基于遗传算法的组合优化问题研究-毕业设计答辩32页PPT
遗传算法课件PPT ppt课件 ppt课件

2020/4/17
33
五.GA的各种变形(32)
I. 截断选择: 选择最好的前T个个体,让每一个有1/T的 选择概率,平均得到NP/T个繁殖机会。
例:NP=100,T=50 即100名学生,成绩前50名的选出。每人的选
择概率为1/50,有平均2个机会。 缺点:这种方法将花费较多的时间在适应值的
排序上。
c. k的取值: 0 M , k , k1r r0.9,0.99,9
调节 M和 r,从而来调节 k
2020/4/17
28
五.GA的各种变形(27)
d.引入 的k 目的:
调k 节选择压力,即好坏个体选择概率的
差,使广域搜索范围宽保持种群的多样性,而
局域搜索细保持收敛性。如下图表示:
k
2020/4/17
2020/4/17
34
五.GA的各种变形(33)
II. 顺序选择: a. 步骤: ⑴ 从好到坏排序所有个体 ⑵ 定义最好个体的选择概率为 q,则第 j个个
体的选择概率为:
pjq1qj1
2020/4/17
35
五.GA的各种变形(34)
⑶ 由于 N j1P q1qj1 N P q11 1q1
2020/4/17
1
遗传算法
• 五.遗传算法的各种变形 • 5.1其它编码方法 • 5.2遗传运算中的问题 • 5.3适值函数的标定(Scaling) • 5.4选择策略 • 5.5停止准则 • 六. 应用
2020/4/17
2
五.GA的各种变形(1)
5.1 其它编码方法
① 顺序编码:用1到N的自然数的不同顺序来 编码,此种编码不允许重复,即 xi 1,2,,N 且 xi x j,又称自然数编码。 该法适用范围很广:指派问题、旅行商问题和
遗传算法应用的分析与研究PPT课件

在大数据时代,数据量呈爆炸式增长,传统的优化算法难以应对。遗传算法通过模拟生物进化过程中 的自然选择、交叉和变异等机制,能够在大规模数据集中快速找到最优解,广泛应用于机器学习、数 据挖掘和模式识别等领域。
遗传算法在人工智能领域的应用
总结词
遗传算法在人工智能领域的应用日益广泛,尤其在神经网络训练、路径规划、机器人控制等方面表现出色。
协同进化算法
元启发式算法
将遗传算法与其他元启发式算法(如 蚁群算法、粒子群算法等)结合,利 用元启发式算法的特点,提高遗传算 法的搜索效率。
将多个子群体分别进化,并利用各子 群体的进化结果指导其他子群体的进 化,提高算法的全局搜索能力。
遗传算法的并行化实现
并行选择操作
将种群分成若干个部分,分别在不同的处理器上执行选择操作, 然后合并结果。
• 遗传算法的改进与发展:随着研究的深入,遗传算法在理论和应用方面都得到 了不断的改进和发展。例如,多种遗传算法的融合、引入启发式信息、改进选 择和交叉算子等方法,都为提高遗传算法的性能和适用性提供了新的思路。
对未来研究的建议与展望
• 进一步探索遗传算法的理论基础:目前,遗传算法的理论基础尚不完备,对于 其工作原理和性能分析等方面仍需深入研究。未来研究可以进一步探索遗传算 法的数学基础、收敛性和鲁棒性等方面,以提高算法的可靠性和效率。
遗传算法的应用领域
组合优化
处理离散的优化问题,如旅行 商问题、背包问题等。
调度与分配
在生产、物流等领域用于优化 资源分配和任务调度。
函数优化
用于求解多变量函数的最优解, 如最大/最小化问题。
机器学习
用于分类、聚类、特征选择等 任务,如支持向量机、神经网 络等。
遗传算法(GeneticAlgorithm)PPT课件

