八年级数学下册4.1因式分解教案
八年级数学下册 4.1 因式分解教案2 北师大版(2021年整理)

八年级数学下册4.1 因式分解教案2 (新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册4.1 因式分解教案2 (新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册4.1 因式分解教案2 (新版)北师大版的全部内容。
课题:4.1因式分解教学目标:1.理解因式分解的概念,能判断一个式子的变形是否为因式分解。
2。
在具体情境中,认识因式分解的意义,初步体会因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系解决实际问题.3。
在学习过程中,培养学生类比的数学思想和逆向运算的能力,逐步形成独立思考,主动探索的习惯。
教学重点与难点:重点:1。
因式分解的概念的理解和应用。
2。
探究因式分解与整式乘法的互逆关系.难点:理解因式分解与整式乘法的区别与联系,并运用它们之间互逆关系解决问题.教法与学法指导:教法:类比、探究式教学方法。
学法:自主、合作、探索的学习方式。
课前准备:教师准备:多媒体课件、投影仪、当堂检测试题题.学生准备:复习整式乘法.教学过程:一、设疑激趣引出章题(多媒体展示图片)问题1:图片上对开的两列车“整式乘法号”与“因式分解号”上的式子有什么特点?“因式分解号”列车的式子正确吗?处理方式:(1)让学生观察两列车上的式子并写在练习本上,发现它们是互逆变形.(2)让学生判断式子的正误,体会它们之间是一种恒等变形,同时对()2222a ab b a b ±+=±的成立与未知的因式分解产生好奇,提升本章的学习兴趣. (3)引出章题目——第四章 因式分解设计意图:通过一副形象的图画-—对开的列车,以及有对比性的两个数学问题,向学生展现本章要学习的主要内容,并渗透本章的重要思想方法—-类比法。
(完整版)北师大版八年级数学下册4.1因式分解教案

《因式分解》教学设计因式分解是义务教育课程标准实验教科书(北师版)《数学》八年级下册第四章第一节内容,本章主要是研究代数式的因式分解的方法和应用;本节要求使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.。
所以本节的重点是理解因式分解的意义.识别分解因式与整式乘法的关系。
【知识与能力目标】使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.【过程与方法目标】通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力. 【情感态度价值观目标】通过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系.【教学重点】1.理解因式分解的意义.2.识别分解因式与整式乘法的关系.【教学难点】通过观察,归纳分解因式与整式乘法的关系.教师准备课件、多媒体;学生准备;练习本;Ⅰ.创设问题情境,引入新课[师]大家会计算(a+b)(a-b)吗?[生]会.(a+b)(a-b)=a2-b2.[师]对,这是大家学过的平方差公式,我们是在整式乘法中学习的.从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?[生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个式子交换一下位置还成立.[师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.Ⅱ.讲授新课1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流.[生]993-99能被100整除.因为993-99=99×992-99=99×(992-1)=99×9800=99×98×100其中有一个因数为100,所以993-99能被100整除.[师]993-99还能被哪些正整数整除?[生]还能被99,98,980,990,9702等整除.[师]从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.2.议一议你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.[师]大家可以观察a3-a与993-99这两个代数式.[生]a3-a=a(a2-1)=a(a-1)(a+1)3.做一做(1)计算下列各式:①(m+4)(m-4)=__________;②(y-3)2=__________;③3x(x-1)=__________;④m(a+b+c)=__________;⑤a(a+1)(a-1)=__________.