(完整版)八年级特殊点的等腰三角形和直角三角形教案
八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。
等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。
)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。
问题4给学生留下悬念。
)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。
[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。
(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。
〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。
八年级数学上册《等腰三角形的性质》教案、教学设计

-利用几何画板等教学工具,直观演示等腰三角形的性质,帮助学生加深理解。
-通过典型例题,引导学生运用等腰三角形的性质进行计算和证明,巩固所学知识。
4.实践应用,拓展提高
-设计具有挑战性的练习题,让学生在解决问题的过程中提高几何素养。
-鼓励学生将所学知识运用到实际生活中,如设计等腰三角形图案,培养他们的创新意识和实际操作能力。
4.结合教材,引导学生学习等腰三角形的相关定理和公式,如等腰三角形的面积公式、周长公式等。
(三)学生小组讨论
1.教师将学生分成若干小组,每组讨论一个问题,如等腰三角形的性质、判定方法、应用等。
2.学生在小组内交流观点,共同解决问题,教师巡回指导,给予提重难点和教学设想
(一)教学重难点
1.理解并掌握等腰三角形的定义及其性质,特别是等腰三角形的底角相等、底边上的高、中线和顶角的平分线相互重合。
2.学会运用等腰三角形的性质解决相关问题,如周长、面积的计算,以及几何证明。
3.培养学生的空间想象能力和逻辑推理能力,提高他们在几何领域的解题技巧。
(二)教学设想
在教学过程中,要注意关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重启发式教学,激发学生的学习兴趣和求知欲,让他们在探索中发现问题,解决问题,从而提高他们的数学素养。
二、学情分析
八年级的学生已经具备了一定的几何知识基础,掌握了三角形的基本概念和性质,能够进行简单的几何推理和论证。在此基础上,学生对等腰三角形的性质进行学习,有利于他们巩固和拓展已有的几何知识体系。然而,学生在几何方面的空间想象能力和逻辑推理能力仍有待提高,对等腰三角形性质的理解和应用可能存在困难。针对这种情况,教师在教学过程中应注重启发引导,关注学生的认知发展,通过直观演示、动手操作等教学手段,帮助他们突破难点,提高几何素养。同时,教师要关注学生的情感态度,鼓励他们积极参与课堂讨论,培养他们的自信心和合作精神,使他们在轻松愉快的氛围中学习等腰三角形的性质。
初中数学初二数学上册《特殊三角形》教案、教学设计

(5)拓展:引导学生运用特殊三角形的性质进行拓展练习,提高学生的创新思维和解决问题的能力。
3.教学评价:
(1)过程性评价:关注学生在课堂上的表现,如积极参与、主动探究、合作交流等,激发学生的学习积极性。
(2)总结性评价:通过课后作业、单元测试等方式,检验学生对特殊三角形性质的理解和运用程度。
4.请同学们预习下一节课的内容,提前了解特殊三角形在几何证明中的应用,为课堂学习做好准备。
5.结合本节课的学习,总结特殊三角形的性质及其应用,用思维导图的形式呈现,培养知识归纳和总结能力。
作业要求:
1.作业需独立完成,书写工整,步骤清晰,保持卷面整洁。
2.解题过程中,要注重逻辑性和条理性,体现数学思维的严密性。
1.学生对基本几何概念的理解程度,特别是对等腰、等边三角形的认识,以及直角三角形的性质。
2.学生在解决问题时,能否灵活运用特殊三角形的性质,对相关性质的理解是否深入。
3.学生的空间想象能力和逻辑思维能力,以及在学习过程中是否能够主动探究、发现和解决问题。
4.学生在小组合作中的沟通能力,以及团队合作意识的培养。
4.引导学生认识数学在科学、技术、社会等方面的广泛应用,培养学生的数学应用意识,学生数学学习的关键时期,他们在之前的学习中已经掌握了三角形的基本概念和性质,具备了一定的几何图形识别和分析能力。在此基础上,学生对特殊三角形的学习将更具挑战性和深度。然而,由于特殊三角形性质较多,学生在理解和应用上可能会存在一定困难。因此,在教学过程中,应关注以下几点:
4.能够运用特殊三角形的性质进行简单的证明,培养逻辑思维能力和推理能力。
(二)过程与方法
1.通过自主探究、小组合作等方式,让学生在探索特殊三角形性质的过程中,培养发现问题的能力,提高解决问题的能力。
八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。
以下是我为大家整理的,感谢您的欣赏。
八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。
第1讲等腰三角形与直角三角形-教案

