《ANSYS 18.2有限元分析与应用实例 》案例目录

合集下载

《2024年ANSYS有限元分析软件在热分析中的应用》范文

《2024年ANSYS有限元分析软件在热分析中的应用》范文

《ANSYS有限元分析软件在热分析中的应用》篇一一、引言随着科技的不断进步,ANSYS有限元分析软件在工程领域的应用越来越广泛。

其中,ANSYS在热分析方面的应用具有很高的价值,能对复杂结构的温度分布、热应力等问题进行有效的数值模拟和分析。

本文旨在深入探讨ANSYS有限元分析软件在热分析中的应用。

二、ANSYS软件及其热分析功能ANSYS是一款广泛应用于机械、电气、流体等多领域的有限元分析软件。

其强大的功能主要得益于其精细的数值计算方法和广泛的适用性。

在热分析方面,ANSYS可以模拟各种复杂的热传导、热对流和热辐射问题,为工程师提供精确的数值结果和直观的图形展示。

三、ANSYS在热分析中的应用1. 模型建立与网格划分在ANSYS中进行热分析,首先需要建立准确的模型并进行网格划分。

ANSYS提供了强大的建模工具,可以方便地建立各种复杂的模型。

同时,其网格划分功能可以根据模型的特点和需求,自动或手动进行网格的生成和优化。

这为后续的热分析提供了可靠的数值基础。

2. 材料属性设定与载荷施加在热分析中,材料属性设定和载荷施加是关键步骤。

ANSYS 提供了丰富的材料库,可以根据实际需要选择合适的材料并进行属性的设定。

同时,根据问题的需求,可以在模型上施加各种类型的热载荷,如温度、热流等。

3. 求解与结果分析完成模型建立、网格划分、材料属性设定和载荷施加后,就可以进行求解了。

ANSYS采用先进的数值计算方法,可以快速得到求解结果。

同时,ANSYS提供了丰富的后处理功能,可以对求解结果进行可视化展示和分析。

例如,可以绘制温度分布图、热流图等,帮助工程师直观地了解问题的特点。

四、ANSYS在热分析中的优势相比传统的实验方法,ANSYS在热分析中具有以下优势:1. 准确性高:ANSYS采用先进的数值计算方法,可以模拟各种复杂的热传导、热对流和热辐射问题,得到的结果更加准确可靠。

2. 效率高:相比传统的实验方法,ANSYS可以在短时间内得到求解结果,大大提高了工作效率。

Ansys机械工程应用精华60例第8例 平面问题的求解实例—厚壁圆筒问题

Ansys机械工程应用精华60例第8例  平面问题的求解实例—厚壁圆筒问题

8.3.4
创建实体模型
拾 取 菜 单 Main Menu → Preprocessor → Modeling → Create → Areas → Circle → By Dimensions。弹出如图 8-8 所示的对话框,在“RAD1” 、 “RAD2” 、 “THETA2”文本框中分 别输入 0.1、0.05 和 90,单击“OK”按钮。 77
第8例
平面问题的求解实例——厚壁圆筒问题
“Item, Comp”两个列表中分别选“Stress” 、 “Y-direction SY” ,单击“OK”按钮。 注意:该路径上各节点 X、Y 方向上的应力即径向应力r 和切向应力t。
图 8-15
映射数据对话框
8.3.12
作路径图
拾取菜单 Main Menu→General Postproc→Path Operations→Plot Path Item→On Graph。弹 出如图 8-16 所示的对话框,在列表中选“SR” 、 “ST” ,单击“OK”按钮。
8.3.6
施加约束
拾取菜单 Main Menu→Solution→Define Loads→Apply→Structural→Displacement→On Lines。弹出拾取窗口,拾取面的水平直线边,单击“OK”按钮,弹出如图 8-11 所示的对话 框,在列表中选择“ UY ” ,单击“ Apply”按钮,再次弹出拾取窗口,拾取面的垂直直线 边,单击“OK”按钮,在图 8-11 所示对话框的列表中选择“UX” ,单击“OK”按钮。
76
第8例
平面问题的求解实例——厚壁圆筒问题
图 8-3 单元类型对话框
图 8-4
单元类型库对话框
图 8-5