[生]解:①(m+4)(m-4)=m2-16;②(y-3)2=y2-6y+9;③3x(x-1)=3x2-3x;④m(a+b+c)=ma+mb+mc;⑤a(a+1)(a-1)=a(a2-1)=a3-a.(2)根据上面的算式填空:①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();④y2-6y+9=()2.⑤a3-a=()().[生]把等号左右两边的式子调换一下即可.即:①3x2-3x=3x(x-1);②m2-16=(m+4)(m-4);③ma+mb+mc=m(a+b+c);④y2-6y+9=(y-3)2;⑤a3-a=a(a2-1)=a(a+1)(a-1).[师]能分析一下两个题中的形式变换吗?[生]在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式.[师]在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式(factorization).4.想一想由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?[生]由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a -1)的变形是分解因式,这两种过程正好相反.[生]由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反.[师]非常棒.下面我们一起来总结一下.如:m(a+b+c)=ma+mb+mc (1)ma+mb+mc=m(a+b+c)(2)联系:等式(1)和(2)是同一个多项式的两种不同表现形式.区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.即ma+mb+mc m(a+b+c).所以,因式分解与整式乘法是相反方向的变形.5.例题投影片(§4.1 A)下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.而不是因式分解;(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;(3)和(2)相同,是因式分解;(4)是因式分解.[师]大家认可吗?[生]第(4)题不对,因为虽然x2-3x=x(x-3),但是等号右边x(x-3)+2整体来说它还是一个多项式的形式,而不是乘积的形式,所以(4)的变形不是因式分解.Ⅲ.课堂练习连一连解:Ⅳ.课时小结本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形.Ⅴ.课后作业习题4.11.连一连解:2.解:(2)、(3)是分解因式.3.因19992+1999=1999(1999+1)=1999×2000,所以19992+1999能被1999整除,也能被2000整除.(2)因为16.9×81+15.1×81=81×(16.9+15.1) =81×32=4 所以16.9×81 +15.1×81能被4整除.4.解:当R 1=19.2,R 2=32.4,R 3=35.4,I=2.5时, IR 1+IR 2+IR 3 =I (R 1+R 2+R 3) =2.5×(19.2+32.4+35.4) =2.5×87 =217.5 Ⅵ.活动与探究 已知a=2,b=3,c=5.求代数式a (a+b -c )+b (a+b -c )+c (c -a -b )的值. 解:当a=2,b=3,c=5时,a (a+b -c )+b (a+b -c )+c (c -a -b ) =a (a+b -c )+b (a+b -c )-c (a+b -c ) =(a+b -c )(a+b -c ) =(2+3-5)2=0 ●板书设计§4.1 分解因式一、1.讨论993-99能被100整除吗? 2.议一议 3.做一做4.想一想(讨论整式乘法与分解因式的联系与区别)5.例题讲解二、课堂练习三、课时小结四、课后作业◆教学反思略。
因式分解数学教案优秀5篇

因式分解数学教案优秀5篇更多因式分解数学教案资料,在搜索框搜索因式分解数学教案(篇1)教学目标1.学问与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,把握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探究因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养乐观的进取意识,体会数学学问的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探究:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,老师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。
