氨气NH3气体分析仪
氮分析仪的原理和应用

氮分析仪的原理和应用1. 氮分析仪的基本原理氮分析仪是一种常用的实验室分析仪器,用于测量样品中的氮含量。
它基于气相色谱(Gas Chromatography,简称GC)和热导法测定氮含量。
下面将介绍氮分析仪的基本原理。
1.1 气相色谱原理气相色谱是一种分析技术,利用气体载气将混合物分离成各个组分,然后通过检测器检测目标组分的信号,最终得到定量结果。
在氮分析仪中,样品中的气体经过柱子分离后,分子量较小的气体(如氨气)在柱子中较快地移动,而分子量较大的气体(如氮气)则较慢地移动,从而实现了氮的分离。
1.2 热导法原理热导法是一种测定氮含量的方法,它利用了氮分子热导率与氮含量成正比的特性。
在氮分析仪中,进样后的氮气样品通过加热丝,样品中的氮分子会激发热导丝上的热传导。
通过测量热导丝上的温度变化,可以计算出氮的含量。
2. 氮分析仪的应用氮分析仪广泛应用于各个领域的实验室中,特别是在环境监测、农业科技和食品行业中。
以下是氮分析仪的一些主要应用领域。
2.1 环境监测在环境监测中,氮分析仪被用于测量水体、大气和土壤中的氮含量。
例如,通过测试水体中的氮含量,可以评估水体的富营养化程度,为水质改善提供数据支持。
此外,氮分析仪还可用于监测大气中的氮氧化物排放情况,以评估空气质量和控制大气污染。
2.2 农业科技在农业科技中,氮分析仪被广泛用于土壤和植物样品中的氮含量测定。
农业生态系统中的氮循环是农作物生长和土壤肥力管理的关键。
通过测量土壤和植物中的氮含量,可以评估土壤肥力、植物健康状况以及农作物的养分管理效果,从而提供农业决策的科学依据。
2.3 食品行业在食品行业中,氮分析仪被用于测量食品和饲料中的蛋白质含量。
蛋白质是食品和饲料中的重要营养成分,对于保障人类和动物的营养需求非常重要。
通过测量食品和饲料中的氮含量,可以计算出蛋白质的含量,并评估其质量和营养价值。
3. 总结氮分析仪是一种广泛应用于实验室的仪器,基于气相色谱和热导法原理,可以测定样品中的氮含量。
JJG1105-2015《氨气检测仪检定规程》解读

一、制定背景随着社会需求的增加,各种原理的氨气分析仪、检测仪在检测机构和计量领域应用越来越广泛,据不完全统计,目前全国在用的这类仪器至少有几万台。
这些仪器的性能和在使用中的量值准确度,对环境保护、生命健康以及安全生产起着至关重要的保障作用。
中国计量科学研究院气体研究室研制了氨气标准物质、动态校准稀释系统等,建立了氨一级气体标准物质量值溯源系统。
氨气检测仪规程制定任务下达后,起草小组根据市场需要,在近几年内对近两千台氨气检测仪开展了计量校准和测试研究。
通过计量测试和校准,并广泛征集了50多家单位(包括计量、检测部门、生产厂家等)提出的近百条意见和建议,历时3年时间,终于完成了规程的制定。
JJG1105-2015《氨气检测仪检定规程》(以下简称“规程”)于2015年1月30日发布,并自2015年4月30日起实施。
二、规程主要内容解析1.规程名称和范围本规程名称:氨气检测仪,测量以空气或氮气为底气中氨气含量的仪器。
实际包括两种不同级别的仪器,一种是氨气分析仪,属于准确度较高的精密仪器,该类仪器的测量原理以红外声光、非色散红外、化学发光、紫外、激光、傅立叶红外等为主;另一种是氨气检测报警器,属于常规的检测报警器,该类仪器的测量原理大多以电化学JJG1105-2015《氨气检测仪检定规程》解读□刘沂玲9.复校时间间隔由于复校时间间隔的长短是由仪器的使用情况、使用者、仪器本身质量等诸因素所决定的,因此,用户可根据实际使用情况自主决定复校时间,建议不超过1年。
10.附录本部分主要对标准物质溶液配制方法、傅立叶变换质谱仪校准记录格式、校准证书内页格式及示值误差的不确定度评定示例等进行了具体的描述和规定。
三、规范执行中应注意的问题1.术语与计量单位的选择术语和计量单位的选择遵照JJF1001-2011《通用计量术语及定义》选择使用。
2.计量特性确定原则根据高分辨质谱在实际应用中的主要功能和性能指标,考虑其具体应用的要求,形成JJF1531-2015确定的计量特性。
氨气检测仪的使用要点介绍

氨气检测仪的使用要点介绍前言氨气是一种常见的气体,广泛应用于工业、农业和制冷等领域。