第1讲等腰三角形与直角三角形-教案概述适用学科初中数学适用年级初中二年级适用区域北师版区域课时时长(分钟) 120知识点1.等腰三角形判定与性质2.直角三角形判定与性质1.理解等腰三角形的判定定理,并会运用其进行简单的证明.教学目标2.能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性教学重点特殊三角形的灵活应用教学难点特殊三角形的灵活应用.【教学建议】本节的教学重点是使学生能熟练掌握特殊三角形的性质与判定,这一节在本册书乃至整个初中数学几何部分占据非常重要的地位,在中考中出题的频率和分值都比较高,所以教师在教学过程中要注意结合中考题型进行拓展。
学生学习本节时可能会在以下几个方面感到困难:1. 等腰三角形及直角三角形的性质与判定。
2. 结合三角形全等的几何动点。
3.综合性解答题的思路与几何问题中的数学模型。
【知识导图】1等腰三角形与直角三角形等腰三角形判定与性质直角三角形判定与性质教学过程一、导入【教学建议】有关等腰三角形和直角三角形的考题,考查重点是几何动点以及几何类比探究的综合的题型,学生最开始接触时一定要把基础的性质与判定及常见的几何模型整理好,老师在授课过程中要注重方法的指导。
二、知识讲解知识点 1 等腰三角形判定与性质1.提请学生回忆并整理已经学过的8条基本事实中的5条:(1)两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条平行线被第三条直线所截,同位角相等;(3)两边夹角对应相等的两个三角形全等(SAS);(4)两角及其夹边对应相等的两个三角形全等(ASA);(5)三边对应相等的两个三角形全等(SSS);在此基础上回忆全等三角形的另一判别条件:(1)(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理2进行证明;(2)回忆全等三角形的性质。
2.等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。
八年级数学上册《等腰三角形的性质定理》教案、教学设计

4.学生的学习兴趣和动机:学生对新鲜事物充满好奇心,等腰三角形的性质定理具有一定的趣味性,教师可结合生活实例,激发学生的学习兴趣和动机。
三、教学重难点和教学设想
7.拓展阶段:针对学有余力的学生,设计一些富有挑战性的问题,引导学生深入挖掘等腰三角形的性质,培养学生的创新思维和解决问题的能力。
8.评价阶段:采用多元化的评价方式,如课堂表现、作业完成情况、小组合作成果等,全面评价学生的学习效果。关注学生的个体差异,鼓励学生不断进步。
在教学过程中,教师要注重启发式教学,引导学生主动探究,培养学生的几何思维。同时,关注学生的情感态度,营造轻松愉快的学习氛围,使学生在愉悦的情感体验中学习数学。通过本章节的学习,使学生不仅掌握等腰三角形的性质定理,而且提高解决问题的能力,培养团队合作精神。
1.学生对等腰三角形的认知程度:大部分学生对等腰三角形的概念已有初步了解,但对其性质定理的认识可能不够深入,需要教师在教学过程中加以引导和巩固。
2.学生在解决问题时的思维方式:学生对几何问题的解决方法还在逐步形成中,对等腰三角形性质定理的应用可能存在一定难度,需要教师设计有针对性的练习,帮助学生逐步提高。
(二)讲授新知
1.教学内容:教师讲解等腰三角形的定义,引导学生了解等腰三角形的两条腰相等、底角相等、顶角相等的基本性质。
2.教学方法:采用直观演示法,利用几何画板展示等腰三角形的性质定理,让学生直观感受等腰三角形的特点。
3.教学步骤:
a.演示等腰三角形的底角相等,让学生通过测量、观察验证底角相等;
b.演示等腰三角形的腰相等,让学生通过测量、观察验证腰相等;
八年级数学上册《等腰三角形的定义性质》教案、教学设计

