开关电源中的电流型控制模式

合集下载

开关电源控制模式分析

开关电源控制模式分析

开关电源控制模式分析摘要:开关电源高频化、模块化、数字化的实现,标志着开关电源控制技术的成熟,本文分析了开关电源控制模式,在总结了开关电源发展历程的基础上分析了数字化控制及电流型控制模式的优点。

关键词:开关电源控制模式数字化控制模块化开关电源作为一种能够稳定持续输出电压的电源,其主要是由控制开关晶体管控制开通和关断时间的,因此,在开关电源中最重要、最核心的部分就是控制电路,本文进行了开关电源控制模式分析。

1 开关电源概述开关电源是伴随着电力电子技术的进步而发展起来的,由于具有高效节能、轻巧便捷等特点,开关电源得到了越来越广泛的应用。

开关电源的效率可达到85%以上,与普通的线性电源相比其效率提高了近一倍,且其可靠性也较高,采用了体积较小的散热器和滤波元件,具有良好的发展前途。

可将开关电源分为AC/AC和DC/DC电源等类型,其中DC/DC电源变换器已实现了模块化的设计和发展,得到了广大用户的普遍认可。

2 开关电源发展历程开关电源的发展已经经历了40多年,早期开发的开关频率非常低,且价格较高,只能应用于卫星等少数要求电源质量较高的领域。

但自20世纪60年代晶闸管相位控制模式出现后开关电源经历了较快的发展,70年代时制约开关电源发展的瓶颈主要是效率问题,同时由于调试工作困难而难以大规模的推广应用。

70年代后期,随着大规模集成电路技术的出现,各种专用的开关电源芯片进入市场,将控制电路、驱动电路、保护电路和检测电路封装在一起的模式非常有利于开关电源的发展,由于焊点减小提高了开关电源的可靠性,同时也由于集成化的发展是开关电源的体积减小,为应用带来了极大的便利。

如今,集成化的电源已被广泛应用于计算机、航天、彩色电视等各个领域,且随着微电子技术、半导体技术的进一步发展,功能更强大,集成度更高的超大规模集成电路的出现,电子设备的体积和重量仍在不断减小,但与之相匹配的电源体积却大的多,在现代化的电子产品中,电源的体积要比微处理器大10倍以上,因此,如何缩小电源的体积就是一项非常具有意义的研究课题。

第三节 开关电源电压型控制和电流型控制基本原理

第三节 开关电源电压型控制和电流型控制基本原理
• 1.平均电流反馈:响应速度慢 • 2.逐周过电流保护:检测瞬时电流,响应快 • 3.电压滞环的电压型控制:又称打嗝型控制 (hiccup-mode),当输出电压低于设定值时,开 关管才开通,否则开关管处于常关的状态。 • 4.常用控制芯片:TL494,SG3525
电压型控制的优点
• 1。单环控制,易于设计和分析; • 2。噪声裕量大; • 3。多路输出时,交叉调节性能好。
负载
0
x
PWM比较器 + C1 z=xy
R3
PI调节器
X为误差信号
+
Vref
将前面各个环节的传递函数代入上述控制系统,并进行 归一化后可以得到博德图。从博德图可知,电压模式控 制的开关电源,其稳定性和动态特性之间的矛盾比较突 出。(参阅教材和参考书得到此问题的详尽解释)
电压型控制的过电流保护形式 及其常用控制芯片
一、电压控制模式和电流控制模式
开关电源的控制模式分为:电压控制模式(Voltage Mode Control)和电流控制模式(Current Mode Control)两种。 电压控制模式:仅有一个输出电压反馈控制环。 电流控制模式:输出电压反馈控制外环和电流控制内环。 电流控制模式分类:峰值电流、滞环电流和平均电流控 制模式三种。
t=0
Qs =
π ( M1 − M 2 + 2M c )
2( M 1 + M 2 )
, 通过合理选择 M c,就可以使 Qs > 0,
MC − M2 n ] e0 从而保证系统的稳定。 此时误差en = [ M C + M1
峰值电流控制的优缺点及其 集成电路芯片
优点:(1)系统得稳定性增强,响应速度快(能够直接将干

高频开关电流模式PWM控制技术的优点

高频开关电流模式PWM控制技术的优点

高频开关电流模式PWM控制技术的优点
①采用逐个脉冲控制,动态响应快,调节性能好。

当输人线电压或输出负载变化时,马上引起电感中电流的变化,检测信号也随之变化,脉冲宽度立即被调整,而在电压模式控制技术中,检测电路对输人电压的变化没有直接的反应,需要输出电压发生了一定的变化之后才能对脉冲宽度进行调节,通常需要5~10 个工频周期之后才能响应输入电压的变化。