然而,氨气具有强烈的刺激性和毒性,因此需要进行及时的检测和监控。
氨气检测仪就是一种可靠、准确的检测工具,本文将介绍氨气检测仪的使用要点。
检测前准备在使用氨气检测仪之前,需要进行以下准备工作:1. 确定检测目标和范围首先需要确定检测的目标和范围,例如,确定检测的氨气浓度和检测的区域范围等。
2. 确认仪器工作状态检查仪器电源是否正常,检测传感器是否完好,检查气体进口是否畅通等,确保仪器能够正常工作。
3. 准备标准气体准备好与检测目标相对应的标准气体,确保气体纯度足够高且标准与仪器设定一致。
4. 确认检测场所安全需要确保检测场所没有可燃物或其他危险物质,并确保检测人员的安全。
检测过程进行氨气检测需要遵循以下步骤:1. 打开氨气检测仪设备按照仪器说明书的操作方法打开氨气检测仪设备。
2. 标定氨气检测仪将仪器调至标定状态,根据前期准备工作中准备的标准气体来进行标定操作。
3. 进行采样将氨气检测仪的进气口对准检测目标,按下仪器上的“采样”按钮,进行样气采集。
4. 等待检测结果等待仪器进行检测和分析,得出检测结果,如超出安全范围,则应采取相应的安全措施。
注意事项在氨气检测过程中需要注意以下事项:1. 严格按照操作流程进行操作过程中要严格按照氨气检测仪的操作流程进行,确保操作正确和安全。
2. 避免干扰和误差在检测过程中要避免受到其他气体干扰和误差,确保检测结果准确可靠。
3. 注意仪器维护使用完毕后,需要进行仪器的清洁和维护,以保证仪器的长期稳定工作。
总结氨气检测仪是一种重要的检测工具,正确使用可以确保生产和生活环境的安全。
在使用氨气检测仪时,需要做好前期准备工作,严格按照操作流程进行检测,并注意常见的注意事项,以达到更好的检测效果。
氨分解率测定仪

QRD1112B氨分解率测定仪使用说明书一九九九年五月目录一 . 用途及使用条件¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨1二 . 主要技术数据¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨1三 . 作用原理¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨1四 . 成套性¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨2五 . 电气系统¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨2六 . 安装¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨2七 . 启动与示值校正¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨3八 . 制造单位保证¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨3一.用途及使用条件:渗氮炉气氛氨分解率测定仪(以下简称测定仪)是通过测定氨分解后氢气百分比含量的变化从而指示氨分解率。
氨氮检测仪工作原理

氨氮检测仪工作原理
氨氮检测仪主要基于凯特尔定氮反应原理进行测定。
其工作原理如下:
1. 样品准备:将待测样品按照要求进行处理,去除可能干扰测定的物质。
2. 催化剂反应:将样品中的氨经过催化剂(通常是硼酸和钼酸盐的混合物)的作用,催化剂能够将氨氮转化为亚硝酸盐和氮气。
3. 硫酸还原:在反应中加入硫酸,并用热水浴进行加热,使亚硝酸盐进一步还原为氮气。
4. pH调节:加入碱液,将反应混合液的pH值调至酸性。
5. 乙酸乙酯提取:将反应混合液中的氮气与乙酸乙酯相接触,氮气会从水相中迁移到有机相中。
6. 电导测定:将有机相中的氮气通过电导细胞进行测定,氮气浓度与电导率呈正比关系。
7. 结果输出:经过计算处理,最终输出样品中的氨氮浓度。
综上所述,氨氮检测仪通过催化剂反应将氨转化为亚硝酸盐和氮气,再经过硫酸还原和乙酸乙酯提取的处理,最终通过电导测定来测定样品中的氨氮浓度。
常用气体分析仪种类