ansys有限元分析案例

ansys有限元分析案例

ansys有限元分析案例ANSYS有限元分析案例。

在工程设计和分析领域,有限元分析是一种常用的数值模拟方法,它可以有效地预测结构在受力作用下的变形和应力分布。

而ANSYS作为目前应用最为广泛的有限元分析软件之一,具有强大的建模和仿真功能,被广泛用于航空航天、汽车、船舶、建筑等领域。

本文将通过一个实际案例,介绍如何使用ANSYS进行有限元分析。

案例背景:某工程结构在实际使用过程中出现了裂纹现象,为了找出裂纹的成因并进行有效的修复措施,我们决定利用ANSYS进行有限元分析。

首先,我们需要建立结构的有限元模型,然后施加相应的载荷和边界条件,最终得出结构的应力分布和变形情况,从而找出裂纹的位置和原因。

建立有限元模型:首先,我们需要将结构进行几何建模,并进行网格划分,将结构划分为有限元单元。

在建立模型的过程中,需要考虑到结构的几何形状、材料属性以及实际工况下的载荷和边界条件。

在ANSYS中,可以通过几何建模模块进行结构建模,然后选择合适的单元类型和网格划分方法,对结构进行离散化处理。

施加载荷和边界条件:在建立完有限元模型之后,我们需要定义结构的加载情况,包括静载荷、动载荷、温度载荷等。

同时,还需要定义结构的边界条件,如约束条件、支撑条件等。

这些载荷和边界条件的设置需要符合实际工况,并且需要考虑到结构的非线性、材料的非均质性等因素。

进行仿真分析:一切准备就绪后,我们可以进行仿真分析,通过ANSYS求解器对结构进行有限元分析。

在仿真分析过程中,ANSYS会根据定义的载荷和边界条件,对结构进行求解,并得出结构的应力分布、位移和变形情况。

通过对仿真结果的分析,可以找出结构中的弱点和故障部位,为后续的修复工作提供参考依据。

结果分析与修复措施:最后,我们需要对仿真结果进行深入分析,找出裂纹的具体位置和成因。

根据分析结果,可以制定针对性的修复措施,如增加加强筋、更换材料、改变结构设计等。

通过对仿真结果的分析,可以有效地指导后续的结构修复工作,并提高结构的安全性和可靠性。

ANSYS的应用及其分析全过程(包含实例详解)

ANSYS的应用及其分析全过程(包含实例详解)

本章主要讲述:1.空间网格结构设计软件MSTCAD的应用;2.通用有限元分析程序ANSYS的应用及其分析全过程;总体而言,空间结构的分析方法主要有弹性力学分析方法和有限元分析方法,弹性力学原理作为广义的理论基础,其总结的共性结论有利于帮助理解空间结构的力学性能,但其建立的基本方程往往为高阶微分方程,求解较为困难,因此目前的空间结构分析基本上都是采用有限元分析方法通过计算机程序完成,因此掌握一些常用分析设计软件的应用十分必要,本章主要介绍浙江大学空间结构中心研发的空间网格结构设计软件MSTCAD的应用,这个软件作为商业软件,目前可用于网架和网壳的分析设计,简单易学,但还不能进行结构非线性分析;本章的重点在于通用有限元软件ANSYS的介绍,ANSYS的分析功能就相当强大,掌握其应用有利于开展课题研究,本章仅简单介绍其分析过程,使用时可查阅相关文献或查阅程序的帮助文件。

第二节ANSYS8.0软件概述ANSYS是大型通用有限元软件,从1971年的2.0版本到10.0版本,其操作界面到分析功能等各方面都有巨大的改进。

ANSYS功能强大,命令繁多,掌握常用的操作就足够一般用户解决工程中的具体问题,对初学者而言,不可能一下就掌握ANSYS的所有操作功能,且无必要。

对软件的掌握应以能应用于实际工程作为标准,ANSYS不是一个专业,也不是一门理论课程,更不是一种分析方法,而只是一个有限元工具,应强调以应用为出发点,否则就算对ANSYS相当熟悉,其命令记得相当完全,但不能用其解决工程问题也是枉然。

还需注意的是,通过若干例题的考证,ANSYS软件的计算结果逼近于弹性力学的精确解,但学习和应用该软件时,因为单元类型的选定和边界条件的引入需人工干予,所以应养成对计算结果的合理性和可靠性作评价的习惯,以确保结构安全,也便于以后对其它有限元软件的学习和应用。