因此,在采用电压模式PWM 控制技术的开关电源中,开关管经常会因为输人电压浪涌造成的电压尖峰信号而损坏。

电流模式PWM 控制技术则能够很好地避免类似的故障发生。

②一阶系统稳定性好,负载响应速度快。

③具有自动限流作用,限流保护和过流保护容易实现。

④采用逐个电流脉冲峰值检测,可以有效抑制变压器偏磁引起的饱和问题。

在全桥转换器或推挽转换器中,无须增加去磁耦合电容。

而电压模式PWM 控制技术很难实现这一点。

⑤输人线电压的交流纹波可以比较大,减小了输人滤波电容,可靠性也得到了提高。

⑥并联运行时,均流效果好。

⑦功率因数高。

(2)电流模式PWM 控制技术的缺点:
①电感峰值电流与输出平均电流之间存在误差,控制精度不高。

②对高频噪声衰减的速度较慢,抗高频干扰能力差。

③不适用于半桥转换器。

由于电流模式PWM 控制技术与电压模式PWM 控制技术相比,具有不可比拟的优势,因此电流模式PWM 控制器成为PWM 控制器的主流,全球各。

电流控制模式原理

电流控制模式原理

电流控制模式原理
电流控制模式(CurrentModeControl)又称电流型控制,是一种常用的电源开关控制方式,主要用于开关电源中的稳压控制和输出电流限制。

与传统的电压控制模式( Voltage Mode Control )不同,电流控制模式的控制对象是电感或电容的电流,而不是输出电压。

其原理是通过对电感或电容的电流进行快速反馈调整,从而控制开关管的导通和断开,实现对输出电流的精准控制。

电流控制模式有多种实现方式,其中比较常见的是平均电流控制( Average Current Control )和峰值电流控制( Peak Current Control )。