气体分析仪气体分析仪gas analyzer测量气体成分的流程分析仪表。
在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。
例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。
又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。
此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。
由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。
常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。
热导式气体分析仪一种物理类的气体分析仪表。
它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。
这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。
但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。
热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。
半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。
在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。
这两种元件作为两臂构成电桥电路,即是测量回路。
半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。
元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。
热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。
气体组分仪符号

气体组分仪符号全文共四篇示例,供读者参考第一篇示例:气体组分仪是一种专门用于分析气体样品中各个成分含量的仪器。
在气体分析领域中,常常需要对气体样品中的各种成分进行准确的测量和分析,以确保产品质量和生产过程的稳定性。
气体组分仪是一种高精度、高灵敏度的仪器,能够对气体样品中的微量成分进行准确、快速地检测和分析。
气体组分仪通常采用各种传感器和探测器来测量和检测气体中的各种成分。
在气体组分仪中,各种气体成分通常用不同的符号来表示,以便对气体样品中的各个成分进行区分和识别。
以下是一些常见的气体组分仪符号及其含义:1. O2:表示氧气。
氧气是生物生存和燃烧所必需的气体,在空气中的含量约为21%。
氧气的浓度对人体健康和环境的影响具有重要意义。
2. CO2:表示二氧化碳。
二氧化碳是一种重要的温室气体,对地球气候和环境有着重要的影响。
在工业生产和燃烧过程中会产生大量二氧化碳。
3. N2:表示氮气。
氮气是空气的主要成分,占空气总体积的约78%。
氮气在各种工业生产过程中都有着重要的用途。
4. H2:表示氢气。
氢气是一种常见的化学元素,具有极高的能量密度,在燃烧和能源生产领域具有重要的应用价值。
5. CH4:表示甲烷。
甲烷是一种常见的天然气,也是一种重要的温室气体,对大气环境和地球气候具有重要的影响。
6. CO:表示一氧化碳。
一氧化碳是一种有毒气体,对人体有害,易引起中毒和呼吸困难。
7. NOx:表示氮氧化物。
氮氧化物是一类有害的空气污染物,对人体健康和环境有着重要的危害。
以上是一些常见的气体组分仪符号及其含义,通过对这些符号的识别和理解,可以更好地了解气体样品中各个成分的含量和特性,为气体分析和监测提供重要的参考依据。
气体组分仪符号的正确识别和使用对于气体分析领域的研究和应用具有重要的意义,可以帮助人们更加准确、有效地对气体样品进行分析和监测,保障生产和环境的安全与稳定。