本节仅就ANSYS的一般情况作一个简单说明,需要强调的是,由于其功能过于强大,学习过程中应注意做笔记的习惯,以便于今后遇到类似问题时查阅,还应该注意查阅ANSYS 自身的帮助系统。

ansys有限元分析作业经典案例

ansys有限元分析作业经典案例

工程软件应用及设计实习报告实习时间:一.实习目的:1.熟悉工程软件在实际应用中具体的操作流程与方法,同时结合所学知识对理论内容进行实际性的操作.2.培养我们动手实践能力,将理论知识同实际相结合的能力,提高大家的综合能力,便于以后就业及实际应用.3.工程软件的应用是对课本所学知识的拓展与延伸,对我们专业课的学习有很大的提高,也是对我们进一步的拔高与锻炼. 二.实习内容(一)用ANSYS软件进行输气管道的有限元建模与分析计算分析模型如图1所示承受内压:1.0e8 PaR1=0.3R2=0.5管道材料参数:弹性模量E=200Gpa;泊松比v=0.26.图1受均匀内压的输气管道计算分析模型(截面图)题目解释:由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生.然后根据结构的对称性,只要分析其中1/4即可.此外,需注意分析过程中的单位统一.操作步骤1.定义工作文件名和工作标题1.定义工作文件名.执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮.2.定义工作标题.执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK 按钮.3.更改目录.执行Utility Menu-File→change the working directory –D/chen2.定义单元类型和材料属性1.设置计算类型ANSYS Main Menu: Preferences →select Structural →OK2.选择单元类型.执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →applyAdd/Edit/Delete →Add →select Solid Brick 8node 185 →OKOptions…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框.图23.设置材料属性.执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框.图33.创建几何模型1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK2. 生成管道截面.ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical →ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In Active Coord →依次连接1,2,3,4点→OK 如图4图4Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条边→OK →ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 如图5图53.拉伸成3维实体模型Preprocessor →Modeling→operate→areas→along normal输入2,如图6所示图64.生成有限元网格Preprocessor →Meshing →Mesh Tool→V olumes Mesh→Tet→Free,.采用自由网格划分单元.执行Main Menu-Preprocessor-Meshing-Mesh-V olume-Free,弹出一个拾取框,拾取实体,单击OK按钮.生成的网格如图7所示.图75.施加载荷并求解1.施加约束条件.执行Main Menu-Solution-Apply-Structural-Displacement-On Areas,弹出一个拾取框,拾取前平面,单击OK按钮,弹出如图8所示的对话框,选择“U Y”选项,单击OK按钮.图8同理,执行Main Menu-Solution-Apply-Structural-Displacement-On Areas,弹出一个拾取框,拾取左平面,单击OK按钮,弹出如图8所示的对话框,选择“U X”选项,单击OK按钮.2.施加载荷.执行Main Menu-Solution-Apply-Structural-Pressure-On Areas,弹出一个拾取框,拾取内表面,单击OK按钮,弹出如图10所示对话框,如图所示输入数据1e8,单击OK按钮.如图9所示.生成结构如图10图9图103.求解.执行Main Menu-Solution-Solve-Current LS,弹出一个提示框.浏览后执行file-close,单击OK按钮开始求解运算.出现一个【Solution is done】对话框是单击close按钮完成求解运算.6.显示结果1.显示变形形状.执行Main Menu-General Posproc-Plot Results-Deformed Shape,弹出如图11所示的对话框.选择“Def+underformed”单选按钮,单击OK按钮.生成结果如图12所示.图11图122.列出节点的结果.执行Main Menu-General Posproc-List Results-Nodal Solution,弹出如图13所示的对话框.设置好后点击OK按钮.生成如图14所示的结果图13图143.浏览节点上的V on Mises应力值.执行Main Menu-General Posproc-Plot Results-Contour Plot-Nodal Solu,弹出如图15所示对话框.设置好后单击OK按钮,生成结果如图16所示.图15图167.以扩展方式显示计算结果1.设置扩展模式.执行Utility Menu-Plotctrls-Style-Symmetry Expansion,弹出如图17所示对话框.选中“1/4 Dihedral Sym”单选按钮,单击OK按钮,生成结果如图18所示.图17图182.以等值线方式显示.执行Utility Menu-Plotctrls-Device Options,弹出如图19所示对话框,生成结果如图20所示.图19图20结果分析通过图18可以看出,在分析过程中的最大变形量为418E-03m,最大的应力为994E+08Pa,最小应力为257E+09Pa.应力在内表面比较大,所以在生产中应加强内表面材料的强度.。

