基于S7-200PLC的锅炉控制系统的设计
基于PLC的锅炉电加热控制系统设计

基于PLC的锅炉电加热控制系统设计摘要本文针对锅炉电加热控制系统的实际需求,基于PLC,设计了一种可靠的电加热控制系统。
该系统通过PLC的控制,实现了对电加热器的开启、关闭、电流的调节等功能。
同时,系统还通过人机界面进行了参数设置和异常报警等功能。
实验结果表明,该系统具有高可靠性、稳定性,能够满足锅炉电加热的实际需求。
关键词:PLC、锅炉、电加热、控制系统一、引言锅炉是工业生产中常用的一种设备,其主要作用是将水加热为蒸汽,并通过蒸汽驱动液体或气体来完成工业生产流程。
而锅炉的加热方式一般有煤、油、气、电等多种方式,其中电加热由于其无污染、易控制等优点,被广泛应用于各种工业生产环节中。
然而,锅炉电加热控制系统的设计存在一些问题,如控制精度低、容易出现故障等。
这些问题给锅炉电加热操作带来了很大的不便,因此,需要设计一种基于PLC的锅炉电加热控制系统,以提高其可靠性和稳定性。
二、设计思路和方法1.设计思路基于以上问题,本文设计了一种基于PLC的锅炉电加热控制系统。
该系统采用西门子S7-200 PLC作为主控制器,通过PLC与电加热装置进行连接,实现对电加热装置的开关控制和电流调节。
同时,本文还设计了人机界面,以便进行参数设置和异常报警等功能。
通过该系统,可以实现对电加热的精确控制,从而提高锅炉的加热效率和生产稳定性。
2.设计方法(1)硬件部分设计系统硬件包含主要的PLC、电加热器、人机界面等几个部分。
PLC:采用西门子S7-200 PLC作为主控制器,通过该控制器,实现对电加热设备的精确控制。
电加热器:采用模块化的电加热器,可以根据实际需求进行扩展和修改。
人机界面:设计了触摸屏人机界面,以便进行电加热控制和参数设置等功能。
(2)软件部分设计软件部分主要包含PLC程序和人机界面程序两部分。
PLC程序:由于锅炉电加热主要是控制电加热的开关和电流调节,因此,PLC程序中主要包含电加热开关控制、电流调节等基本功能。
基于S7-200PLC的锅炉控制系统的设计解剖

第一章绪论锅炉是供热设备中最普遍的动力设备之一,它的功能是把燃料中的贮能,通过燃烧转化成热能,以蒸汽或热水的形式输向各种设备。
目前,大多数锅炉都是人工控制的,或简单的仪表单回路调节系统,燃料浪费很大。
锅炉作为一个设备总体,有许多被控制量与控制量,许多参数之间明显地存在着复杂的关系。
对于锅炉这个复杂的系统,由于其内部能量转换机理过于复杂,采用常规的方式进行控制,难以达到理想的控制效果,因此,必须采用智能控制方式控制,才能获得最佳控制效果。
可编程逻辑控制器(PLC)既能代替传统的继电器接触器控制系统,又具有扩展各种输入输出模块,如A/D模块、热电偶热电阻模块,构成多功能控制系统。
现代PLC集成度高、功能强、抗干扰能力强、组态灵活、工作稳定。
在传统工业的现代化改造中发挥着越来越重要的作用。
目前供暖锅炉大都采用人工监控,一方面浪费人力;另一方面在出现事故隐患时,操作人员难以及时发现,很容易造成运行中设备的事故。
在各种工业企业的动力设备中,锅炉是重要的组成部分,所以锅炉的性能至关重要。
要设计一套完整的、性能良好的工业燃烧锅炉,首先就必须了解一般燃烧锅炉的基本构造和燃烧过程。
1.1 锅炉的基本构造锅炉是一种产生蒸汽或热水的热交换设备。
它通过燃料的燃烧释放大量热能,并通过热传递把能量传递给水,把水变成蒸汽或热水,蒸汽或热水直接供给工业和生活中所需要的热能。
所以锅炉的中心任务是把燃料中的化学能有效的转化为蒸汽的热能。
图1.1为简单锅炉的大体组成部分。
锅炉的主要设备包括气锅、炉子、炉膛、锅筒、水冷壁、过热器、省煤器、燃烧设备、引风设备、送风设备、给水设备、空气预热器、水处理设备、燃料供给设备以及除灰除尘设备等。
气锅:由上下锅筒和三簇沸水管组成。