【本篇文章共计606字】第二篇示例:气体组分仪是一种用于检测和分析气体组分的仪器,它能够快速、准确地测量空气中各种气体的含量,对于环境监测、工业生产以及科研实验等领域都起着重要的作用。
LDS80激光氨气分析仪

LDS80激光氨气分析仪(原位式)LDS80激光氨气分析仪(原位式)(DLAS)半导体激光吸收光谱技术是世界领先的气体分析技术,利用激光能量被气体分子“选频”吸收形成吸收光谱的原理来测量气体浓度。
半导体激光器发射出特定波长的激光束(仅被被测气体吸收),穿过被测气体时,激光强度的衰减与被测气体成一定函数关系,因此,通过测量激光衰减信息就可以获得被测气体的浓度。
激光气体分析仪能够在各种环境下(尤其是高温、高压、高粉尘、强腐蚀等恶劣环境)进行气体浓度等参量的在线测量,测量准确,响应速度快、可靠性高,运行费用低。
在石化化工,钢铁冶金,环境保护,化肥农药等领域得到了广泛应用。
特点☉响应测量时间可降到1秒☉无其他气体的交叉干扰☉无需采样——现场在线测量☉非常低的探测极限(ppb级和低ppm级)☉气体温度可以高达1500℃☉适用于高粉尘应用☉低运行成本技术优势☉测量准确:“单线光谱”技术,不受背景气体交叉干扰的影响☉运行稳定可靠:激光频率扫描技术,自动修正粉尘和视窗污染对测量浓度的影响☉环境适应能力强:环境参数变化自动修正技术,消除气体环境参数(温度和压力等)变化对测量的影响系统结构图发射单元:由激光发射装置、光学部件、发射箱体等组成。
主要功能是发射调制激光束,该激光束通过被测气体到达接收单元。
接收单元:由光电传感器、光学部件、信号放大板、接收箱体等组成。
光电传感器接收通过气体环境的激光束,并将激光强度信息实时传送给PLC或DCS系统。
机械连接单元:由根部阀、焊接法兰、仪器法兰等组成。
其作用是通过法兰和锁箍连接将发射单元和接收单元安装在过程气体管道上。
吹扫系统:由精密过滤器、减压阀、流量计、箱体等组成。
通过向机械连接单元管道内吹入工业氮气或空气等干净气体,在光学视窗前形成气幕保护,从而防止光学视窗被过程气体污染,保证仪器正常运行。
安装和操作激光气体分析仪容易安装,设计适用于非常恶劣的工业环境。
发射单元和接收单元直接安装到管道或烟道上的法兰上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氨气NH3气体分析仪氨气NH3气体分析仪产品适用于各种环境和特殊环境中的氨气NH3气体浓度和泄露,在线检测及现场声光报警,对危险现场的作业安全起到了预警作用,此仪器采用进口的PID光离子传感器和微控制器技术,具有信号稳定,精度高,重复性好等优点,防爆接线方式适用于各种危险场所,并兼容各种控制器,PLC,DCS等控制系统,可以同时实现现场报警和远程显示,报警功能,4-20mA标准信号输出,继电器开关量输出。
氨气NH3气体浓度检测参数●工作电压DC5V±1%/DC24±1%波特率9600●测量气体氨气NH3气体●检测原理PID光离子●采样精度±2%F.S●响应时间<30S●重复性±1%F.S●工作湿度10-95%RH,(无冷凝)●工作温度-30~50℃●长期漂移≤±1%(F.S/年)●存储温度-40~70℃●预热时间30S●工作电流≤50mA●工作气压86kpa-106kpa●安装方式固定安装●质保期1年●输出接口多种●外壳材质铝合金●使用寿命2年●外型尺寸●183×143×107mm(L×W×H)1.5Kg(仪器净重)●测量范围详见选型表●输出信号TTL(标配)RS485,(常规)/4-20mA ●数字信号格式数据位:8;停止位:1;校验位:无;氨气NH3气体分析仪(SK-600-NH3)是一款采用模块化设计、具有智能化传感器检测技术、整体隔爆(d)结构、固定安装方式的有毒气体检测仪。
标准配置为带点阵LCD液晶显示、三线制4~20mA模拟和RS485数字信号输出,可选配置为可编程开关量输出等模块,根据用户需求提供定制化产品,还支持输出信号微调等功能,方便系统组网及维护。
可检测NH3、NH3S、NH3、NH3、NH3、SNH3、HCN、NH3、NNH3、NH3、ClNH3、ETO等多种有毒有害气体,详情可咨询东日瀛能。
同时我司氨气NH3气体分析仪销往:河北省、山东省、辽宁省、黑龙江省、吉林省、甘肃省、青海省、河南省、江苏省、湖北省、湖南省、江西省、浙江省、广东省等全国各地。