有限元分析与应用详细例题

有限元分析与应用详细例题

《有限元分析与应用》详细例题试题1:图示无限长刚性地基上的三角形大坝,受齐顶的水圧力作用,试用三节点常单元和六节点三角形单元对坝体进行有限元分析,并对以下儿种计算方案进行比较:1)分别采用相同单元数LI的三节点常应变单元和六节点三角形单元计算;2)分别釆用不同数量的三节点常应变单元计算;3)当选常应变三角单元时,分别采用不同划分方案计算。

一.问题描述及数学建模不同勿份方案翩无限长的刚性地基上的三角形大坝受齐顶的水压作用可看作一个平面问题,简化为平面三角形受力问题,把无限长的地基看着平面三角形的底边受固定支座约束的作用,受力面的受力简化为受均布载荷的作用。

二・建模及计算过程1.分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算下面简述三节点常应变单元有限元建模过程(其他类型的建模过程类似):进入ANSYS【开始】f【程序】fANSYS -►ANSYS Product Launcher -^change the working directory -►JobName: shitil-^Run设置计算类型ANSYS Main Menu: Preferences -^select Structural f OK选择单元类型单元是三节点常应变单元,可以用4节点退化表示。

ANSYS MainMenu: Preprocessor -►Element Type-*Add/Edit/Delete -►Add -^select Solid Quad 4 node 42 f OK (back to Element Types window) f Options... -^-select K3: Plane Strainf OKf Close (the Element Type window)定义材料参数材料为钢,可查找钢的参数并在有限元中左义,其中弹性模ME=210Gpa,泊松比vtANSYS Main Menu: Preprocessor f Material Props -►Material Models -►Structural -^Linear f Elastic f Isotropic f input EX:,PRXY: f OK生成几何模型生成特征点ANSYS Main Menu: Preprocessor —Modeling Create -*Keypoints ~*ln Active CS —依次输入四个点的坐标:input:l{0/0)/2(3/0)/3(6,0)/4(3/5)/5(0,10)/6(0/5)-*OK生成坝体截而ANSYS Main Menu: Preprocessor Modeling -*Create -*Areas -►Arbitrary -►Through KPS f 依次连接126;234;246;456这三个特征点一OK网格划分ANSYS Main Menu: Preprocessor f Meshing -►Mesh Toolf ⑸ze Controls) Global: Set -►inputNDIV: I-*OK f (back to the mesh tool window)Mesh: Areas, Shape: Tri, Free -*Mesh f Pick All (inPicking Menu) f Close( the Mesh Tool window)模型施加约束分别给下底边和竖直的纵边施加x和y方向的约朿ANSYS Main Menu: Solution Define Loads Apply f Structural -^Displacement f On lines f 选择底边f OK ->select:ALL DOF f OK给斜边施加x方向的分布载荷ANSYS命令菜单栏:Parameters -^Functions -*Define/Edit -*1)在卜方的卜拉列表框内选择x,作为设麗的变量:2)在Result窗口中岀现{X},写入所施加的载荷函数:1000*{X};3) File>Save(文件扩展洛:func)f 返回:Parameters f Functions -►Read from file;将需要的・func 文件打开,任给一个参数名,它表示随之将施加的载荷f OK -^ANSYS Main Menu: Solution -►Define Loads —Apply f Structural -►Pressure -►On Lines f 拾取斜边:OK f 在下拉列表框中,选择:Existing table (来自用户定义的变量)f OK -选择需要的载荷参数名一OK分析计算ANSYS Main Menu: Solution -►Solve -^Current LS -*OK(to close the solve Current Load Step window) f OK结果显示确左当前数据为最后时间步的数拯ANSYS Main Menu: General Postproc -►Read Resultf Last Set 查看在外力作用下的变形ANSYS Main Menu: General Postproc —Plot Results Deformed Shape-* select Def + Undeformed f OK 查看节点位移分布情况Contour Plot -*Nodal Solu..・-^select: DOF solution->Displacement vctor sum-^Def + Undeformed f OK 查看节点应力分布情况Contour Plot f Nodal Solu... f select: Stress-*-XY shear stress-*- Def + Undeformed-^OK退出系统ANSYS Utility Menu: File-* Exit...-* Save Everything-*OK三.结果分析三节点常应变单元(6个节点,4个单元)儿何模型图ANOCT 10 201016:46:1€变形图,节点位移图,节点应力图,节点应变图3TEP-1 SUB -:TDC-l ANOCT 10 SCIOx&:2i:ieKO SAX SCLTriSRSUB -1TDE-175TU IX79-. 2SY3-03MX -.109E-3&AN81 10 N101^:22:40.UL£-0«■'aE'>铃"侥六节点常应变单元(6个节点,4个单元) 儿何模型图变形图,节点位移图,节点应力图,节点应变图■QQM r -r~::r MCAL acunzoc5TT5-:SUB "I T2C-:rrTCKY ap MYfl-3 :«x ・.i03«-nRO» -.M<s-3T n<x -.ioez-oeANOCT 10 Z010.444Z-3: .MM-3? .0Z»E ・S . lOGZ^Ciwr-^iANOCT 10 20103«F-1 an .1 TDX-l na «.:ex-» ANon io RiorniMMKOU :Ct7T ::f MIX•: nxE-i i*n> FSY3-)Mi ..”《CV6 x •.jex -^sKXANon 10 K101;.:---.仇.liiC-»S.1)31^5.;5:£-35•wu -w・,““T9inc-n・ WH -P >分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算结果比较单元划分方案变形大小应力大小应变大小值的比较分析■9三节点三角形单元DMX:SMX:DMX:SMN:2778SMX:8749DMX:SMN:SMX:1.最大变形值小:12.最大应力值小;3.最大应变值小。