水在管内受管外烟气加热,因而管簇内发生自然的循环流动,并逐渐气化,产生的饱和蒸汽积聚在上锅筒里面。
炉子:是使燃烧从充分燃烧并释放出热量的设备。
炉膛:保证燃料的充分燃烧,并使水流受热面积达到规定的数值。
基于PLC的锅炉燃烧控制系统设计_毕业设计论文正文

基于PLC的锅炉燃烧控制系统设计1 绪论1.1锅炉燃烧控制项目的背景改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。
锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。
工业过程中对于锅炉燃烧控制系统的要求是非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。
作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在内的参数,参数之间有着复杂的关系,并且相互关联[2]。
而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。
1.2锅炉燃烧控制的发展历史对于锅炉燃烧的控制,已经经历了四个阶段[3~5](1)手动控制阶段因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。
这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。
因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。
(2)仪器继电器控制阶段随着科技的不断进步,自动化技术以及电力电子技术快速提高,国内外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。
在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。
在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。
基于PLC锅炉温度控制系统的设计报告.doc

基于PLC锅炉温度控制系统的设计报告.doc一、设计目的本设计旨在搭建一个基于PLC的锅炉温度控制系统,通过对锅炉水温度的检测和控制,实现锅炉水温度的稳定控制,提高锅炉的工作效率,确保锅炉的稳定运行,降低发生事故的概率,保证工业生产的平稳进行。
二、设计内容1、系统硬件设计2、系统软件设计3、系统调试与实验三、系统设计的可行性分析本系统采用PLC作为控制核心,辅以温度传感器,执行元件等辅助部件,相比于传统的控制方法,其具有反应速度快,可靠性高,维护方便等优点,所以具有高度的可行性。
四、系统工作流程1、温度传感器将温度信号传输给PLC控制器2、PLC控制器根据设定的温度值和实时检测的温度值进行比较,判断当前温度状态3、根据判断结果,控制PLC输出的控制信号,控制加热电源调整电压,使锅炉水温度达到设定值4、如温度达到设定值,系统返回到检测阶段,进行下一轮温度检测和控制,如温度未达到设定值,锅炉继续加热,直至达到设定值,系统返回到检测阶段。
五、系统设计的技术要点1、采用模拟信号采集电路;2、采用PID算法控制,通过比较设定值和实际值来调节加热元件输出;3、使用触摸屏界面设计,用户可以通过界面设置温度值和查询运行状态;4、前后台通信采用Modbus协议。
六、系统检测与调试本系统设计完成后,需要进行硬件和软件的实现,并进行整体的调试测试,工程师需严格按照设计流程,全面检查各个部件的连接情况和参数设置,确保系统能够正常稳定地运行,运行过程中出现问题要及时解决。
七、总结与展望本设计成功地搭建了基于PLC的锅炉温度控制系统,系统具有实时性强,稳定性高,调节精度高等优点,提高了设备工作效率,大大降低了工业生产过程中锅炉事故的发生可能性。
