开关电源中各类电容的正确选择方法

合集下载

开关电源电容选择计算方法

开关电源电容选择计算方法

开关电源电容选择计算方法选择开关电源的电容时,需要考虑以下几个因素:工作频率、负载要求、稳压要求、体积和成本。

第一步:确定工作频率工作频率对电容的选择非常重要,因为电容器的容性会随频率的变化而变化。

通常,电容的容性与频率成反比,因此在高频范围内选择合适的电容值非常关键。

第二步:计算负载要求负载要求包括负载电流和纹波电流两个方面。

负载电流是指电容器需要提供给负载的电流,而纹波电流是指从电容器流过的交流电流。

负载电流通常可以从电路图或负载手册中获取,纹波电流则可以通过计算或测量获得。

根据负载电流和纹波电流的数值,可以计算所需的最小电容值。

一般来说,较大的负载电流和纹波电流需要更大的电容值才能满足系统要求,而较小的负载电流和纹波电流则可以选择相对较小的电容值。

一般的经验法则是,选择的电容值应该大于所需电容值的两倍。

第三步:考虑稳压要求稳压要求是指在负载变化或输入电压变化时,输出电压的稳定性。

稳压要求一般通过纹波电压来衡量,即输出电压的波动幅度。

如果稳压要求较高,则需要选择较大容值的电容器。

一般来说,电容器的容值越大,输出电压的稳定性越好。

但是,较大的电容值通常会增加系统的体积和成本,因此需要在稳压要求和系统成本之间进行权衡。

第四步:考虑体积和成本电容器的体积和成本是选择电容值时需要考虑的重要因素。

较大的电容值通常会增加系统的体积和成本,因此需要根据系统的要求和预算来选择合适的电容值。

此外,还需要考虑电容器的封装形式和温度特性,因为这些因素也会影响系统的体积和成本。

总之,选择开关电源的电容时需要考虑工作频率、负载要求、稳压要求、体积和成本等因素。

根据这些因素的要求和约束,可以计算出所需的最小电容值,并在此基础上进行合理的选择。

在选择电容器时,还需要考虑电容器的封装形式、温度特性和可靠性等因素,以确保系统的性能和可靠性。

开关电源输出滤波电容越大越好如何选择开关电源输出滤波电容电源

开关电源输出滤波电容越大越好如何选择开关电源输出滤波电容电源

开关电源输出滤波电容越大越好?如何选择开关电源输出滤波电容 - 电源通常认为开关电源的输出滤波电容越大越好,其实这种观点是不全面的,影响开关电源直流电压输出品质的最重要参数其实是电容的ESR 值。

电容的ESR是指电容的等效串联电阻或阻抗。

抱负的电容器是没有电阻的。

但是实际上,任何电容都有电阻,这个电阻值和电容的组成材料、结构有关系。

在开关电源技术大规模应用之前,普遍接受线性电源,电源电路都工作在低频直流状态,通过滤波整流电路把沟通转换成直流。

在低频直流电源中,电容的容量对滤波效果起打算作用,电容的串联阻抗作用可以忽视。

但是低频电源效率低,体积大的缺点格外明显。

由于电子技术的进步,近二十年来渐渐进展了脉宽调制的高频开关电源技术,大大地提高了电源的转换效率,也减小了电源的体积。

开关电源的工作频率越高,电源的体积就越小。

开关电源的工作频率从几十KHz到几MHz不等。

在开关电源中,电容的ESR直接影响到电容的效果,它比电容器的容量还重要,事实上我们所说的电容器的容量一般都是在120Hz下测量的值,当工作频率提高时,电容容量会急剧降低,甚至根本不能起到电容的作用。