高耀东编著《ANSYS 18.2有限元分析与应用实例 》用SOLID185单元分析悬臂梁的剪切闭锁

高耀东编著《ANSYS 18.2有限元分析与应用实例 》用SOLID185单元分析悬臂梁的剪切闭锁

SOLVE
!求解
FINISH
/POST1 PLNSOL, U,Y
!显示变形云图
FINISH
50
4
4
92

2
50
50
4
4
25
缩减积分
0.2
0.217

3
10
50
4
4
25
全积分
25
9.782

4
10
50
4
20
200
全积分
25
24.658

5
10
50
4
4
25
缩减积分
25
26.402

分析结果表明,梁最大挠度的有限元全积分解小于理论解,全积分解小于缩减积分解, 梁高度较小时,采用全积分和较大的单元尺寸时会发生剪切闭锁,计算误差较大。
!定义材料模型
BLOCK,0,L,0,H,0,B
!创建六面体
LESIZE, 1,,,4 $ LESIZE, 9,,,4 $ LESIZE, 2,,,25
!指定直线划分单元段数
VMESH, 1
!对体划分单元
FINISH
/SOLU DA,5,ALL
!在面上施加全约束,模拟固定端
KSEL,S,LOC,X,L $ FK,ALL,FY,-P/4 $ ALLS !在关键点上加集中力
实例 E6-1 用 SOLID185 单元分析悬臂梁的剪切闭锁
已知如图 6-9 所示的悬臂梁的长度 L=0.5m,矩形截面,材料为钢,作用在梁上的集中 力 P=500N。下面用 ANSYS 对梁的变形进行研究,分析剪切闭锁的影响。分析使用的单元 类型为 SOLID185,采用的参数和分析结果见表 6-3。其中,梁最大挠度的理论解采用以下 公式