因式分解数学教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
北师大版八年级下册数学《4.1 因式分解》教案

北师大版八年级下册数学《4.1 因式分解》教案一. 教材分析北师大版八年级下册数学《4.1 因式分解》这一节主要介绍了因式分解的概念和基本方法。
通过本节课的学习,学生能够理解因式分解的意义,掌握提公因式法、公式法等基本的因式分解方法,并能够运用这些方法解决一些实际问题。
二. 学情分析学生在学习这一节之前,已经学习了整式的乘法,对一些基本的代数运算有一定的了解。
但是,因式分解作为一种独立的数学思想,对学生来说可能还有一些抽象和难以理解。
因此,在教学过程中,需要引导学生从实际问题出发,逐步理解和掌握因式分解的方法。
三. 教学目标1.了解因式分解的概念和意义。
2.掌握提公因式法、公式法等基本的因式分解方法。
3.能够运用因式分解解决一些实际问题。
四. 教学重难点1.因式分解的概念和意义。
2.提公因式法和公式法的运用。
五. 教学方法采用问题驱动法,引导学生从实际问题出发,探索和理解因式分解的概念和方法。
同时,结合案例分析和练习,让学生在实践中掌握因式分解的方法。
六. 教学准备1.PPT课件。
2.相关练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的概念,比如:已知二次函数f(x)=x^2+4x+4,求其解析式。
让学生思考如何将这个二次函数表示成两个一次函数的乘积形式。
2.呈现(10分钟)讲解因式分解的概念,介绍提公因式法和公式法。
通过PPT课件,展示因式分解的步骤和例子,让学生理解和掌握因式分解的方法。
3.操练(10分钟)让学生分组讨论,每组选取一个题目进行因式分解。
教师巡回指导,解答学生的问题,并给予反馈。
4.巩固(10分钟)让学生独立完成一些因式分解的练习题,教师选取一些题目进行讲解和分析。
5.拓展(10分钟)引导学生思考如何将因式分解应用到解决实际问题中,比如:求解一元二次方程、求函数的极值等。
6.小结(5分钟)让学生总结因式分解的概念和方法,以及自己在学习过程中的收获和不足。
7.家庭作业(5分钟)布置一些因式分解的练习题,让学生巩固所学知识。
2022-2023学年八年级数学北师大版下册4.1因式分解 教案

2022-2023学年八年级数学北师大版下册4.1因式分解教案一、教学目标1.理解因式分解的概念和意义;2.掌握基本的因式分解方法;3.能够应用因式分解解决实际问题;4.培养学生的逻辑思维和综合运算能力。
二、教学内容1.回顾负数的乘法和除法;2.因式分解的基本概念;3.因式分解的基本方法;4.应用因式分解解决实际问题。
三、教学重点1.理解因式分解的概念和意义;2.掌握基本的因式分解方法。
四、教学难点1.能够应用因式分解解决实际问题;2.培养学生的逻辑思维和综合运算能力。
五、教学准备1.北师大版八年级数学下册教材;2.学生练习册;3.教学投影仪和课件。
六、教学过程1. 导入(5分钟)目的:进一步激发学生对因式分解的兴趣。
1.引入一个生活中的问题:小明买了5个苹果,小红买了3个苹果,他们一共买了多少个苹果?请用数学式子表示出来。
2. 新课讲解(10分钟)目的:引入因式分解的概念和意义。
1.引导学生思考:在小明和小红买苹果的问题中,能否用一种更简洁的方式表示数量关系?2.引出因式分解的概念:将一个数或者一个代数式写成若干个乘积的形式,其中每个乘积的因数称为因式。
3.引导学生发现因式分解的意义:通过因式分解,可以使问题的表达更加简洁,同时也方便我们进行计算和解题。
3. 示例演练(15分钟)目的:回顾负数的乘法和除法,并让学生掌握基本的因式分解方法。
1.提醒学生注意负数的乘法和除法规则:两个负数相乘得正数,一个正数和一个负数相乘得负数,负数除以正数得负数,正数除以负数得正数。
2.给出一个示例:将14ab分解为因式的乘积。
3.引导学生思考解题思路:首先确定14的因数,然后确定a和b的因数,并组合得到14ab的所有因式。
4.和学生一起分解示例:14ab = 2 * 7 * a * b。
4. 练习与巩固(15分钟)目的:让学生通过练习巩固所学的因式分解方法。
1.学生完成教材上的练习题,老师及时给予指导和解答。
5. 拓展与应用(10分钟)目的:引导学生将因式分解应用到实际问题中。
【核心素养】北师大版八年级数学下册4.1 因式分解 教案(表格式)