平均电流控制是通过对电感或电容的平均电流进行反馈控制,实现对输出电流的控制;峰值电流控制则是通过对电感或电容的峰值电流进行反馈控制,实现对输出电流的控制。

两种方式各有优缺点,需要根据具体情况进行选择。

电流控制模式的优点是响应速度快,稳定性好,输出电流波形平稳,对于负载变化响应迅速,可以有效提高系统的动态响应能力。

同时,电流控制模式能够实现电感或电容的电流保护,避免输出电流过载或瞬间过大对系统带来的损害。

因此,在高精度稳压和大功率开关电源中,电流控制模式被广泛应用。

总之,电流控制模式是一种高效、稳定、可靠的开关电源控制方式,具有广泛的应用前景。

- 1 -。

TI开关电源中的平均电流模式控制中文版V1ERIC2007

TI开关电源中的平均电流模式控制中文版V1ERIC2007

TI slua079 Average current mode control of switching power suppliesby Lloyd Dixon版本日期译者Email 备注1.0 2014/07/12 Eric Wen 文天祥eric.wen.tx@ 初始版本开关电源中的平均电流模式控制关键词:电流模式控制, 平均电流模式控制, 峰值电流模式控制摘要:在开关电源中,电流模式控制(CMC)是通过检测及控制电感电流峰值来实现.但是这样会导致一些严重的问题,如容易受噪声干扰,需要斜坡补偿,并且峰值-平均电流之间的误差不能修正(因为其固有的低电流带宽增益).平均电流模式控制则可以消除以上问题,它通过控制电流(而非电感上的电流)来实现,这样的话极大拓宽了其应用范围.绪论如图1所示,(峰值)电流模式控制是一个双环控制系统.电源的电感是被’隐藏’在电流内环之中.这样可以简化了电压外环的设计并同时带来了一些性能的提高.如:良好的动态响应等.电流内环的主要是目标是控制电感的状态空间平均电流,但是在实际中,却是控制电感的瞬时峰值电流.(在开关管通时,开关电流等于电感电流).如果电感电流纹波较小,此时峰值电流模式控制与平均电感电流控制模式等效.图1 峰值电流模式控制电路及其波形在传统的开关电源中,如果是采用BUCK及其衍生拓扑的话,电感位于输出侧.电流模式控制实际即为输出电流控制.这样就带了一些性能上的好处.同时另一方面,在用于PFC的预调节的BOOST电路中,电感位于输入端,电流模式控制即控制输入电流,这样可以方便地实现输入电流正弦波控制(即PFC功能).峰值电流模式控制产生的问题对噪声敏感.此方法是通过电压外环设定的基准电流值,.当电感电流瞬间值达到预设值时,关断开关管.与预定的电流水平相比,电流斜坡是相对来说很小的.特别是当输入电压Vin是低压的时候.这样的结果是:这种控制方法极易受噪声影响.而在开关管每个导通期间都会产生一个噪声尖峰.部分噪声电压耦合进入控制回路并立即关掉开关管,这样就会导致出现次谐振工作模式(纹波很大).所以对于此种控制方法,PCB Layout及旁边设计至关重要.需要斜坡补偿.当占空比大于0.5时,峰值电流模式天然存在不稳定性,这样会导致次谐波振荡.需要在比较器输入端加入一斜坡补偿(此斜坡/率等于电感电流下降斜率)来消除此种不稳定性.对于BUCK而言,电流下降的斜率为V o/L(V o为常数),所以斜坡补偿度是固定的而且可以计算出来,只是增加了设计的复杂度而已.但是对于高功率因数的BOOST电路,电感下降斜率为(Vin-V o)/L 因此需要补偿的量是随着输入电压变化的,并且变量化是相对比较大的(因为输入电压跟随整流正弦电压).如果采用一个固定的斜率补偿(这个补偿足够多),很多情况下有可能导致过补偿,带来的后果就是性能降低并增加(电流)畸变.峰值与平均电流之间的误差.在传统的BUCK变换器中,这个误差一般不会导致什么十分严重的问题.这是因为电感电流纹波相对于满载时电感平均电流而言比较小,同时电压外环控制也可以消除这种误差.在高功率功率BOOST电路中,这个误差则是十分可怕的.因为它对导致输入电流的畸变.当峰值电流跟随理想的正弦电流时,平均电流则不同.峰值-平均的误差在低电流时更糟糕,特别是在每个输入电流过零时(此时电流变成不连续状态).为了实现较低的电流畸变,峰值-平均之间的电流误差必须越小越好,这样需要一个很大的电感来平滑电流.这个大电感又会让电感电流斜率变得缓慢进一步恶化原来脆弱的抗噪声干扰能力.拓扑问题.传统的峰值电流模式控制实际上是控制电感电流,当它用于类BUCK拓扑时(输出电流即为电感电流)最为有效.对于反激或是BOOST拓扑而言,电感并不是位于输出端而位于输入端,如果采用峰值电流模式控制,实际是一个”错误的”电流控制,这样峰值电流模式控制的优势就消失殆尽.