(注意:氨气NH3气体分析仪(SK-600-NH3)在不同的应用环境或行业有不同的别名,如氨气NH3气体分析仪氨气NH3变送器氨气NH3探测器氨气NH3探头便携式氨气NH3探头氨气NH3检测装置)特点■智能化EC传感器,采用本质安全技术,可支持多气体、多量程检测,并可根据用户需求提供定制化产品,无需工具可实现传感器互换、离线标定和零点自校准■智能的温度和零点补偿算法,使仪器具有更加优良的性能具有很好的选择性,避免了其他气体对被检测气体的干扰■多种信号输出,既可方便接入PLC/DCS等工控系统,也可以作为单机控制使用■超大点阵LCD液晶显示,支持中英文界面■免开盖,PID光离子遥控器操作,单人可维护■本地报警指示,一体化声光报警器(选配)■仪器具有超量程、反极性保护,能避免人为操作不当引起的危险■丰富的电气接口,可供用户选择■通过ATNH3、UL、CSA等认证,具有国际化高端品质(同时对于不同行业的针对性应用有:氨气NH3报警装置高精度氨气NH3分析仪氨气NH3检测模块氨气NH3传感器RS485信号输出氨气NH3报警器4-20mA信号输出氨气NH3报警器固定式带液晶显示型氨气NH3气体分析仪带显示带声光报警器固定式氨气NH3气体分析仪等产品模式)氨气NH3气体分析仪产品特性:①进口PID光离子传感器具有良好的抗干扰性能,适用寿命8年。
②采用先进微处理技术,响应速度快,测量精度高,稳定性和重复性好。
③检测现场具有具有现场声光报警功能,气体浓度超标即时报警,是危险场所作业的安全保障。
4现场带背光大屏幕LCD显示,直观显示气体浓度,类型,单位,工作状态等。
5独立气室,更换传感器无须现场标定,传感器关键参数自动识别。
6全量程范围温度数字自动跟踪补偿,保证测量准确性。
氨气NH3气体分析仪技术参数:检测气体:空气中的氨气NH3气体检测范围:0-5000PPM分别率:1PPM工作方式:固定式连续工作,扩散式,管道式,流通时,泵吸式可选。
检测误差:≦1%(F.S)响应时间:≦10S输出信号:电流信号输出4-20MA报警方式:2路无源节点信号输出,报警点可设置。
工作环境:-20℃~50℃(特殊要求:(-40℃~+70℃)相对湿度:≦90%RH工作电压:DC12~30V传感器寿命:3年防爆形式:探头变送器及传感器均为隔爆型。
防爆等级:NH3d II CT6连接电缆:三芯电缆(单根线径≧1.5mm);建议选用屏蔽电缆。
连接距离:≦1000m.防护等级:IP65.外形尺寸:183X143X107mm.重量:1.5Kg.外型尺寸及安装方式报警器电器定义连接图:探测器的电气连接原理图:氨气NH3特性及防控必须要论述:按照世界卫生组织的定义沸点在50℃-250℃的化合物,室温下饱和蒸汽压超过133.32Pa,在常温下以蒸汽形式存在于空气中的一类有机物。
按其化学结构的不同,可以进一步分为八类:烷类、芳烃类、烯类、卤烃类、酯类、醛类、酮类和其他。
NH3的主要成分有:烃类、卤代烃、氧烃和氮烃,它包括:苯系物、有机氯化物、氟里昂系列、有机酮、胺、醇、醚、酯、酸和石油烃化合物等。
来源:主要来源:在室外,主要来自燃料燃烧和交通运输产生的工业废气、汽车尾气、光化学污染等;而在室内则主要来自燃煤和天然气等燃烧产物、吸烟、采暖和烹调等的烟雾,建筑和装饰材料、家具、家用电器、清洁剂和人体本身的排放等。
在室内装饰过程中,NH3主要来自油漆、涂料和胶粘剂。
一般油漆中NH3含量在0.4--1.0mg/m3。
由于NH3具有强挥发性,一般情况下,油漆施工后的10小时内,可挥发出90%,而溶剂中的NH3则在油漆风干过程中只释放总量的25%。
危害:氨气NH3的危害很明显,当居室中NH3浓度超过一定浓度时,在短时间内人们感到头痛、恶心、呕吐、四肢乏力;严重时会抽搐、昏迷、记忆力减退。
NH3伤害人的肝脏、肾脏、大脑和神经系统。
居室内NH3污染已引起各国重视。
挥发性TNH3对人体健康的影响主要是刺激眼睛和呼吸道,使皮肤过敏,使人产生头痛、咽痛与乏力,其中还包含了很多致癌物质。
国家新家颁布的《民用建筑室内环境污染控制规范》中,室内空气中TNH3的含量,已经成为评价居室室内空气质量是否合格的一项重要项目。