-拓展题:联系实际生活,设计综合应用题。
2.教师巡回指导,解答学生疑问,及时给予反馈。
(五)总结归纳
1.教学活动设计:对本节课所学知识进行总结,帮助学生巩固记忆。
-教师提问:“本节课我们学习了哪些内容?”、“等腰三角形有哪些性质?”
-学生回答,教师进行点评和补充。
此外,学生在解决问题的过程中,可能存在以下问题:1.对等腰三角形定义的理解不够深入,容易与其他三角形混淆;2.对等腰三角形性质的记忆不够牢固,导致解题时无法灵活运用;3.部分学生对几何图形的直观感知能力较弱,影响了对等腰三角形性质的发现与理解。
因此,在教学过程中,教师应关注学生的这些问题,采取针对性的教学方法,帮助学生克服困难,提高他们的几何图形分析能力。同时,教师应注重激发学生的学习兴趣,鼓励他们积极参与课堂讨论,培养他们的自主学习能力。通过本章节的学习,使学生在掌握等腰三角形定义性质的基础上,进一步提高几何素养。
在教学过程中,教师应关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,教师应注重启发式教学,激发学生的求知欲,培养他们的创新精神和实践能力。通过本章节的学习,使学生真正掌握等腰三角形的定义性质,为后续学习打下坚实基础。
二、学情分析
八年级的学生已经在之前的数学学习中,掌握了三角形的基本概念、全等三角形的判定与性质等知识,具备了一定的几何图形分析能力。在此基础上,学习等腰三角形的定义性质,对学生来说是水到渠成的过程。然而,由于等腰三角形的性质较为抽象,学生在理解上可能存在一定难度,特别是对性质的应用方面。
2.引导学生回顾已学的三角形知识,为新课的学习做好铺垫。
-复习三角形的基本概念、分类和性质。
八年级等腰三角形数学教案优秀9篇

八年级等腰三角形数学教案优秀9篇初中数学等腰三角形的性质教案篇一一、教材分析1、教材的地位和作用等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。
等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。
等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。
同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。
2、教材重组《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。
如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。
3、学习目标根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。
情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。
4、教学重、难点:重点:等腰三角形性质的探索及其应用。
难点:等腰三角形性质的探索及证明。
5、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。
二、学情分析刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等边三角形
一、教学目标及教材重难点分析
(一)教学目标
1、掌握等边三角形的定义。
2、掌握等边三角形的性质和判定方法。
3、培养分析问题、解决问题的能力。
(二)教学重难点
等边三角形性质的应用
(三)教具
多媒体教学
二、教学过程
(一)课前预习与准备
1、提前十分钟进教室,准备教具和课件
2、复习等边三角形的有关知识
1.等边三角形的三条边相等
2.等边三角形每一个角相等,都等于60°
3.等边三角形各边上的高、中线、角平分线三线合一
4.等边三角形是轴对称图形,它有三条对称轴.
5. 三个角都相等的三角形是等边三角形.
6.有一个角是60°的等腰三角形是等边三角形.
其中1、2、3、4是等边三角形的性质;5、6的等边三角形的判断方法.3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边
的一半。
(二)讲述新知识
1)题型一等边三角形的性质
讲解例1
2).题型二等边三角形的判定
讲解例4
3).题型三等边三角形与全等综合经典图形
讲解例6
3).题型四含30°的直角三角形
讲解例7、8
(三)归纳小结及知识的链接与拓展
1、归纳小结:等边三角形的性质和判定方法
2、知识的链接与拓展
练习例2、3、5、9、10、11
等腰直角三角形
二、教学目标及教材重难点分析
(一)教学目标
1、掌握等腰直角三角形的定义。
2、掌握等腰直角三角形的性质和判定方法。
3、培养分析问题、解决问题的能力。
(二)教学重难点
等腰直角三角形性质的应用
(三)教具
多媒体教学
二、教学过程
(一)课前预习与准备
1.提前十分钟进教室,准备教具和课件
2、复习等腰直角三角形的有关知识
1.两底角度数相等,且都为45°
2.斜边上的高、中线、角平分线把原三分成两个相同的等腰直角三角形3.斜边上的高、中线、角平分线三线合一
4. 等腰直角三角形斜边上的高等于斜边的一半.
5. 有一个角是直角的等腰三角形是的等腰直角三角形
6.两底角度数等于45°的等腰直角三角形
其中1、2、3、4是等腰直角三角形的性质;5、6的等腰直角三角形的判断方法.
(二)讲述新知识
1)题型一等腰直角三角形的性质与判定
讲解例12
2).题型二等腰直角三角形与全等综合经典图形
讲解例13
(三)归纳小结及知识的链接与拓展
1、归纳小结:直角等腰三角形的性质和判定方法
2、知识的链接与拓展
练习例14。