同样的,BOOST电路由于电感位于输入端,这样就可以用来控制输入电流以实现高功率因数.但是BUCK/反激则不能够这样控制,因为电感不在输入侧(这样也会导致’错误的’电流控制).平均电流模式控制峰值电流模式控制是直接比较实际电感电流与设计的电流值(通过电压外环设定),由于这个电流内环增益很低所以并不会十分准确.参考图2,平均电流模式控制可以克服这些缺点,它是通过在电流环里引入一个高增益的集成电流运放来实现.采样电阻Rs上的电压反映出真实的电感电流, 这个差异(或是说电流误差) 通过放大并与一个幅值很大的锯齿波相比较.电流环的增益宽带可以通过优化电流误差放大器周边的补偿网络来实现最佳性能.与峰值电流模式相比,电流环的增益穿越频率fc可以近似相同,但是在低频下平均模式的增益远远大于峰值电流模式.结果是:1.平均电流是与设定电流精确跟随.这对于功率因数校正电流特别重要, 可以使用一个相对小的电感并可以减少3%的谐波失真.实际上, 当变换器进入断续工作模式(此时电流/功率小),此时平均电流模式仍然工作良好.外环电压控制回路是对这种模式的改变是不知道的.2.不再需要斜率补偿,但是由于需要保证稳定性,在开关频率处限制了环路增益.3.抗噪声能力强.当时钟信号开通开关管时,振荡器斜率马上降低到最小值,电压总是远离PWM输入的电流误差值(二个电压值不在同一水平位置).4.平均电流模式控制能够用来感应并控制任何地方的电流.所以它能广泛用于buck/boost/flyback拓扑.图2 平均电流模式控制及波形最优环路设计开关频率处的增益限制:如果PWM输入端二个信号斜率不是关联得当的话,所有开关电源都会呈现出次谐波振荡.峰值电流模式控制下,斜坡补偿可以预防这种不稳定性.平均电流模式控制有类似的问题,但是有更好的解决方案.振荡器斜坡能够有效地产生大量斜坡补偿.对于单极点系统其一个补偿判据是:放大后的电感电流下降斜率不能超过振荡器斜率(这二个信号在PWM的输入端).这个判定标准给开关频率处的电流放大器增益设定了一个上限值,也间接地设定了在交越频率fc处的最大电流环路增益.这是在平均电流模式控制环优化设计中必须首先要考虑的问题.在接下来的例子中,我们假设功率电路级设计完成了,只留下电流误差补偿需要设计.例1: BUCK电路输出电流图2中的简单的BUCK电路的参数如下:CFP暂时忽略掉,零点RFCFZ是远低于开关频率.在接近开关频率时,运放的增益曲线是平坦的.整个电流环只有一个有效极点(来自于电感).电感电流通过Rs采样得到(后面会讲到如何来实现这采样).电感电流波形(包括锯齿波纹波分量)经过运放放大并反向加在比较器输入端.电流电流下降斜率(当开关管关断时)变成了上升斜率,如图2所示.为了避免次谐波振荡,开关管关掉时间内:运放输出斜率必须不能超过振荡器的爬升斜率.如图2所示,运放CA的输出斜率是远小于振荡器的上升斜率,这即表明运放补偿设计离最优化设计还差一点点.斜率计算:Vs是振荡器电压峰峰值,Ts与fs是周期及开关频率.电感电流下降率是通过采样电阻Rs转换成电压并通过运放放大Gca倍.这个值等于等于振荡器的斜率,并决定了误差放大器在开关频率处的增益.设Vs: 5Vp-p,在开关频率处的最大增益为25(或是28db).可以通过设定Rf/RI=25来实现电流误差放大器在fs处的增益设定.小信号下控制到输出的增益选择由下式决定(对于BUCK而言):系统总的电流环开环增益通过1/2式决定,让其值为1(这也即为交越频率处的开环增益):通过1式设定运放的增益,可以保证交越频率永远不会低于系统开关频率的1/6.(这个结果与Middle-brook提出的带斜坡补偿峰值电流模式控制一致).在本例中,交越频率fc=20K(当输入电压Vin=15V,占空比D=0.8时), fc=40K(当输入电压Vin=30V,占空比D=0.4时).如果误差放大器的增益曲线是比较平坦,这时相位裕量在交越频率处将是90度---这远远超出实际需要的裕量,并且增益在低频时并不会比峰值电流模式控制好很多.但是零点RfCfz位于10KHZ,小于最小交越频率,相位裕量减少到63度,同时显著地拓宽了低频增益.(此时积分增益为250K/f).正是由于这个特性,电流环能够快速准确地跟踪平均电流.甚至当比较器实际关掉开关管时,如果达到了电感峰值电流时,这个峰值电流仍可以通过电流放大器可以保证平均电流准确.图3显示了在输入电压30V时满载情况下PWM输入引脚电压以及电感电流启动波形.注意到因为运放增益是按方程1做了最优化设计,所以电感电流下降斜率与振荡器上升斜率相一致.同时,如果运放增益进一步增加的话,不仅仅关断时间斜率会超过振荡器的上升斜率,而且正向偏移也会达到运放的限值,这会对波形进行钳位或是截断.