在未来的研究中,可以通过结合智能算法等技术,进一步优化系统设计,提升锅炉温度控制系统的性能和应用范畴。
基于plc的锅炉控制系统的设计方案

设计基于PLC 的锅炉控制系统需要考虑到控制逻辑、传感器选择、执行器配置、人机界面以及安全性等多个方面。
以下是一个基本的PLC 锅炉控制系统设计方案:1. 控制逻辑设计:-设定温度和压力设定值,根据实际情况设定控制策略。
-设计启动、停止、调节锅炉火焰和水位控制等具体操作逻辑。
2. 传感器选择:-温度传感器:用于监测锅炉管道和水箱的温度。
-压力传感器:监测锅炉的压力情况。
-液位传感器:监测水箱水位,确保水位在安全范围内。
-其他传感器:根据需要选择氧含量传感器、烟气排放传感器等。
3. 执行器配置:-配置控制阀门、泵等执行器,用于控制水流、燃料供应、风扇转速等。
-确保执行器与PLC 的通讯稳定可靠,实现远程控制和监控。
4. 人机界面设计:-设计人机界面,包括触摸屏或按钮控制板,显示关键参数和状态信息。
-提供操作界面,方便操作员设定参数、监控运行状态和进行故障诊断。
5. 安全性设计:-设计安全保护系统,包括过压保护、过温保护、水位保护等,确保锅炉运行安全。
-设置报警系统,当参数超出设定范围时及时警示操作员。
6. 通讯接口:-考虑与其他系统的通讯接口,如SCADA 系统、远程监控系统等,实现数据传输和远程控制。
7. 程序设计:-使用PLC 编程软件编写程序,包括控制逻辑、报警逻辑、自诊断等功能。
-测试程序逻辑,确保系统稳定可靠,符合设计要求。
以上是基于PLC 的锅炉控制系统设计方案的基本步骤,具体设计还需根据实际情况和需求进行调整和优化。
在设计过程中,还需遵循相关标准和规范,确保系统安全可靠、运行稳定。
基于PLC的电热锅炉控制系统的设计

基于PLC的电热锅炉控制系统的设计【摘要】本文以PLC程序控制的高性能电热锅炉为例,来阐明PLC在工业控制领域中发挥的巨大作用。
其硬件系统采用的是SIEMENS公司的的S7-200PLC以及其相应的控制模块,实现电热锅炉系统的控制。
【关键词】PLC;电热锅炉1.概述20世纪60年代末,70年代初出现并得到迅猛发展的可编程程序为工业自动化领域带来了深刻的变革。
以其高可靠性,低价位迅速占领了中低端控制系统的市场。
同时电热锅炉的应用领域非常广泛,它的性能优劣决定了产品的质量好坏。
因此如何利用PLC技术控制锅炉温度成为关键。
通过对电热锅炉的控制,使系统具有响应快、稳定性好、可靠性高,控制精度好等特点,对工业控制很有意义。
2.系统硬件配置及其功能主机采用CPU224,EM231为热电偶输入模块,外接锅炉的入水口和出水口温度信号,TD200是一个低价的文本设定显示单元,当电热管多于六组时,可再增加EM222继电器输出扩展模块。
此系统选用的CPU224集成了14点输入/10点输出,共有24个数字量I/O。
它可连接7个扩展模块,最大扩展至168点数字量I/O点或35路模拟量I/O点。
CPU224有13K字节程序和数据存贮空间,6个独立的30KHz高速计数器,2路独立的20KHz高速脉冲输出,具有PID控制器。
CPU224配有1个RS-485通讯/编程口,具有PPI通讯、MPI通讯和自由方式通讯能力,是具有较强控制能力的小型控制器。
系统的原理框图如图所示。
该系统需要的传感器是将温度转化为电流,且水温最高是100℃,所以选择Pt100铂热电阻传感器,其阻值会随着温度的变化而改变;为了方便接线,CPU224机型采用可插拔整体端子;EM231热电偶模块可用于J、K、E、N、S、T和R型热电偶,用户用模块下方的DIP开关来选择热电偶的类型;TD200键盘共有9个键:5个命令键和4个功能键,用来显示信息,在信息中可以内嵌数据,数据既可以显示,也可以由操作人员进行设置;电加热管是专门将电能转化为热能的电器元件,由于其价格便宜,使用方便,安装方便,无污染,被广泛使用在各种加热场合;水暖供热管道中的热水是靠循环泵循环起来的循环泵的工作原理要将水循环起来所用的泵就叫循环泵;保护程序是必不可少的部分,报警处理,用以防止非法操作所引起的程序混乱。