一般而言,应当选择ESR相对较小的电容。

在不同类型的电容中,以电解电容的ESR通常最大,钽电容次之,陶瓷电容最佳。

当然,即使是电解电容中,也分一般电解电容和低ESR的电解电容。

用在开关电源输出滤波的应当接受低ESR的电解电容。

在修理中,假如用一般电解电容替换低ESR的电解电容,开关电源可能短时间能工作,但是寿命确定不长。

弄不好,电容很快由于损耗太大而爆裂甚至爆炸,所以更换电容应当当心。

同样容量同样耐压的电解电容,体积大的往往ESR小。

同样容量不同耐压的电解电容,耐压高度往往ESR小。

同样耐压同样容量的电容,105度比85度的ESR要小。

当然,这也不是确定的,对于同一厂家同一系列的电解电容,基本上成立。

抱负的的电容器,本身不会产生任何能量损失,在实际应用中,由于生产电容的材料有电阻率,电容的绝缘介质有损耗,这个损耗可以等效为一个电阻跟电容串联在一起,称为电容的等效串联电阻,英文简称ESR,是Equivalent Series Resistance的缩写。

如何选择电容选择

如何选择电容选择
开关电源中电容器的选择
1
一、电容器的基本原理
结构 :电容器的基本结构是
由两块导体极板,中间隔离有 不同的电介质(绝缘体)组成 。其符号如图(b)所示。
充电:当两个端子接到电源
时,电源正极将相连极板电子 吸走,留下正电荷;而负极向 另一极板同时送人相等电子。 在外电路形成电流。直到极板 电压等于极板两端电压。
ESR:引线、焊接和介质极化损耗。介 质损耗与温度和频率有关。 ESL:引线、电容极板结构有关。 RS:泄漏电阻,一般很大 损耗系数:容量>1F,用120Hz;<
DF RESR R C tan ESR 10000 1000 C 10000
1F ,用1kHz。C(F),DF(%)
8
各种电容引线结构典型ESL
• SMT元件典型值在2~8nH。径向引线型电 容在10nH~30nH,螺旋端子电容 20~50nH,轴向引线型低于200nH。出头 位置和固有电感,
9
4. 纹波电流和dv/dt定额
电容温升是ESR损耗引起的。为了保证电容的寿 命,电容规定了允许纹波电流值,而有些电容规 定了电压变化率,即dV/dt,一般用V/μs表示。决 定此电容脉冲电流(CdV/dt)能力。
容量标注在外壳上,测试条件为25C,>1μF 测试频率为 120Hz, 1μF >C>1nF 测试频率为1kHz
6
2.电压定额
电容器介质中的电场强度大于它的允许电场强度,这是 绝缘介质中的电子被拉出来,产生雪崩效应,引起介质 击穿。额定电压一般比击穿电压低。高电压定额的电容 需要更厚的介质,比低电压体积大。 额定直流电压:电容两极能施加的最高直流电压。 额定交流电压:受损耗限制,一般比直流电压低得多。 并随频率增加允许交流电压降低。