图3 buck变换器波形,最优化增益设计极点RfCfpCfz/(Cfp+Cfz)设定在开关频率处(100KHz).这极点其中的一个作用是用来消除叠加在电流波形上的尖峰噪声,而这些尖峰恰好是峰值电流模式控制的天故.同时锯齿波运放的输出波形同样降低了,特别是高次谐波,同时发生了相移,如图4所示.这零极点对(100KHZ的极点及10KHZ的零点)减少在交越频率处的相位裕量,使其达到45度(这是一个可以接受的相位裕量),如图5所示.图4 BUCK变换器(开关频率处的额外极点)图5 BUCK 变换器波特图由100KHZ 极点导致的运放波形幅值及斜率降低---意味着运放增益可能会超过方程1的最大值.但是注意方程1仅在单极点响应(开关频率fs 处)系统中有效,由于Cfp 的存在导致系统中存在二个有效极点.实验证明,增加运放的增益可能会产生次谐波振荡.断续操作模式. 当负载电流Io 变得很小的时候,电感电流会变成不连续.电流在连续与断续的边界值为:最差工况发生在最大输入电压情况下,此时纹波电流是最大.在本例中,边界值为Io=IL=0.2A,此时输入电压Vin=15V ,Io=0.6A 时输入电压为Vin=30V.在断续工作模式下,如果低于临界模式时,改变输出电流需要较大的占空比变化.换句话说,功率级增益会突然变得很低.同时,连续模式下单极点的90度相位延时特性消失了,所以电路增益曲线是平坦地并且与频率无关.电流环变得更为稳定,但是响应较为缓慢了.在峰值电流模式控制下,如果工作于断续工作模式下,峰值与平均电流之间的误差变得巨大不可以接受.但是平均电流模式控制下,电流误差放大器的高增益特性可以容易地提供大范围的占空比变化来适配负载电流,因此可以维护良好的平均电流调节.参考图2,当电流环为闭环时,在频率低于开关频率fs 时,采样电阻Rs 上的电压Vrs 与设定参考电流值Vcp(来于电压误差放器).电流内环闭环跨导是电压外环的一部分:闭环跨导在开环交越频率fc处(原文上写的是fs,似乎应该为fc)下降并呈现出单极点特性.实例2 Boost调节器输入电流图6所示为1KW离线式BOOST预调节器工作参数如下:在最小输入电压Vin最大输入电流时对应的功率为1080W.输入工频线电流最大值(17A)必须通过设计与电流参考信号限值一致.100KHZ时通过开关管及整流管的最大峰值电流为17A并加上电感电流纹波的一半:图6 Boost预调节器电路当开关管关断时电感电流下降:电感电流下降斜率(V o-Vin)/L最差工况发生在: Vin=Vmin (原文貌似没写清楚)振荡器上升斜率: Vs/Ts=Vs*fs以下求出最大增益:注意式6是与BUCK变换器式1是完全一致的.代入本例得到最大增益Gca=6.58,实际电路中通过Rf/Ri=6.58来设定此增益大小.电流环功率级的小信号增益:控制到输入的增益是(从运放的输出端Vca到采样电阻电压Vrs):同时注意到7式与1式的buck变换器基本上相一致,除了增益是与输出电压V o有关外(V o是常数),1式中是与Vin相关.电流环总的环路增益可以通过6/7式建立,并将其设定为1用来求解交越频率fc:从6式可以得到运放增益的最大值,电流环的交越频率即设定为开关频率的1/6处(16.7KHZ).如前所述,如果一个误差放器的增益是比较平坦的,那么在交越频率处的相位裕度为90度, 这是远远大于实际需要的.所以零点RfCfz设定在最小交越频率的1/2处.即8.33KHZ.这样可以提供一个积分增益为55K/f低频升压变换器(有点不对?).极点RfCfpCfz/(Cfp+Cfz)设定在6倍零点频率(50KHZ)处以消除尖峰噪声.这样,8.33KHZ的零点加上50KHZ的频率一起得到一个40度的相位裕量(在交越频率fc处).启动波形如图7所示,波特图如图8.图7 Boost调节器波形图8 Boost调节器波特图返回看图6,当电流环闭合时,采样电阻电压等于参考电阻上的电压Vrcp.本例中,参考电流源为Icp,电流闭环的电流增益为:闭环电流增益在开环交越频率fc处(原文上写的是fs,似乎应该为fc)下降并呈现出单极点特性.在高功率等级的应用中,电流是跟随着整流母线电压.由于整流后的电压及电流在过零点时会达到尖峰值,此时电感电流变得不连续.即断续工作模式会出现在一个工频周期的一小部分时间.特别是在输入电压高/输入电流最小时或是轻载时.如果是峰值电流模式控制,断续的电感电流会导致比较大的峰值电流-平均电流误差,这样就需要一个较大的电感量来平滑电感电流纹波并且让模式转换处于轻载场合.然而,采用平均电流模式控制可以有效地消除峰值与平均值之间的误差.可以采用小的电感,这样可以实现低成本,小体积,重量轻并同时提高了电流环的带宽.。