西门子S7-200PLC对锅炉内蒸汽压力PID控制

西门子S7-200PLC对锅炉内蒸汽压力PID控制西门子s7-200系列plc能够进行pid控制。
pid是闭环控制系统中比例-积分-微分控制算法,它可以看作是这三项之和,根据设定值与被控对象实际值的差值,按pid方式计算出控制输出量,使反馈跟随设定值变化。
因此pid控制是负反馈闭环控制,其中比例项是增益(kc)与偏差的乘积,积分项与偏差的和成正比,而微分项与偏差的变化成正比。
pid控制功能是通过pid指令功能块实现的。
在s7-200中,pid回路指令运用回路表中的输入信息和组态信息,进行pid运算,交换数据,编程极其简便,该指令影响特殊存储器标志位sm1.1 (溢出)。
只有在逻辑堆栈栈顶值为1时,才能进行pid运算。
本指令有两个操作数:tbl和loop(如下图所示)。
其中tbl 是回路表的起始地址,操作数。
限用vb区,数据类型是byte型。
loop 是回路号可以是0 到7 的整数,因此在程序中最多可以用8 条pid 指令。
如果有两个或两个以上的pid 指令用了同一个回路号,即使这些指令的回路表不同,那么这些pid 运算之间也会产生不可预料的结果。
在直接使用pid 指令功能块之前,必须把增益(kc)、采样时间(ts)、积分时间(ti)、微分时间(td)等等这些实数全部转换成0.0-1.0之间的实数,以便p id 指令功能块接受,也就是说把外界实际物理量转换成pid 指令可以接收的数据,即输入/输出的转换与标准化处理。
pid控制编程:在本系统中,为了生产需求,锅炉内蒸汽压力应维持在0.85-1.0mpa之间,压力的大小由压力变送器检测,变送器压力量程0-2.5mpa,输出dc4-20ma。
因此在0.85mpa时,相应的电流输出是9.44ma,同样1.0mpa时输出为10.4ma,其标准化刻度值如下图所示。
过程变量值是压力变送器检测的单极性模拟量,回路输出值也是一个单极性模拟量用来控制鼓风机的速度。
这两个模拟量的范围是0.0 -1.0 ,分辨率为1/32000 (标准化)。
基于S7-200PLC电热炉温度控制系统

Automatic Control •自动化控制Electronic Technology & Software Engineering 电子技术与软件工程• 127【关键词】温度控制 电热炉 S7-200 PLC PID本文在研究电热炉温度控制系统问题时,对S7-200PLC 控制系统进行了应用,这一系统具有一定的优越性,能够提供4种不同不同基本单元和6种扩展单元,可以更好地满足温度控制需要。
该系统主要由基本单元、扩展单元、文本显示器、存储卡等元件组成。
本文在进行系统设计过程中,主要采用了CPU226这一型号。
1 总体设计方案本系统以PLC 作为控制器,选用德国西门子S7-200,CPU 226型号PLC ,经过热电偶传感器检测电热炉中的温度,把温度信号转化成对应的电压信号,经过PLC 控制器模数转换后进行PID 调节。
根据PID 输出值来控制下一个周期内的加热时间和非加热时间。
在加热时间内使得继电器接通,电热炉就处于加热状态,反之则停止加热。
2 硬件设计2.1 热电偶传感器热电偶传感器在应用过程中,可以将温度信号转化为电压信号,并且在应用过程中,对高温具有较好的适应性。
热电偶传感器是一种将温度变化转化为电量变化的装置,其中K 型热电偶测温范围大约是0~1000℃。
系统里的烤炉最高温度不过几百度,加上一定的裕度,满足系统设计要求。