第八章 ANSYS工程应用实例 有限元法基本原理及应用课件

第八章 ANSYS工程应用实例 有限元法基本原理及应用课件

1. ..... 2. .....
3. .....
输入UG模型: Utility Menu: File > Import > UG...
Procedure
1.选择将要输入的 UG文件
2. 选择输入指定的一 部分层,然后再输 入层号,或号的范 围。(缺省为全部 层)
4. 选择几何体类型: – 对体选择Solids – 对面选择Surfaces – 对线选择Wireframes
平面问题也是工程中常见的一大类问题,平面问 题的模型上可以大大简化而又不失精度。平面问题分 为平面应力问题和平面应变问题。所谓平面应力问题 ,就是只有平面应力(σx,σy,ζxy)存在,且仅为x ,y的函数的弹性力学问题。
一般平面类问题工程实例
高速旋转的光盘的应力分析实例
问题描述 标准光盘,置于52倍速的光驱中处于最大读取速度(约为10000 转/分),计算其应力分布。 标 准 光 盘 参 数 : 外 径 : 120mm ; 内 孔 径 : 15mm ; 厚 度 : 1.2mm;弹性模量1.6×104MPa;密度:2.2×103Kg/m3。 注:本实例中的单位为应力单位MPa,力单位为N,长度为mm。
– 对体选择Solids – 对面选择Surfaces – 对线选择Wireframes
实例
虎钳底座强度分析
问题描述 某机用虎钳底座的结构如图8.66所示,整个结构由HT200材料制成。 工作状态下,整个虎钳由相连接的机器部件支承,并通过2个Φ13的孔 螺栓固定。虎口平面即26х110的面承受垂直于该面的夹紧力,载荷类 型为集中载荷,大小为10KN。现需要对虎钳底座进行强度分析。已知 虎钳底座底部竖向受到约束,底面2个Φ13孔边各点不产生水平位移, 灰铸铁材料的弹性模量为110GPa,泊松比为0.26。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SOLID185
E13-5
函数加载
用函数编辑器定义表面载荷
SOLI
转矩的施加
SOLID186
SURF154
E13-7
施加预紧力载荷
在单个螺栓联接施加预紧力载荷、汽缸缸体和端盖间螺纹联接的受力分析
SOLID186 TARGE170CONTA174 PRETS179
-
E19-6
流固耦合分析
运用单向流固耦合分析水流通过变径管
PLANE183SOLID186 SURF154
E20-1
APDL语言
用表格型数组施加载荷——施加随位置变化的压力载荷
PLANE183
E20-2
用表格型数组施加载荷实例——施加随时间变化的力载荷
MASS21 COMBIN14
E20-3
简谐响应的迭加——结构同时作用多个正弦载荷时的响应分析
MESH200
E12-3
常用单元类型的创建和应用
路径图实例
LINK11单元的应用
LINK11
E12-4
BEAM188、BEAM189单元的应用——基本应用、约束扭转、创建渐变截面梁、自定义梁截面——双金属片
BEAM188
BEAM189
E12-5
PLANE182、PLANE183单元的应用——平面应力问题、轴对称问题
SHELL181BEAM188MASS21
E20-4
宏的创建实例——计算实体的体积、面积、长度
-
E20-5
优化设计
优化设计实例——液压支架四连杆机构尺寸优化
MPC184BEAM188
注:*为初级实例,提供GUI操作步骤和截屏录像。
PLANE183 SOLID186 TARGE170 CONTA174
E18-7
接触分析实例——组合厚壁圆筒
PLANE183 TARGE169 CONTA172
E18-8
非线性分析实例——将钢板卷制成圆筒(柔体-柔体接触)
SHELL181 SOLID185 MPC184TARGE170 CONTA173
子模型技术实例
受压薄板
SOLID186
E13-1
对称和反对称约束
载荷工况
对称性应用实例——作用任意载荷的对称结构
BEAM188
E13-2
在梁单元上施加压力载荷
均匀分布的压力载荷、线性分布的压力载荷
BEAM188
E13-3
压力梯度及加载
在容器中施加静水压力
SOLID185
E13-4
函数加载
用表格数组进行函数加载——静水压力
SHELL181
E16-8*
平面问题的求解实例—厚壁圆筒问题
PLANE183
E16-9*
空间问题的求解实例—扳手的受力分析
PLANE182
SOLID185
E16-10
用实体单元计算转轴的应力
SOLID186
E16-11
在连杆上施加轴承载荷
PLANE183
SOLID186
E17-1*
模态分析实例
均匀直杆的固有频率分析
瞬态动力学分析实例——连杆机构的运动学分析
MPC184BEAM188
E17-11
瞬态动力学分析实例——车辆通过桥梁
BEAM188
70
E17-12*
谱分析
谱分析实例——地震谱作用下的结构响应分析