电路中电容的选型

电路中电容的选型

电路中电容的选型电容是电子电路中常用的元件之一,它具有储存电荷和隔离直流信号的作用。

在电路设计中,选择合适的电容是非常重要的。

本文将从电容的基本原理、参数以及选型方法等方面进行阐述,帮助读者更好地了解电容的选型过程。

一、电容的基本原理电容是由两个导体之间的绝缘介质隔开而形成的,当电压施加在电容的两个导体上时,导体之间会储存电荷。

电容的单位为法拉(F),常用的电容值有皮法(pF)、纳法(nF)、微法(μF)和毫法(mF)等。

二、电容的参数1. 电容值(容量):电容的容量决定了其储存电荷的能力,常用的电容值范围很广,从皮法到法拉都有。

在选型时,要根据电路的需求和设计要求来选择适当的电容容量。

2. 额定电压:电容器能够承受的最大电压称为额定电压。

选型时要确保所选电容器的额定电压大于或等于电路中的最大工作电压,避免电容器被击穿损坏。

3. 介质损耗(损耗角正切):介质损耗是电容器的一个重要参数,它反映了电容器在工作频率下的能量损失情况。

一般来说,介质损耗越小,电容器的性能越好。

4. 介质材料:电容器的介质材料也是选型时需要考虑的因素之一。

常见的介质材料有陶瓷、聚酯、聚丙烯等,每种材料都有其特点和适用范围。

三、电容的选型方法1. 根据电容值选择:根据电路的需求和设计要求,确定所需的电容值范围,然后选择合适的电容容量。

一般来说,选型时应选择离所需电容值最近的标准值。

2. 根据额定电压选择:根据电路中的最大工作电压确定所需的额定电压,并选择额定电压大于或等于该值的电容器。

3. 根据介质损耗选择:根据电路的工作频率和对电容器性能的要求,选择介质损耗较小的电容器。

4. 考虑尺寸和成本:电容器的尺寸和成本也是选型时需要考虑的因素。

对于空间受限的应用,要选择尺寸较小的电容器;对于成本敏感的应用,要选择价格较低的电容器。

四、电容的应用举例1. 滤波电路:电容器可以用来滤除电路中的高频噪声,保证信号的纯净度。

2. 耦合电容:电容器可以用来耦合两个电路,将一个电路的信号传递到另一个电路中。

如何选择适合的电容器

如何选择适合的电容器

如何选择适合的电容器电容器在电子电路中扮演着重要的角色,用于存储和释放电荷,调节电路的电压和电流。

选择适合的电容器对于电子电路的性能和稳定性至关重要。

本文将介绍一些选择适合的电容器的关键因素和方法。

一、电容器的类型1. 固定电容器:是最常见的电容器类型,具有固定的电容值,不能调节。

常见的有陶瓷电容器、电解电容器等。

2. 可变电容器:具有可调节电容值的特性,可以通过旋钮或其他手段实现。

如可变电容器、变压电容器等。

根据电容器类型的不同,选择适合的电容器需根据具体应用的要求和电路设计的需要进行选择。

二、电容器的电容值电容值是选择电容器的关键因素之一。

电容值的单位通常为法拉(F),但在实际应用中常使用其他单位,例如微法(F)、皮法(F)等。

1. 确定所需电容值:在选择电容器之前,需明确所需的电容值。

可以通过电路设计要求、待测量或参考已有电路的电容值来确定。

2. 选择合适的电容器类型和规格:根据确定的电容值,选择最接近或稍大于所需电容值的电容器。

若所需电容值不标准,则需要进行适当调整。

三、电容器的电压等级电容器的电压等级是选择电容器时需要考虑的另一个重要因素。

电容器的电压等级应大于或等于电路中的最高电压值,以确保电容器的稳定性和可靠性。

在选择电容器时,需查看电容器的规格参数,确认其电压等级是否满足电路要求。

如果电压等级过低,可能会导致电容器损坏或性能下降。

四、电容器的封装类型电容器的封装类型直接影响其适用范围和安装方式。

常见的封装类型有贴片式、脚孔式和插座式等。

1. 贴片式电容器:适用于小型电子设备和高密度电路板,易于大规模生产和自动化装配。

2. 脚孔式电容器:适用于传统的电子设备和原型设计,需要通过焊接或插拔的方式安装。

3. 插座式电容器:适用于需要经常更换电容器的场合,能够方便地插拔和更换电容器。

五、电容器的温度特性电容器的性能随温度的变化而变化,因此温度特性是选择电容器时需要考虑的因素之一。

电容器的温度特性通常通过温度系数来表示。

开关电源中各类电容的正确选择方法

开关电源中各类电容的正确选择方法