2.2 模拟输入模块在对模拟输入模块应用过程中,其可以将接收到的电压信号进行转换,将温度信息转化为0-41mv 的电压信号,以实现对信息的读取,从而对温度进行有效地控制。
与西门子S7-200 PLC 配套有EM231 4TC 模拟量输入模块,也称为热电偶模块。
EM231热电偶模块可直接连接K 型热电偶传感器,无需使用变送器,可直接通过DIP 开关进行组态:SW1~SW8组态为00100000。
2.3 固态继电器(SSR)固态继电器(SSR )能够实现电隔离,从基于S7-200 PLC 电热炉温度控制系统文/潘天赐而更好地满足PLC 控制系统的需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论锅炉是供热设备中最普遍的动力设备之一,它的功能是把燃料中的贮能,通过燃烧转化成热能,以蒸汽或热水的形式输向各种设备。
目前,大多数锅炉都是人工控制的,或简单的仪表单回路调节系统,燃料浪费很大。
锅炉作为一个设备总体,有许多被控制量与控制量,许多参数之间明显地存在着复杂的关系。
对于锅炉这个复杂的系统,由于其内部能量转换机理过于复杂,采用常规的方式进行控制,难以达到理想的控制效果,因此,必须采用智能控制方式控制,才能获得最佳控制效果。
可编程逻辑控制器(PLC)既能代替传统的继电器接触器控制系统,又具有扩展各种输入输出模块,如A/D模块、热电偶热电阻模块,构成多功能控制系统。
现代PLC集成度高、功能强、抗干扰能力强、组态灵活、工作稳定。
在传统工业的现代化改造中发挥着越来越重要的作用。
目前供暖锅炉大都采用人工监控,一方面浪费人力;另一方面在出现事故隐患时,操作人员难以及时发现,很容易造成运行中设备的事故。
在各种工业企业的动力设备中,锅炉是重要的组成部分,所以锅炉的性能至关重要。
要设计一套完整的、性能良好的工业燃烧锅炉,首先就必须了解一般燃烧锅炉的基本构造和燃烧过程。
1.1 锅炉的基本构造锅炉是一种产生蒸汽或热水的热交换设备。
它通过燃料的燃烧释放大量热能,并通过热传递把能量传递给水,把水变成蒸汽或热水,蒸汽或热水直接供给工业和生活中所需要的热能。
所以锅炉的中心任务是把燃料中的化学能有效的转化为蒸汽的热能。
图1.1为简单锅炉的大体组成部分。
锅炉的主要设备包括气锅、炉子、炉膛、锅筒、水冷壁、过热器、省煤器、燃烧设备、引风设备、送风设备、给水设备、空气预热器、水处理设备、燃料供给设备以及除灰除尘设备等。
气锅:由上下锅筒和三簇沸水管组成。
水在管内受管外烟气加热,因而管簇内发生自然的循环流动,并逐渐气化,产生的饱和蒸汽积聚在上锅筒里面。
炉子:是使燃烧从充分燃烧并释放出热量的设备。
炉膛:保证燃料的充分燃烧,并使水流受热面积达到规定的数值。
锅筒:使自然循环锅炉各受热面能适应负荷变化的设备。
(须指出,直流锅炉内无锅筒。
)水冷壁:主要是辐射受热面,保护炉壁的作用。
过热器:是将气锅所产生的饱和蒸汽继续加热为过热蒸汽的换热器。
过热器一般都装在炉膛出口。
省煤器:是利用余热加热锅炉给水,以降低排出烟气温度的换热器。
采用省煤器后,降低了排烟温度,提高了锅炉效率,节省了燃料。
同时,由于提高了进入气包的给水温度,减少了因温差而引起的汽包壁的热适应力,从而延长了汽包的使用寿命。
燃烧设备:将燃料和燃烧所需的空气送入炉膛并使燃料着火稳定,充分燃烧。
引风设备:包括引风机、烟道和烟囱等几部分。
用它将锅炉中的烟气连续排出。
送风设备:包括有鼓风机和分道组成。
用它来供应燃料所需的空气。
给水设备:由给水泵和给水管组成。
空气预热器:是继续利用离开省煤器后的烟气余热,加热燃料燃烧所需要的空气,是一个换热器。
省煤器出口烟温度高,装上空气预热器后,可以进一步降低排烟温度,也可改善燃料着火和燃烧条件,降低不完全燃烧所造成的损失,提高锅炉机组的效率。