2021
14
选择(Selection)
设种群的规模为N xi是i为种群中第i个染色体
1/6 = 17%
A BC
3/6 = 50% 2/6 = 33%
染色体xi被选概率
ps (xi )
F (xi )
N
F(xj)
j 1
fitness(A) = 3 fitness(B) = 1 fitness(C) = 2
假如交叉概率Pc =50%,则交配池中50%的染色体(一半染色体) 将进行交叉操作,余下的50%的染色体进行选择(复制)操作。
GA利用选择和交叉操作可以产生具有更高平均适应值 和更好染色体的群体
2021/3/21
2021
22
变异(Mutation)
➢ 以 编变码异时概,变率P异m改的变基染因色由体0变的成某1一,个或基者因由,1当变以成二0。进制 ➢ 变 间,异平概均率约Pm 1一-2般% 介于1/种群规模与1/染色体长度之
编码(Coding)
10010001
10010010
010001001 011101001
解码(Decoding)
2021/3/21
2021
13
选择(Selection)
➢ 选择(复制)操作把当前种群的染色体按与适应值成正比 例的概率复制到新的种群中
➢ 主要思想: 适应值较高的染色体体有较大的选择(复制) 机会
➢交叉(crossover):
将群体P(t)内的各个个体随机搭配成对,对每一个
个 rat体e),交以换某它个们概之率间P的c (部称分为染交色叉体概。率,crossvoer
➢变异(mutation):
变对异群概体率P,(tm)u中ta的ti每on一r个at个e)体改,变以某某一一个概或率一P些m(基称因为座
基于遗传算法的组合优化问题求解研究

基于遗传算法的组合优化问题求解研究随着计算机技术的不断发展,各种类型的优化问题被广泛研究和应用。
其中,组合优化问题在实际生产和生活中具有重要的意义。
组合优化问题是指在一定的约束条件下,找出最优或次优的解决方案,通常涉及多个决策变量。
然而,由于组合优化问题本质上是一种NP难问题,传统的优化算法在求解过程中会遇到效率低下、易陷入局部最优、计算耗时长等问题。
因此,研究更为高效有效的求解方法,对促进组合优化问题的应用和推广具有重要意义。
基于遗传算法的组合优化问题求解研究应运而生。
一、遗传算法的原理和优势遗传算法是一种模仿自然界遗传进化过程的高效优化算法,其核心思想是通过模拟多个个体的基因重组、变异和选择等进化行为,最终获得最优解。
具体而言,遗传算法通过将优秀个体保存下来,以其为父代产生出更优秀的后代。
它是一种基于概率的优化方法,与传统的数学优化方法相比,通过随机搜索和并行计算等方式避免了陷入局部最优解的风险,从而获得更优的全局最优解。
遗传算法的另一个优势是它的复杂度相对较低,能够在理论上证明在某些情况下可以获得渐进最优解。
同时,遗传算法具有较强的鲁棒性,能够有效应对问题复杂度的快速增长,以及不同求解阶段的不确定性。
此外,遗传算法由于其自适应能力和并行计算能力,在处理大规模优化问题时,甚至能够胜过传统的数学优化方法。
二、遗传算法在组合优化问题中的应用遗传算法作为一种通用的优化方法,在组合优化问题中得到了广泛应用。
常见的组合优化问题包括旅行商问题、背包问题、资源调度问题、工厂布局问题等。
这些问题都是NP难问题,传统的算法求解困难,但是结合遗传算法可以大幅度提高求解效率。
例如,对于旅行商问题,传统的方法是采用枚举法,当城市数目增加时很容易出现维数爆炸的情况。
而使用遗传算法求解旅行商问题,只需重新定义染色体编码、选择函数和交叉变异算子等,就可以在较短时间内得到较优解。
对于背包问题,遗传算法同样可以发挥优异的求解能力。
毕业设计论文基于遗传算法的BP神经网络的优化问题研究.doc

