根在含参数的分式方程中的应用 由增根求参数的值,解答思路为:(1)将原分式方 程化为整式方程;(2)确定增根;(3)将增根代入变形后 的整式方程,求出参数的值.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点三
分式方程的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程:分母含有未知数的方程,即分母含有未知数的等式,如
1 2 2 x x2 x2
我们之前学过的一元一次方程,二元一次方程(组)可统称为整式方程。
分式方程的分母也不能为零,否则方程没有意义。如上述方程 1 2 2 x x2 x2
中,方程的根肯定不能为 x 0,x 2,x 2
分式方程的根
分式方程的相关概念
什么是分式方程?
什么是方程?我们学过哪些方程? 含未知数的等式就是方程,我们学过的方程有:
一元一次方程: 2x 3 x 1
二元一次方程(组): 2x 3y 5
x 3y 5 2x y 1
什么是分式?
分母含有未知数的式子是分式,如 3 x 1
x 1
注意:分母不能为零
什么是分式方程?
使得分式方程两边相等的未知数的值就是分式方程的根,这与一元一次 方程,二元一次方程(组)的根是同样的意思。
DB巩固练习DCC小结
分式方程:分母含有未知数的方程,即分母含有未知数的等式。 我们之前学过的一元一次方程,二元一次方程(组)可统称为整式方程。 分式方程的分母也不能为零,否则方程没有意义。 使得分式方程两边相等的未知数的值就是分式方程的根。
相关文档
最新文档