水处理设备:其作用是为清除水中的杂质和降低给水硬度,以防止在锅炉受热面上结水垢或腐蚀。
燃料供给设备:由燃油给油泵、燃油开关等设备组成,保证锅炉所需燃料供应。
除灰除尘设备:是收集锅炉灰渣并运往储灰场地的设备。
此外,除了保证锅炉的正常工作和安全,蒸汽锅炉还必须装设安全阀、水位表、高低水位报警器、压力表、主气阀、排污阀和止污阀等,还有用来消除受热面上积灰的吹灰器,以提高锅炉运行的经济性,本设计由于篇幅其间,则就不必考虑这些问题了。
图1.1 锅炉控制系统硬件组成图1.2 锅炉的工作原理及过程锅炉是一种生产蒸汽的换热设备。
它通过煤、油或燃气等燃料的燃烧释放出化学能,并通过传热过程将能量传递给水,使水转变为蒸汽,蒸汽直接供给工业生产中所需的热能,或通过蒸汽动力机能转变为机械能,或通过汽轮发电机转变为电能。
所以锅炉的中心任务是把燃料中的化学能最有效地转变为蒸汽的热能。
因此,近代锅炉亦称为蒸汽发生器。
锅炉的工作过程概括起来应该包括三个同时进行的过程:燃料的燃烧过程、水的汽化过程、烟气向水的传热过程。
1.2.1 燃料的燃烧过程首先将燃料(这里用煤)加到煤斗中,借助于重力下落在炉排面上,炉排接电动机通过变速齿轮箱减速后由链轮来带动,将燃料煤带入炉内。
燃料一面燃烧,一面向后移动,燃料所需要的空气是由风机送入炉排腹中风仓后,向上穿过炉排到达燃料层,进行燃料反应形成高温烟气。
燃料燃烧剩下的灰渣,在炉排末端翻过除渣板后排入灰斗,(若是燃气式锅炉就没有这一部分了)这整个过程称为燃烧过程。
1.2.2 水的汽化过程水的汽化过程就是蒸汽的产生过程,主要包括水循环和水分离过程。
经处理的水由泵加压,先流经省煤器而得到预热,然后进入气锅。
锅炉工作时气锅的工作介质是处于饱和状态的汽水混合物。
位于烟温较低区段的对流灌束,因受热较弱,汽水工质的容量较大,而位于烟温较高区段的对流管束,因受热强烈,相应的汽水工质的容量较小,从而量大的工质则向上流入下锅筒,而容量小的工质则向上流入上锅筒,形成了锅水的自然循环。
蒸汽所产生的过程是借助于上锅筒内设的汽水分离装置。
以及在锅筒本身空间的重力分离力作用,使汽水混合物得到分离。
蒸汽在上锅筒顶部引出后,进入蒸汽过热气,而分离下来的水仍回到上锅筒的下半部的水中。
锅炉中的水循环,也保证与高温烟气相接触的金属受热面的以冷却而不被烧坏,是锅炉能长期安全运行的必要条件。
而汽水混合物的分离设备则是保证蒸汽品质和蒸汽过热可靠工作的必要的设备。
1.2.3 烟气向水的传热过程由于燃料的燃烧放热,炉内温度很高在炉膛的四周墙面上,都布置一排水管,俗称水冷壁。
高温烟气与水冷壁进行强烈的辐射换热,将热量传给管内工质水。
继而烟气受引风机和烟囱的引力而向炉膛上方流动。
烟气从炉膛出口经过防渣管后,就冲刷蒸汽过热器——一组垂直放置的蛇型弯管受热面,使气锅中产生的饱和蒸汽在其中受烟气加热而得到的过热。
烟气流经过过热气后掠过胀接在上、下锅筒间的对流管束,在管束间设置了折烟墙使烟气呈“S”型曲折地横向冲刷,再次以对流换热的方式将热量传递给管束的工质。
沿途逐渐降低温度的烟气最后进入尾部烟道,与省煤器和空气预热器内的工质进行热交换后,以经济的较低的烟温排出锅炉。
省煤器实际上同给水预热器和空气预热器一样,都设置在锅炉尾部(低温)烟道,以降低排烟温度提高锅炉效率,从而节省了燃料。
以上就是一般锅炉供水的过程,一个锅炉进行工作,其主要任务是:(1)要是锅炉出口蒸汽压力稳定。
(2)保证燃烧过程的经济性。
(3)保持锅炉负压恒定。
通常我们是炉膛负压保持在微负压(-10~80Pa)。
为了完成上述三项任务,我们对三个量进行控制:燃料量,送风量,引风量。
从而使锅炉能正常运行。
1.3 难点分析由于调节量是汽包水位,而调节量则是给水流量,通过对给水流量的调节,使汽包内部的物料达到动态平衡,变化在允许范围之内,虽然锅炉汽包水位对蒸汽流量和给水流量变化的响应呈积极特性,但是在负荷(蒸汽流量)急剧增加时,表现却类似逆响应特性,即所谓的虚假水位。