开关电源中各类电容的正确选择方法深圳市森树强电子科技有限公司电容可用来减少纹波并吸收开关稳压器产生的噪声,它还可以用于后级稳压,提高设备的稳定性和瞬态响应能力。

电源输出中不应出现任何纹波噪声或残留抖动。

这些电路常采用钽电容来降低纹波,但钽电容有可能受到开关稳压器的噪声影响而产生不安全的瞬变现象。

为保证可靠工作,必须降低钽电容的额定电压。

例如,额定值为10uF/35V的D型钽电容,工作电压应降低到17V,如果用在电源输入端过滤纹波,额定35V钽电容可在高达17V的电压导轨上可靠地工作。

高压电源总线系统一般很难达到额定电压降低50%的指标。

这种情况限制了钽电容用于电压导轨大于28V的应用。

目前,由于钽电容需要被降额使用,高压滤波应用唯一可行的办法是采用体积较大且带引线的电解电容,而不是钽电容。

大电容是退耦电容,即相当于给下级IC提供了一个电荷水池,大电容电压不突变,所以,如果下级IC的IO口转换剧烈,需要大电流时,从退耦电容中提取电流,不会拉低开关电源电压,从这个意义讲,大电容免除下级IC对电源的影响。

小电容是作用正好相反,是滤波电容,即电源电压通过整形滤波之后出来的电压仍不可避免的有各次波谐波分量,即有交流分量,所以小电容是免除电压波动对下级IC的影响的。

1、EMI滤波电容的选择能滤除电网线之间的串模干扰的电容器,称作“X电容”(一般选择X2,常用容量范围是1nF~1uF,并联在电网之间)能滤除由一次绕组、二次绕组耦合电容产生的共模干扰电容器,称作“Y 电容”,一端接一次侧直流高压,另一端接二次侧公共端(用于滤除10~200MHz 频段的高频干扰,因此需要用短引线连接,常用容量范围是1~2.2nF 耐压值一般不低于1.5kV)2、旁路电容和去耦电容去耦电容在集成电路的电源和地之间有两个作用:2.1、旁路掉该器件的高频噪声。

(数字电路中典型的去耦电容值是0.1uF,最好不用电解电容,去耦电容的选用经验算法:C=1/F,即10MHz 取0.1uF,100MHz 取0.01uF)在电子电路中,旁路电容和去耦电容都是起到抗干扰的作用,因为电容处的位置不一样,称呼也就不一样了。

开关电源中的电容器选用

开关电源中的电容器选用

开关电源中的电容器选用开关电源中的电容器选用开关电源寿命的60%是由电容器质量决定的,所以开关电源使用的电容器要求寿命长、体积小、工作频率高和耐高温。

在开关电源电路中常用到以下几种类型的电容器。

1. 陶瓷电容器。

陶瓷电容器具有绝缘性能强、绝缘电阻高,可用于高电压电路、耐热性能好的特点;陶瓷材料的温度系数范围很宽,可以生产出不同温度系数的电容器,以适应不同的应用场合。

陶瓷电容器的损耗角正切值与频率的关系很小,可广泛用于开关电源的高频电路中,陶瓷电容器的电容量比较小,一般只有几皮法到零点几微法。

陶瓷电容器一般为圆片形、筒形或叠片形。

机械强度低、易破裂是陶瓷电容器的缺点。

2. 薄膜电容器。

薄膜电容器是用聚苯乙烯、聚四氟乙烯、聚丙烯或聚碳酸酯等材料制成的。

薄膜电容器分为有极性有机薄膜和非极性有机薄膜电容器两种类型。

有极性有机薄膜电容器具有电容容量与体积的比值大、耐高温、耐电压强度高等优点。

非极性有机薄膜电容器具有损耗角正切值小、绝缘电阻大、介质吸收系数小、负温度系数等优点。

如果在有机薄膜上单面均匀地镀上一层金属膜并叠卷绕制成电容,则称为金属化有机薄膜电容器。

薄膜电容器有圆柱形、扁平形、叠片块状形等。

薄膜电容器产品型号中的C表示电容器,B表示聚苯乙烯。

它的体积小,重量轻,还具有“自愈”功能。

薄膜电容器包括聚苯乙烯电容器、聚四氟乙烯电容器、聚丙烯电容器、聚酯电容器、聚碳酸酯电容器等六种薄膜电容器。

聚苯乙烯薄膜电容器具有如下特点:a) 耐压范围宽,为30V~15KV。

普通聚苯乙烯电容器的工作电压为100V,高电压聚苯乙烯电容器的工作电压可达10KV~15KV;b) 绝缘电阻高,一般大于或等于100000000000欧姆,所以漏电流小,它在充电后静置1000小时,仍能保持电荷量的95%,而低质电容器在充电后静置200小时,其电荷就全部放完;c) 损耗角的正切值大,在高频电路中不宜使用金属化聚苯乙烯电容器;d) 电容器的容量范围宽,可生产100PF~100uF的电容器;e) 电容器的精度高,可生产出0.3%~0.1%的高精度电容器;f) 温度系数小,性能稳定,抗酸碱,耐潮湿等,使用时注意标注的耐压值和电容量。