编号:审定成绩:重庆邮电大学毕业设计(论文)设计(论文)题目:基于遗传算法的BP神经网络的优化问题研究学院名称:学生姓名:专业:班级:学号:指导教师:答辩组负责人:填表时间:2010年06月重庆邮电大学教务处制摘要本文的主要研究工作如下:1、介绍了遗传算法的起源、发展和应用,阐述了遗传算法的基本操作,基本原理和遗传算法的特点。
2、介绍了人工神经网络的发展,基本原理,BP神经网络的结构以及BP算法。
3、利用遗传算法全局搜索能力强的特点与人工神经网络模型学习能力强的特点,把遗传算法用于神经网络初始权重的优化,设计出混合GA-BP算法,可以在一定程度上克服神经网络模型训练中普遍存在的局部极小点问题。
4、对某型导弹测试设备故障诊断建立神经网络,用GA直接训练BP神经网络权值,然后与纯BP算法相比较。
再用改进的GA-BP算法进行神经网络训练和检验,运用Matlab软件进行仿真,结果表明,用改进的GA-BP算法优化神经网络无论从收敛速度、误差及精度都明显高于未进行优化的BP神经网络,将两者结合从而得到比现有学习算法更好的学习效果。
【关键词】神经网络BP算法遗传算法ABSTRACTThe main research work is as follows:1. Describing the origin of the genetic algorithm, development and application, explain the basic operations of genetic algorithm, the basic principles and characteristics of genetic algorithms.2. Describing the development of artificial neural network, the basic principle, BP neural network structure and BP.3. Using the genetic algorithm global search capability of the characteristics and learning ability of artificial neural network model with strong features, the genetic algorithm for neural network initial weights of the optimization, design hybrid GA-BP algorithm, to a certain extent, overcome nerves ubiquitous network model training local minimum problem.4. A missile test on the fault diagnosis of neural network, trained with the GA directly to BP neural network weights, and then compared with the pure BP algorithm. Then the improved GA-BP algorithm neural network training and testing, use of Matlab software simulation results show that the improved GA-BP algorithm to optimize neural network in terms of convergence rate, error and accuracy were significantly higher than optimized BP neural network, a combination of both to be better than existing learning algorithm learning.Key words:neural network back-propagation algorithms genetic algorithms目录第一章绪论 (1)1.1 遗传算法的起源 (1)1.2 遗传算法的发展和应用 (1)1.2.1 遗传算法的发展过程 (1)1.2.2 遗传算法的应用领域 (2)1.3 基于遗传算法的BP神经网络 (3)1.4 本章小结 (4)第二章遗传算法 (5)2.1 遗传算法基本操作 (5)2.1.1 选择(Selection) (5)2.1.2 交叉(Crossover) (6)2.1.3 变异(Mutation) (7)2.2 遗传算法基本思想 (8)2.3 遗传算法的特点 (9)2.3.1 常规的寻优算法 (9)2.3.2 遗传算法与常规寻优算法的比较 (10)2.4 本章小结 (11)第三章神经网络 (12)3.1 人工神经网络发展 (12)3.2 神经网络基本原理 (12)3.2.1 神经元模型 (12)3.2.2 神经网络结构及工作方式 (14)3.2.3 神经网络原理概要 (15)3.3 BP神经网络 (15)3.4 本章小结 (21)第四章遗传算法优化BP神经网络 (22)4.1 遗传算法优化神经网络概述 (22)4.1.1 用遗传算法优化神经网络结构 (22)4.1.2 用遗传算法优化神经网络连接权值 (22)4.2 GA-BP优化方案及算法实现 (23)4.3 GA-BP仿真实现 (24)4.3.1 用GA直接训练BP网络的权值算法 (25)4.3.2 纯BP算法 (26)4.3.3 GA训练BP网络的权值与纯BP算法的比较 (28)4.3.4 混合GA-BP算法 (28)4.4 本章小结 (31)结论 (32)致谢 (33)参考文献 (34)附录 (35)1 英文原文 (35)2 英文翻译 (42)3 源程序 (47)第一章绪论1.1 遗传算法的起源从生物学上看,生物个体是由细胞组成的,而细胞则主要由细胞膜、细胞质、和细胞核构成。
机组组合问题用遗传算法求解.ppt