开关电源电流控制模式工作原理

开关电源电流控制模式工作原理

开关电源电流控制模式工作原理1. 电流控制模式简介开关电源的电流控制模式是一种常见的控制方法,主要用于稳定和调节电源的输出电流。

通过检测电源的输出电流并对其进行相应的调节,可以确保输出电流保持在一个预设的范围内。

这种控制模式在各种电子设备和系统中得到了广泛应用,如计算机、通信设备、医疗设备等。

2. 反馈环路组成电流控制模式的开关电源通常包含一个反馈环路,用于将输出电流与预设值进行比较,并根据比较结果进行调节。

反馈环路主要由电流检测器、误差放大器、调节器、PWM比较器和开关管等元件组成。

3. 误差放大器误差放大器是反馈环路中的一个关键元件,用于放大输出电流与预设值之间的误差。

误差放大器的输出与输入成比例关系,当输出电流偏离预设值时,误差放大器的输出会相应地增加或减小,以驱动调节器进行相应的调节。

4. 调节器调节器是反馈环路中的另一个重要元件,它通常采用PID(比例-积分-微分)控制器或类似的控制器。

调节器接收误差放大器的输出信号,并根据预设的控制参数(如比例系数、积分系数和微分系数)计算出一个控制信号。

该控制信号用于调节PWM比较器的输出,从而控制开关管的通断时间。

5. PWM比较器PWM比较器是开关电源中的另一个关键元件,它根据调节器输出的控制信号和振荡器输出的三角波信号进行比较,产生一个脉宽调制信号。

该信号的脉冲宽度与控制信号的大小成比例关系,从而控制开关管的通断时间,进而调节输出电流的大小。

6. 开关管控制开关管是开关电源中的主要执行元件,用于控制电源的通断。

在电流控制模式下,开关管的通断时间由PWM比较器输出的脉宽调制信号控制。

当脉宽调制信号为高电平时,开关管导通,电能输出到负载;当脉宽调制信号为低电平时,开关管关断,停止电能输出。

通过调节脉宽调制信号的占空比(即高电平时间占一个周期的比例),可以调节输出电流的大小。

7. 输出电压调整在某些情况下,开关电源需要具备输出电压调整功能。

通过在反馈环路中引入输出电压检测和相应的调节机制,可以实现对输出电压的稳定和调节。

开关电源PWM的五种反馈控制模式

开关电源PWM的五种反馈控制模式

一、引言PWM开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。

PWM的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流、输出电感电压、开关器件峰值电流。

由这些信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。

对于定频调宽的PWM闭环反馈控制系统,主要有五种PWM反馈控制模式。

下面以VDMOS开关器件构成的稳压正激型降压斩波器为例说明五种PWM反馈控制模式的发展过程、基本工作原理、详细电路原理示意图、波形、特点及应用要点,以利于选择应用及仿真建模研究。

二、开关电源PWM的五种反馈控制模式1. 电压模式控制PWM (VOLTAGE-MODE CONTROL PWM):如图1所示为BUCK降压斩波器的电压模式控制PWM反馈系统原理图。

电压模式控制PWM是六十年代后期开关稳压电源刚刚开始发展起就采用的第一种控制方法。

该方法与一些必要的过电流保护电路相结合,至今仍然在工业界很好地被广泛应用。

电压模式控制只有一个电压反馈闭环,采用脉冲宽度调制法,即将电压误差放大器采样放大的慢变化的直流信号与恒定频率的三角波上斜波相比较,通过脉冲宽度调制原理,得到当时的脉冲宽度,见图1A中波形所示。

逐个脉冲的限流保护电路必须另外附加。

主要缺点是暂态响应慢。

当输入电压突然变小或负载阻抗突然变小时,因为有较大的输出电容C及电感L相移延时作用,输出电压的变小也延时滞后,输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。

这两个延时滞后作用是暂态响应慢的主要原因。

图1A电压误差运算放大器(E/A)的作用有三:①将输出电压与给定电压的差值进行放大及反馈,保证稳态时的稳压精度。

开关变换器控制方法

开关变换器控制方法

开关电源控制模式
39
3846
开关电源控制模式
40
逐周限流
开关电源控制模式
41
UC3842(dip-8)
开关电源控制模式
42
Application
开关电源控制模式
43
九.电流控制模式的缺点与斜坡补偿
固定频率、峰值电流
开关电源控制模式
44
开关电源的控制模式 九.电流控制模式的缺点与斜坡补偿 5.1 Constant peak versus constant average output inductor problems
开关电源控制模式
14
开关电源的控制模式
对于输入电压跳变能够瞬间修正而 七. Current Mode Advantages 没有差分放大器的延迟
7.2 Instantaneous correction against of line voltage changes without the delay in an error amplifier
Vi dV dt t on V ea 0
From eq. (3), we obtain
Ns N Ns N
p p
R i [ I sa
m2 2
( T t on )]
dV dt
t on V eN
p
Ri
m2 2
T t on (
Ns N
p
Ri
m2 2
主要设计参数范围
开关电源控制模式
31
频率选择
开关电源控制模式
32
单端驱动
开关电源控制模式
33
推挽驱动
开关电源控制模式
34
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源中的电流型控制模式摘要:讨论了开关电源中电流反馈控制模式的工作原理、优缺点,以及与之有关的斜波补偿技术。

关键词:开关电源;电流型控制;斜波补偿1引言PWM型开关稳压电源是一个闭环控制系统,其基本工作原理就是在输入电压、内部元器件参数、外接负载等因素发生变化时,通过检测被控制信号与基准信号的差值,利用差值调节主电路功率开关器件的导通脉冲宽度,从而改变输出电压的平均值,使得开关电源的输出电压保持稳定。

以开关电源中的降压型变换为例(其它类型如正激型、推挽型等,均可由降压型派生得到),图1表示了该变换器的主电路的基本拓扑结构。

图1降压型开关电源根据选用不同的PWM控制模式,图1电路中的输入电压Uin、输出电压Uo、开关功率器件电流(可从A点采样)、输出电感电流(可从B或C点采样)均可作为控制信号,用于完成稳压调节过程。