开关电源X电容与Y电容的选用准则

开关电源X电容与Y电容的选用准则

开关电源的X电容设计准则:参考AD1118 X电容放置原则:1.共模扼流圈前:105/275VAC(MKP/X2)2.共模扼流圈后:474/275VAC(MKP/X2)参考MW SP200-12 X电容放置原则:1.共模扼流圈前:1uF/275VAC(MKP/X2)2.共模扼流圈后:0.33uF/275VAC(MKP/X2)参考MW S145-12 X电容放置原则:1.共模扼流圈前:0.22uF/MKP-X2-250VAC/275VAC(GS-L)2.共模扼流圈后:0.1uF/MKP-X2-250VAC/275VAC(GS-L)一般两级X电容,前一级用0.47uF,第二级用0.1uF;单级则用0.47uF.目前还没有比较方便的计算方法。

(电容容量的大小和电源的功率无直接关系)开关电源的Y电容设计准则:大地=PGND(or CHGND)参考AD1118 Y电容放置原则:1.市电输入L/N线对大地:(2颗472/250V Y2)2.市电经过一级共模扼流圈后的两线对大地:(2颗472/250V)3.整流桥输出的低压端(变压器初级低压端)对大地:(1颗222/250V)4.6组低压直流输出88V1对大地:(各1颗103/1KV Y1)5.6组低压输出辅助电源AGND(变压器次级低压端)对大地:(共用1颗103/1KV Y1)6.变压器初级低压端对变压器次级低压端:(共用1颗103/1kV Y1)参考AD1043的设计:1.市电输入L/N线对大地:(2颗222/250V Y2)2.市电经过1级共模扼流圈后的两线对大地:(2颗472/250V Y2)参考康殊电子的设计:1.市电输入L/N线对大地:(2颗102/250V Y2)2.市电经过2级共模扼流圈后的两线对大地:(2颗102/250V Y2)3.整流桥输出的低压端(变压器初级低压端)对大地:(1颗332/250V Y2)4.12V低压直流输出对大地:(1颗223/1KV DISC Y1)5.变压器初级低压端对变压器次级低压端:(222/250V Y1)参考MW S-145-12的设计:1.市电经过1级共模扼流圈后的两线对大地:(2颗222/2kV Y1)2.整流桥输出的低压端(变压器初级低压端)对大地:(1颗222/2kV Y1)3.12V低压直流输出GND对大地:(1颗103/1KV Y1)参考MW S-200-12的设计:1.市电输入L/N线对大地:(2颗472/250V Y2未上)2.市电经过1级共模扼流圈后的两线对大地:(2颗472/250V Y2)2.整流桥输出的低压端(变压器初级低压端)对大地:(1颗222/250V Y2)3.PFC输出高压端对变压器初级地:(1颗103/2kV Y1)4.12V低压直流输出对大地:(1颗103/1KV Y1)5.12V低压直流输出GND对大地:(1颗203/1KV Y1)根据上述说明,Y电容设计规则如下:(可适当选择)1.市电输入L/N线对大地:(2颗222/250V Y2)2.市电经过一级共模扼流圈后的两线对大地:(2颗222/250V Y2)3.整流桥输出的低压端(变压器初级低压端)对大地:(1颗222/250V Y2)4.变压器初级低压端对变压器次级低压端:(共用1颗103/1kV Y1)4.低压侧直流输出对大地:(1颗103/1KV)6.低压输出侧GND对大地:(1颗103/1KV)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源中各类电容的正确选择方法
深圳市森树强电子科技有限公司
电容可用来减少纹波并吸收开关稳压器产生的噪声,它还可以用于后级稳压,提高设备的稳定性和瞬态响应能力。