造成这一原因是由于负荷增加时,导致汽包压力下降,使汽包内水的沸点温度下降,水的沸腾突然加剧,形成大量汽泡,而使水位抬高。
汽包水位控制系统,实质上是维持锅炉进出水量平衡的系统。
它是以水位作为水量平衡与否的控制指标,通过调整进水量的多少来达到进出平衡,将汽包水位维持在汽水分离界面最大的汽包中位线附近,以提高锅炉的蒸发效率,保证生产安全。
由于锅炉水位系统是一个设有自平衡能力的被控对象,运行中存在虚假水位现象,实际应用中可根据情况采用水位单冲量、水位蒸汽量双冲量和水位、蒸汽量、给水量三冲量的控制系统。
第二章总体设计方案锅炉系统是一个复杂的多变量耦合系统。
根据主控变量可将锅炉系统分为蒸汽温度控制系统、蒸汽压力控制系统、汽包液位控制系统以及炉膛负压控制系统。
下面分别对这几个子系统的设计进行详细的介绍。
2.1 蒸汽温度控制系统因为锅炉的运行环境不可能是理想的状态,蒸汽的温度总是会受到某些干扰的影响,所以必学对蒸汽的温度加以控制,以在一定范围内得到温度相对恒定的蒸汽。
影响蒸汽温度的主要因素是给油量以及空气与给油量比,所以我们采用了串级比值控制系统分别控制给油量以及给风量。
另外,影响蒸汽温度的因素还有给水量、蒸发量以及引风量等,又考虑到了控制系统相应的快速性,我们又将给水量和蒸发量作为蒸汽温度控制的前馈量来构成前馈控制系统。
即采用前馈比值串级控制系统对蒸汽温度进行控制,其控制系统的结构框图见图2.1所示。
图2.1 蒸汽温度控制系统结构框图2.2 蒸汽压力控制系统如果过来内压力过低,将会降低蒸汽质量;反之,如果锅炉内压力过高,有可能导致爆炸等安全事故的发生。
所以必须保证锅炉的压力处于一个适中的范围内,即必须对锅炉压力加以控制。
上述蒸汽温度控制系统在控制蒸汽温度的同时就直接影响了蒸汽压力,在次不详加介绍。
压力控制系统分为安全压力控制系统和超压控制系统。
安全压力控制系统是锅炉压力在安全压力范围之内的控制系统,其主要完成的功能是在安全的基础上对压力进行调节,使压力维持在一定的范围内,以得到需要的蒸汽压力,保证蒸汽质量;超压控制系统是锅炉压力超压时所采用的压力控制系统,其主要完成的功能是当压力超出某以压力上限的设定值时,迅速打开安全阀,使压力迅速降低,直到降到安全范围内后又迅速关闭安全阀。
其中安全压力控制系统采用串级控制,而超压控制系统采用单回路控制,所以蒸汽压力控制系统是一个综合的控制系统,从某种意义上讲,可以将其归入分程控制系统一类,其结构框图见图2.2所示。
图2.2 蒸汽压力控制系统结构框图2.3 汽包液位控制系统如果汽包液位过高,可能会影响蒸汽质量,甚至会导致水满溢出等安全事故;反之,如果汽包液位过低,锅炉很有可能会被烧坏,甚至导致爆炸等安全事故。
能够影响汽包液位的主要有两大变量,那就是给水量和蒸发量,在其他条件不变的情况下,蒸发量越大,液位越低,而给水量越大则液位越高,反之则反。
其中蒸发量是由工业的需要所决定的,而给水的主要作用就是用以维持汽包液位的,所以我们选择给水量作为操纵量对汽包液位进行控制,又因为考虑到系统相应的平稳性和快速性,除采用串级控制外,还将蒸发量引入前馈通道,对系统进行前馈串级控制,其控制系统的结构框图见图2.3所示。
图2.3 汽包液位控制系统结构框图2.4 炉膛负压控制系统如果炉膛负压太大,甚至为正,则炉膛内烟气过多,甚至烟气向外冒,影响设备和操作人员的安全;反之,炉膛负压过小,会使冷空气漏进炉膛内,从而是热量损失增加,降低燃烧效率。
所以必须对炉膛的压力进行控制。
影响炉膛压力的主要变量有给煤量、给风量以及抽风量等,而其中给煤量和给风量是由蒸汽温度、压力以及蒸发量等因素决定的,所以要想保持炉膛压力在一定范围内保持不变就只有改变抽风量,亦即通过调节抽风量以达到控制炉膛压力的目的。