目前在开关电源中广泛使用的控制方式是通过对输出电压或电流(功率开关器件或输出电感上流过的电流)进行采样,即形成2类控制方式:电压控制模式与电流控制模式。

2电流控制模式的工作原理图2为检测输出电感电流的电流型控制的基本原理框图。

它的主要特点是:将采样得到的电感电流直接反馈去控制功率开关的占空比,使功率开关的峰值电流直接跟随电压反馈电路中误差放大器输出的信号。

从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。

在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阈值。

电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电感电流的动态变化,电压外环只负责控制输出电压。

因此电流型控制模式具有比起电压型控制模式大得多的带宽。

图2检测输出电感电流的电流型控制原理框图实际电路以单端正激型电源为例,如图3所示。

误差电压信号Ue送至PWM比较器后,并不是像电压模式那样与振荡电路产生的固定三角波状电压斜波比较调宽,而是与一个变化的、峰值代表功率开关上的电流信号(由Rs上采样得到)的三角状波形信号(电感电流不连续)或矩形波上端叠加三角波合成波形信号(电感电流连续)比较,然后得到PWM脉冲关断时刻。

在电路中,电流的采样通常使用一只在MOSFET源极与地之间串联的电阻完成,有时为了提高效率,也可通过在MOSFET源极上接一只电流互感器获得电流采样信号。

图4为各相关点的波形。

图3电路稳压原理可以简述如下:当输入电压变化时,由于变压器的初级电流上升率发生变化,即Ur波形上端的三角波部分的斜率变化,导致Ur与Ue相交的时间提前或滞后,从而使输出脉冲宽度变化,达到输出电压值的稳定;而当负载发生变化时,Ur与Ue同时变大或变小,使得电感电流对输出滤波电容的充电电流发生变化,以保持输出电压稳定。

3电流型控制的优缺点3 1电流型控制模式的优点1)线性调整率(电压调整率)非常好,这是因为输入电压的变化立即反映为电感电流的变化,无须经过误差放大器就能在比较器中改变输出脉冲宽度,再加上输出电压到误差放大器的控制,使得电压调整率更好。

由于对输入电压的变化和输出负载的变化的瞬态响应快,故适合于负载快速变化时对响应速度要求较高的场所。

2)虽然电源的L-C滤波电路为二阶电路,但增加了电流内环控制后,只有当误差电压发生变化时,才会导致电感电流发生变化。

即误差电压决定电感电流上升的程度,进而决定功率开关的占空比。

因此,可看作是一个电流源,电感电流与负载电流之间有了一定的约束关系,使电感电流不再是独立变量,整个反馈电路变成了一阶电路,由于反馈信号电路与电压型相比,减少了一阶,因此误差放大器的控制环补偿网络得以简化,稳定度得以提高并且改善了频响,具有更大的增益带宽乘积。

3)在推挽型和全桥型开关电源中,由于2个开关器件本身的压降和开关延迟时间不一定完全一致等原因,容易引起变压器的直流偏磁。

采用电流型控制,由于峰值电感电流提供自动的磁通平衡功能,可以有效地减少或消除直流偏磁,避免了变压器的磁饱和。

4)具有瞬时峰值电流限流功能,这是由于受控的电流在上升到设定值时,会使PWM停止输出,因此电流型自身具有固有的逐个脉冲限流功能,在电路中不必另外附加限流保护电路;而且这种峰值电感电流检测技术可以较精确地限制最大电流,从而使开关电源中的功率变压器和开关管不必有较大的冗余,就能保证可靠工作。

5)使用电流型控制,简化了反馈控制补偿网络、负载限流、磁通平衡等电路的设计,减少了元器件的数量和成本,这对提高开关电源的功率密度,实现小型化,模块化具有重要的意义。

3 2电流型控制模式的缺点1)占空比大于50%时系统可能出现不稳定性,可能会产生次谐波振荡;另外,在电路拓扑结构选择上也有局限,在升压型和降压-升压型电路中,由于储能电感不在输出端,存在峰值电流与平均电流的误差。

2)对噪声敏感,抗噪声性差。

因为电感处于连续储能电流状态,开关器件的电流信号的上升斜坡斜率通常较小,电流信号上的较小的噪声就很容易使得控制误动作,改变关断时刻,使系统进入次谐波振荡。

图3单端正激式开关电源图4单端正激式电路各相关点波形图5D<0.5时的波形图6D>0.5时的波形图7D>0.5时加斜波补偿后的波形3)在要求输入/输出隔离的电路类型中,对隔离变压器的设计要求较高。

例如在单端正激式电路中,为保证从开关管上取样的电流斜波具有一定的斜率,要求变压器初级的电感量较小,但这样会使励磁电流增加,效率下降。

因此需要协调好二者的关系。

4)电流型控制不大适合于半桥型开关电源。

这是因为在半桥式电路中,通过桥臂2只电容的放电维持变压器初级绕组的伏-秒平衡;当电流型控制通过改变占空比而纠正伏-秒不平衡时,会导致这2只电容放电不平衡,使电容分压偏离中心点,然而电流型控制在此情况下试图进一步改变占空比,使电容分压更加偏离中心点,形成恶性循环。