电源输出中不应出现任何纹波噪声或残留抖动。

这些电路常采用钽电容来降低纹波,但钽电容有可能受到开关稳压器的噪声影响而产生不安全的瞬变现象。

为保证可靠工作,必须降低钽电容的额定电压。

例如,额定值为10uF/35V的D型钽电容,工作电压应降低到17V,如果用在电源输入端过滤纹波,额定35V钽电容可在高达17V的电压导轨上可靠地工作。

高压电源总线系统一般很难达到额定电压降低50%的指标。

这种情况限制了钽电容用于电压导轨大于28V的应用。

目前,由于钽电容需要被降额使用,高压滤波应用唯一可行的办法是采用体积较大且带引线的电解电容,而不是钽电容。

大电容是退耦电容,即相当于给下级IC提供了一个电荷水池,大电容电压不突变,所以,如果下级IC的IO口转换剧烈,需要大电流时,从退耦电容中提取电流,不会拉低开关电源电压,从这个意义讲,大电容免除下级IC对电源的影响。

小电容是作用正好相反,是滤波电容,即电源电压通过整形滤波之后出来的电压仍不可避免的有各次波谐波分量,即有交流分量,所以小电容是免除电压波动对下级IC的影响的。

1、EMI滤波电容的选择
能滤除电网线之间的串模干扰的电容器,称作“X电容”(一般选择X2,常用容量范围是1nF~1uF,并联在电网之间)能滤除由一次绕组、二次绕组耦合电容产生的共模干扰电容器,称作“Y 电容”,一端接一次侧直流高压,另一端接二次侧公共端(用于滤除10~200MHz 频段的高频干扰,因此需要用短引线连接,常用容量范围是1~2.2nF 耐压值一般不低于1.5kV)
2、旁路电容和去耦电容
去耦电容在集成电路的电源和地之间有两个作用:
2.1、旁路掉该器件的高频噪声。

(数字电路中典型的去耦电容值是0.1uF,最好不用电解电容,去耦电容的选用经验算法:C=1/F,即10MHz 取0.1uF,100MHz 取0.01uF)
在电子电路中,旁路电容和去耦电容都是起到抗干扰的作用,因为电容处的位置不一样,称呼也就不一样了。

对于同一个电路来说,旁路电容就是把输入信号的高频噪声作为滤除对象,把前级携带的高频杂波滤除;而去耦电容也称退偶电容,就是把输出信号的干扰作为滤除对象。

总之一句话,旁路,退偶,都是作用于高频干扰。

所以电容值要取小。

具体要根据实验结果来定。

2.2、作为集成电路的蓄能电容。

3、输入输出滤波电容器的选择
3.1、输出滤波电容器的选择
3.1.1、为减小输出噪声,可以在电解电容器上再并一只0.01~0.1uF的小电容。

3.1.2、可以将几只相同容量的电解电容器并联使用,以降低等效串联电阻。

(电解电容的使用寿命与纹波电流,环境温度有关,纹波电流越大,环境温度越高,使用寿命就越短)设计时要注意。

3.1.3、输出滤波电容器的耐压值一般留出1.2~1.5倍的余量(为了更安全可靠可以选择2 倍)。

3.1.4、输出滤波电容器的容量可按照1000uF/A来选择。

3.2、输入滤波电容器的选择
以引脚的形式分,有径向引线,轴向引线,一般选择径向引线的电容,并在安装时应尽量减小引线长度。

(电解电容剂型不得接反;耐压值选择为实际工作值的1.2~1.5倍)
3.3、输入滤波电容器容量的选择
当交流电压u=85~265V时,经验选择k=(2~3)uF/W
当交流电压u=230V(+-15%)时,k=1uF/W
(k为每单位输出功率(W)所需输入滤波电容器容量(uF)的比例系数。

相关文档
最新文档