4.1 因式分解知识点一:全等三角形的判定和性质教师活动:通过类比数式的分解,对多项式进行分解,从而引出因式分解的概念.议一议你能尝试把a3-a化成几个整式的乘积的形式吗?与同伴交流.师生活动:教师提示:类比993- 99 的因数分解学生尝试分解,并交流反馈,得a3-a = a(a2- 1) = a(a + 1)(a- 1)做一做观察下面拼图过程,写出相应的关系式.问题1:观察同一行中,左右两边的等式有什么区别和联系?联系:等号左右两边是同一多项式的不同表现形式.区别:左边一栏是多项式的乘法,右边一栏是把多项式化成了几个整式的积,他们的运算是相反的.问题2:右边一栏表示的正是多项式的“因式分解”,你能根据我们的分析说出什么是因式分解吗?师生活动:教师引导学生观察上列等式与图片,然后讨论问题1,在做问题2时引出总结:归纳总结:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也可称为分解因式.其中,每个整式都叫做这个多项式的因式.辩一辩判断下列各式从左到右的变形中,是否为因式分解:A. x(a﹣b) = ax﹣bx(×)B. x2﹣1 + y2= (x﹣1)(x + 1) + y2 (×)C. y2﹣1 = (y + 1)(y﹣1)(√)D. ax + by + c = x(a + b) + c(×)E. 2a3b = a2 • 2ab(×)F. (x + 3)(x﹣3) = x2﹣9 (×)师生活动:学生举手回答问题.做一做计算下列各式:(1) 3x(x- 1) = 3x2 - 3x(2) m(a+b- 1) = ma+mb-m(3) (m+4)(m- 4) = ____m2 - 16(4) (y- 3)2 = _____y2 - 6y+9根据左边的算式进行因式分解:(1) 3x2 - 3x = ( 3x)( x- 1)(2) ma+mb-m = ( m)( a+b- 1 )(3) m2 - 16 = ( m+4 )( m- 4 )(4) y2 - 6y+9 = ( y- 3 )( y- 3) 或(y- 3)2师生活动:按照左边右边是什么形式,自由的说一说.知识点二:因式分解与整式乘法的关系想一想:由a(a + 1)(a- 1) 得到a3 -a的变形是什么运算?由a3-a得到a(a + 1)(a- 1) 的变形与它有什么不同?答:由a(a + 1)(a- 1) 得到a3 -a的变形是整式乘法,由a3-a得到a(a + 1)(a- 1) 的变形与上面的变形互为逆过程.想一想:因式分解与整式乘法有什么关系?师生活动:教师提出问题,学生小组交流探讨,小组代表发言,教师适时引导并整理板书.是互为相反的变形,即x2- 1 = (x + 1)(x- 1)因式分解等式的特征:左边是多项式,右边是几个整式的乘积.典例精析:例若多项式x2 + ax + b分解因式的结果为a(x ﹣2)(x + 3),求a,b的值.师生活动:教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.解:∵ x2 + ax + b = a(x- 2)(x + 3)= ax2 + ax- 6a,∵ a = 1,b = -6a = -6.方法归纳:对于此类问题,掌握因式分解与整式乘法为互逆运算是解题关键,应先把分解因式后的结4.1 因式分解把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也可称为分解因式.x2- 1 = (x + 1)(x- 1)因式分解等式的特征:左边是多项式,右边是几个整式的乘积.。
北师大版八年级下册数学《4.1 因式分解》教学设计

北师大版八年级下册数学《4.1 因式分解》教学设计一. 教材分析《4.1 因式分解》是北师大版八年级下册数学的一章内容。
本章主要介绍了因式分解的概念、方法和应用。
因式分解是初中学过的最复杂的整式运算,也是中学数学中重要的思想方法。
本章内容对于学生来说,既是对之前所学知识的巩固,也是为之后学习更高级数学打下基础。
二. 学情分析学生在学习本章内容之前,已经掌握了整式的加减、乘法、除法等基本运算,同时也学习过一些简单的因式分解方法。
但是,对于八年级的学生来说,因式分解仍然是一个比较困难的问题,需要通过实例讲解和练习来进一步理解和掌握。
三. 教学目标1.知识与技能:使学生理解因式分解的概念,掌握因式分解的方法,能够运用因式分解解决实际问题。
2.过程与方法:通过实例讲解和练习,培养学生观察、分析、归纳的能力,提高解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和毅力,使学生感受到数学的美丽和实用性。
四. 教学重难点1.重点:因式分解的概念和方法。
2.难点:如何运用因式分解解决实际问题。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过实例讲解、练习和讨论,使学生理解和掌握因式分解的方法和应用。