4电流型控制模式中的斜波补偿4.1电流型控制存在问题的改善针对电流型控制中的主要缺点,目前许多电流型控制PWM芯片均提供了斜波补偿功能,它可以有效改善电流型控制中存在的以下几个问题:1)开环不稳定性电流型电源的占空比大于50%时,就存在电流控制内环工作不稳定的问题。

如果给电流控制内环增加一个斜波补偿信号,则变换器可以在任何脉冲占空比情况下正常工作。

斜波补偿工作原理如下所述。

图5表示了由误差电压Ue控制的电流型变换器的波形,假如由于某种原因,产生一个拢动电流ΔI加至电感电流IL,当占空比<0.5时,从图5所示可以看出这个拢动ΔI将随时间的变化而减小;但当占空比>0.5时,这个拢动将随时间增加而增加,如图6所示。

扰动量的增加可能会导致电路工作的不稳定,产生次谐波振荡。

扰动量的变化可用数学表达式表示为:ΔI1=-ΔI0式中:m1,m2分别是电感电流上升和下降的斜率;ΔI1表示经过一个周期后扰动量的大小。

为了消除这种振荡,可引入斜率为-m的斜波信号,如图7所示。

这个斜波电压既可加至电流波形上,也可以从误差电压中减去。

这样一来,扰动量变为:ΔI1=-ΔI0在100%占空比时求解这个方程有:m>m2为了保证电流环路稳定工作,应使斜波补偿信号的斜率大于电流波形下降斜率m2的1/2,从而保证变换器的占空比大于50%时变换器能稳定工作。

2)减小峰值电感电流与平均电流的误差电流模式控制是一种固定时钟开启、峰值电流关断的控制方法。

因为峰值电流(流过功率开关或电感上)在实际电路中容易进行采样,而且在逻辑上与平均电感电流大小变化相一致。

但是,电感电流与输出平均电流之间存在一定的误差,峰值电感电流的大小不能与平均电感电流大小一一对应,因为在占空比不同的情况下,相同的峰值电感电流可以对应不同的平均电感电流,如图8所示。

而平均电感电流是唯一决定输出电压大小的因素。

与消除次谐波振荡的方法类似,利用斜波补偿可以去除不同占空比对平均电感电流大小的影响,使得所控制的峰值电感电流最后收敛于平均电感电流,如图9所示。

图8不同占空比时,相同峰值电感电流对应的平均电感电流图9利用斜波补偿消除不同占空比对平均电感电流的影响(a)斜波补偿加至2端 (b)斜波补偿加至3端图10利用UC1824/43的2种斜波补偿方法3)提高电流检测精度由于在电流型控制中依靠对电感电流上升斜波的检测完成控制,所以若电流变化率较大,可以提供较好的抗噪声干扰能力和为电流比较器提供较好的信号电平。

而采用斜波补偿的方法,等于人为地改善了电感电流上升斜率,使其具有类似于电压控制模式抗噪声裕度较大的优点。

4.2电流型控制的斜波补偿实例美国UNITRODE公司生产的电流型PWM控制芯片UC1842/43,具有外电路简单,成本较低等优点。

关于它的电性能与典型应用这里不再赘述,只简单介绍一下进行斜波补偿的方法。

图10说明了UC1842/43的2种斜波补偿方法:第一种如图10(a)所示,从斜波端(即脚4振荡器输出端)接一个电阻R1至误差放大器反相输入端(脚2),于是误差放大器输出呈斜波状,再与采样电流比较。

第二种方法如图10(b)所示,它从斜波端(脚4)接一电阻R2至电流采样比较器正端(脚3),这时将在Rs上的感应电压上增加斜波的斜率,再与平滑的误差电压进行比较。

用这2种方法,均能有效地改善电源的噪声特性。

5结语本文较为详细地论述了电流型控制模式的基本原理,优缺点,并且系统地分析了电流型控制中如何利用斜波补偿来消除或减小电流型控制带来的问题,对于电流型开关电源的选择,设计和优化具有一定的参考价值。

参考文献[1]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,1999.[2]叶治政,叶靖国.开关稳压电源[M].北京:高等教育出版社,1989.[3]最新开关集成稳压器数据应用手册.北京半导体器件五厂,1997.作者简介陈佳果(1973-),男,工程师,硕士学历。

现在航天科技集团公司第510研究所从事卫星用模块化电源的预研及新产品开发工作。

相关文档
最新文档