2.遗传算法简介
变异:以很小的概率随机地改变一个个体中的位值。比如 若10011(19)被选中,将其第4位由1变为0。变异的概率很 小一般只有千分之几,其目的是为了防止丢失一些有用的 因子。
缺点:由于目标函数的非凸性,用对偶法求解时,存在对 偶间隙,需要根据对偶问题的优化解采取一定的措施构造原 问题的优化可行解。
2.遗传算法简介
设现在有这么个问题需要解决。
求f(x)=x2在0~31之间取整数值时函数的最大值。
准备:对定义域[0,31]内的非负整数x进行二进制编码, 如x=8时取x=01000,随机生成4个二进制数:01101(13) 、 11000(24)、 01000(8)、10011(19);这4个数被称为一个种 群,种群中的每个数就是一个个体。
4.模拟结果
在10、20、40、60、80、100台机组上进行模拟,时间为 24小时。下图是10台机组的相关数据.
4.模拟结果
4.模拟结果
4.模拟结果
模拟20台机组的问题时,将前面的10台机组翻倍,用 电的需求量也翻倍。备用电量取需求量的10%。其余情况 依此类推。
下面对10台机组进行模拟运算,选取20个种群,每个种群 包含50个个体,世代选为500。
3.遗传算法求解机组组合问题
3.1基本方法
考虑问题,“有N台机组在在H小时内运行,要求制订一个 开停机的计划,使得机组运行的总费用最小。”
假定每小时内,发电机不是开启就是关闭,开启状态用 “1”表示,关闭状态用“0”表示。如图1所示:
基于遗传算法的组合优化问题研究与求解

基于遗传算法的组合优化问题研究与求解摘要:组合优化问题是在给定约束条件下,寻求最优组合的一类问题。
遗传算法是一种模拟自然界生物进化过程的优化算法,在组合优化问题的求解中具有良好的鲁棒性和有效性。
本文将探讨基于遗传算法的组合优化问题研究与求解方法,包括问题建模、遗传算子设计、算法流程和应用领域等方面。
一、引言组合优化问题是寻求某种组合下的最优解决方案的一类问题。
这些问题普遍存在于实际生活和工程领域中,如旅行商问题(TSP)、背包问题(KP)、排班问题(SLP)等。
然而,在面对大规模组合优化问题时,传统的求解方法往往面临计算复杂度高、局部极值问题等挑战。
基于遗传算法的组合优化问题求解方法因其良好的鲁棒性和有效性而受到广泛关注。
二、问题建模在基于遗传算法的组合优化问题求解中,首先需要将原始问题转化为适合遗传算法求解的数学模型。
对于不同的组合优化问题,问题建模的方法会有所不同。
以旅行商问题为例,可以将问题抽象为一个图问题,其中节点表示城市,边表示城市之间的路径,需要找到一条路径使得经过每个城市一次且总路径最短。
三、遗传算子设计遗传算法的核心是遗传算子的设计,包括选择、交叉和变异。
选择操作通过以适应度为依据,选择一部分个体作为下一代遗传的父代,保留适应度较高的个体。
交叉操作模拟自然界中的遗传过程,通过交换父母个体的染色体片段,产生新的个体。
变异操作引入随机性,在新个体的染色体中随机改变某一位的基因。
四、算法流程基于遗传算法的组合优化问题求解通常遵循以下步骤:1. 初始化种群:随机生成初始解作为种群的个体。
2. 适应度计算:根据问题的评估函数,计算每个个体的适应度。
3. 选择:根据个体的适应度值,按照一定的选择策略选择部分个体作为下一代的父代。
4. 交叉:选取父代个体进行交叉操作,生成新的个体。
5. 变异:对新生成的个体进行变异操作,引入随机性。
6. 环境选择:根据适应度值,选择新个体和原父代个体构成下一代种群。
遗传算法原理及其应用PPT课件

目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。