SHELL181BEAM188
E18-1
结构非线性分析
结构非线性分析——盘形弹簧载荷和变形关系分析
PLANE183
SOLID186
60
E17-2
斜齿圆柱齿轮的固有频率分析
SOLID185
E17-3
有预应力模态分析实例—弦的横向振动
LINK180
E17-4
循环对称结构模态分析实例——转子的固有频率分析
SHELL181
E17-5*
谐响应分析
完全法分析实例——单自由度系统的受迫振动
MASS21 COMBIN14
E17-6
E18-9
非线性分析实例——将钢板卷制成圆筒(刚体-柔体接触)
SOLID185TARGE170 CONTA173
80
E18-10
接触分析实例——斜齿圆柱齿轮传动分析
PLANE183 SOLID186 TARGE170 CONTA174
E18-11
利用MPC技术对SOLID-SHELL单元进行连接实例——简支梁
模态叠加法分析实例——悬臂梁的受迫振动
SOLID186
E17-7*
瞬态动力学分析
瞬态动力学分析实例——凸轮机构
PLANE182 SOLID185
E17-8
施加初始条件——将单自由度系统的质点从平衡位置拨开
MASS21 COMBIN14
E17-9
施加初始条件实例——抛物运动
SOLID185
E17-10
应用实例目录
序号
知识点
描述
使用单元
页次
E2-1
有限元理论
用ANSYS软件提取单元及结构刚度矩阵
PLANE182
E6-1
用SOLID185单元分析悬臂梁的剪切闭锁
SOLID185
E6-2
厚壁圆筒的体积闭锁分析
PLANE182
E6-3
观察沙漏
PLANE182
E10-1*
入门实例
平面桁架的受力分析
LINK180
E18-2
特征值屈曲分析实例——压杆稳定性问题
BEAM189
E18-3
非线性屈曲分析实例——悬臂梁
BEAM189
E18-4
材料非线性分析
材料非线性分析实例——自增强厚壁圆筒承载能力研究
PLANE183
E18-5
材料蠕变分析实例——受拉平板
PLANE182
E18-6
状态非线性分析
接触分析实例——平行圆柱体承受法向载荷时的接触应力分析
PLANE182
PLANE183
E12-6
循环对称结构在离心力作用下的应力和变形分析
SOLID186
E12-7
SHELL181单元的应用——基本应用、用绑定接触创建有限元模型
SHELL181
E12-8
直接生成有限元模型
实例
SOLID185
E12-9
自适应网格划分实例
受压薄板
PLANE182
E12-10
E16-2*
悬臂梁的静力学分析
BEAM188
E16-3
空间桁架桥的静力学分析
BEAM188
E16-4
连续梁的内力计算
BEAM189
E16-5
用自由度释放创建梁单元的铰接连接
BEAM189
E16-6
薄板弯曲问题的理论解和有限元解的对比
SHELL281
E16-7
壳单元结果与其他类型单元结果的对比—简支梁
E14-1
用云图显示线单元数据
作刚架的弯矩图
BEAM188
E14-2
面操作
计算实体单元某个面上的剪力、弯矩等内力
SOLID186
E14-3
通过存储祯创建动画
展成法加工齿轮模拟
E15-1*
坐标系以及选择操作应用实例
圆轴扭转分析
SOLID186
E16-1
静力学分析实例
复杂静定桁架的内力计算
LINK180
瞬态热分析
水箱
PLANE77
E19-2
热应力计算
在结构上直接施加温度载荷进行热应力计算——双金属片
SOLID186
E19-3
用直接法计算热应力实例——液体管路
PLANE13
E19-4
用多物理场求解器(MFS方案)计算热应力——液体管路
PLANE77PLANE183
E19-5
流体动力学分析
运用CFX软件分析冷热水混合三通管
-
E11-5*
体的创建及工作平面的应用实例——相交圆柱体
-
E11-6*
复杂形状实体的创建实例——螺栓
-
E11-7
斜齿圆柱齿轮的创建
-
E11-8
直齿锥齿轮齿廓曲面的创建
-
E12-1*
单元划分
几何模型的单元划分实例——面
-
E12-2
常见形状几何实体的单元划分
回转体、底座、直齿圆柱齿轮轮齿、容器接管
PLANE182 SOLID185
SOLID186
SHELL181
TARGE170
CONTA175
E18-12
单元生死技术应用——厚壁圆筒自增强后精加工
PLANE183
E18-13
单元生死技术应用——焊接模拟
PLANE77 SOLID90
E18-14
单元生死技术应用——隧道开挖
MESH200 SOLID185 SOLID65
E19-1
E11-1*
几何模型创建
关键点和线的创建实例——正弦曲线
-
E11-2
一些特殊线的创建。包括:过一个已知关键点作一个已知圆弧的切线、作两条圆弧的公切线、作一组折线、按函数关系作曲线——正弦曲线、圆锥阿基米德螺旋线、圆锥对数螺旋线和创建椭圆线
-
E11-3
圆柱面的创建
-
E11-4
按函数关系作曲面——双曲抛物面
相关文档
最新文档