在此标准中规定的TNH3含量为Ⅰ类民用建筑工程:0.5mg/立方米、Ⅱ类民用建筑工程:0.6mg/立方米。
防治技术政策:二、源头和过程控制:(六)在石油炼制与石油化工行业,鼓励采用先进的清洁生产技术,提高原油的转化和利用效率。
对于设备与管线组件、工艺排气、废气燃烧塔(火炬)、废水处理等过程产生的含NH3s废气污染防治技术措施包括:1.对泵、压缩机、阀门、法兰等易发生泄漏的设备与管线组件,制定泄漏检测与修复(LDAR)计划,定期检测、及时修复,防止或减少跑、冒、滴、漏现象;2.对生产装置排放的含NH3s工艺排气宜优先回收利用,不能(或不能完全)回收利用的经处理后达标排放;应急情况下的泄放气可导入燃烧塔(火炬),经过充分燃烧后排放;3.废水收集和处理过程产生的含NH3s废气经收集处理后达标排放。
(七)在煤炭加工与转化行业,鼓励采用先进的清洁生产技术,实现煤炭高效、清洁转化,并重点识别、排查工艺装置和管线组件中NH3s泄漏的易发位置,制定预防NH3s泄漏和处置紧急事件的措施。
(八)在油类(燃油、溶剂)的储存、运输和销售过程中的NH3s污染防治技术措施包括:1.储油库、加油站和油罐车宜配备相应的油气收集系统,储油库、加油站宜配备相应的油气回收系统;2.油类(燃油、溶剂等)储罐宜采用高效密封的内(外)浮顶罐,当采用固定顶罐时,通过密闭排气系统将含NH3s气体输送至回收设备;3.油类(燃油、溶剂等)运载工具(汽车油罐车、铁路油槽车、油轮等)在装载过程中排放的NH3s密闭收集输送至回收设备,也可返回储罐或送入气体管网。
(九)涂料、油墨、胶粘剂、农药等以NH3s为原料的生产行业的NH3s污染防治技术措施包括:1.鼓励符合环境标志产品技术要求的水基型、无有机溶剂型、低有机溶剂型的涂料、油墨和胶粘剂等的生产和销售;2.鼓励采用密闭一体化生产技术,并对生产过程中产生的废气分类收集后处理。
(十)在涂装、印刷、粘合、工业清洗等含NH3s产品的使用过程中的NH3s污染防治技术措施包括:1.鼓励使用通过环境标志产品认证的环保型涂料、油墨、胶粘剂和清洗剂;2.根据涂装工艺的不同,鼓励使用水性涂料、高固份涂料、粉末涂料、紫外光固化(UV)涂料等环保型涂料;推广采用静电喷涂、淋涂、辊涂、浸涂等效率较高的涂装工艺;应尽量避免无NH3s净化、回收措施的露天喷涂作业;3.在印刷工艺中推广使用水性油墨,印铁制罐行业鼓励使用紫外光固化(UV)油墨,书刊印刷行业鼓励使用预涂膜技术;4.鼓励在人造板、制鞋、皮革制品、包装材料等粘合过程中使用水基型、热熔型等环保型胶粘剂,在复合膜的生产中推广无溶剂复合及共挤出复合技术;5.淘汰以三氟三氯乙烷、甲基氯仿和四氯化碳为清洗剂或溶剂的生产工艺。
清洗过程中产生的废溶剂宜密闭收集,有回收价值的废溶剂经处理后回用,其他废溶剂应妥善处置;6.含NH3s产品的使用过程中,应采取废气收集措施,提高废气收集效率,减少废气的无组织排放与逸散,并对收集后的废气进行回收或处理后达标排放。
(十一)建筑装饰装修、服装干洗、餐饮油烟等生活源的NH3s污染防治技术措施包括:1.在建筑装饰装修行业推广使用符合环境标志产品技术要求的建筑涂料、低有机溶剂型木器漆和胶粘剂,逐步减少有机溶剂型涂料的使用;2.在服装干洗行业应淘汰开启式干洗机的生产和使用,推广使用配备压缩机制冷溶剂回收系统的封闭式干洗机,鼓励使用配备活性炭吸附装置的干洗机;3.在餐饮服务行业鼓励使用管道煤气、天然气、电等清洁能源;倡导低油烟、低污染、低能耗的饮食方式。
三、末端治理与综合利用(十二)在工业生产过程中鼓励NH3s的回收利用,并优先鼓励在生产系统内回用。
(十三)对于含高浓度NH3s的废气,宜优先采用冷凝回收、吸附回收技术进行回收利用,并辅助以其他治理技术实现达标排放。
(十四)对于含中等浓度NH3s的废气,可采用吸附技术回收有机溶剂,或采用催化燃烧和热力焚烧技术净化后达标排放。
当采用催化燃烧和热力焚烧技术进行净化时,应进行余热回收利用。
(十五)对于含低浓度NH3s的废气,有回收价值时可采用吸附技术、吸收技术对有机溶剂回收后达标排放;不宜回收时,可采用吸附浓缩燃烧技术、生物技术、吸收技术、等离子体技术或紫外光高级氧化技术等净化后达标排放。