六. 教学准备1.准备相关教学材料,如PPT、教案、练习题等。
2.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出因式分解的概念和方法。
例如,讲解“分解因数”的概念,让学生初步了解因式分解的意义。
2.呈现(15分钟)讲解因式分解的基本方法,如提公因式法、公式法等。
通过示例,让学生观察和分析因式分解的过程,引导学生主动思考和探究。
3.操练(15分钟)让学生分组进行练习,互相讨论和交流因式分解的方法。
教师巡回指导,解答学生的疑问,及时给予反馈和评价。
4.巩固(10分钟)让学生独立完成一些因式分解的题目,巩固所学知识。
教师选取部分学生的作业进行讲解和分析,指出其中的错误和不足。
北师大版八年级数学(下册)优秀教学案例:4.1因式分解

三、教学策略
(一)情景创设
为了让学生更好地理解因式分解的概念和意义,我将通过创设丰富多样的教学情景,引导学生从生活中发现数学的影子。例如,通过实际生活中的物品购买问题,让学生体会因式分解在简化计算方面的作用;或者通过设计有趣的数学故事,将因式分解融入其中,激发学生的学习兴趣。此外,利用多媒体教学手段,如动画、图片等,形象直观地展示因式分解的过程,帮助学生形成直观的认识。
1.例题1:(a+b)×(a+b)
例题2:(x+y)×(x-y)
例题3:a^2+2ab+b^2
2.讨论要求:
(1)各小组讨论并确定解题方法。
(2)各小组派代表展示解题过程及答案。
(3)讨论过程中,鼓励学生提问、质疑,分享解题心得。
(四)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学的因式分解方法,总结各方法的优缺点及适用场景。
2.因式分解的意义:因式分解可以帮助我们简化计算,解决实际问题。
3.因式分解的方法:介绍提取公因式法、十字相乘法、平方差公式等常用的因式分解方法。
在讲解过程中,结合具体例题,让学生直观地感受因式分解的过程,并强调各方法的适用条件及注意事项。
(三)学生小组讨论
在学生小组讨论环节,我会给出几个具有代表性的例题,让学生分组讨论,共同完成因式分解的任务。
北师大版八年级数学(下册)优秀教学案例:4.1因式分解
一、案例背景
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1 因式分解
1.理解并掌握因式分解的概念;
2.理解因式分解与整式乘法之间的关系,并能够运用其解决问题.(难点)
一、情境导入
某中学决定购买m台电脑和m套桌椅,现在知道每台电脑的单价是a元,每套桌椅的价格是b元,小明说:“总共需要(ma +mb)元.”小华说:“总共需要m(a+b)元.”
同学们,你们觉得他们计算出的总金
额一样吗?
二、合作探究
探究点一:因式分解的概念
下列从左到右的变形中是因式分
解的有( )
①x2-y2-1=(x+y)(x-y)-1;②x3+x=x(x2+1);③(x-y)2=x2-2xy+y2;
④x2-9y2=(x+3y)(x-3y).
A.1个 B.2个 C.3个 D.4个
解析:①没把一个多项式转化成几个
整式积的形式,故①不是因式分解;②把
一个多项式转化成几个整式积的形式,故②是因式分解;③是整式的乘法,故③不
是因式分解;④把一个多项式转化成几个
整式积的形式,故④是因式分解;故选 B.
方法总结:因式分解与整式乘法是相
反方向的变形,即互逆运算,二者是一个
式子的不同表现形式.因式分解是两个或
几个因式积的表现形式,整式乘法是多项
式的表现形式.
探究点二:因式分解与整式乘法的关
系及简单应用
已知三次四项式2x3-5x2-6x+k分解因式后有一个因式是x-3,试求k 的值及另一个因式.
解析:此题可设此三次四项式的另一
个因式为(2x2-mx-
k
3
),将两因式的乘积
展开与原三次四项式比较就可求出k的值.
解:设另一个因式为2x2-mx-
k
3
,∴(x-3)(2x2-mx-
k
3
)=2x3-5x2-6x+k,2x3-mx2-
k
3
x-6x2+3mx+k=2x3-5x2-
6x+k,2x3-(m+6)x2-(
k
3
-3m)x+k=2x3
-5x2-6x+k,∴m+6=5,k
3
-3m=6,解
得m=-1,k=9,∴k=9,∴另一个因式为2x2+x-3.
方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.
三、板书设计
1.因式分解的概念
把一个多项式转化成几个整式的积的形式,这种变形叫做因式分解.
2.因式分解与整式乘法的关系
因式分解是整式乘法的逆运算.
本课是通过对比整式乘法的学习,引导学生探究因式分解和整式乘法的联系,通过对比学习加深对新知识的理解.教学时采用新课探究的形式,鼓励学生参与到课堂教学中,以兴趣带动学习,提高课堂学习效率.。