单片机控制开关电源
单片机控制开关电源

单片机控制开关电源单片机控制开关电源,单从对电源输出的控制来说,可以有几种控制方式.其一是单片机输出一个电压(经DA芯片或PWM方式),用作电源的基准电压.这种方式仅仅是用单片机代替了原来的基准电压,可以用按键输入电源的输出电压值,单片机并没有加入电源的反馈环,电源电路并没有什么改动.这种方式最简单.其二是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,调整DA的输出,控制PWM芯片,间接控制电源的工作.这种方式单片机已加入到电源的反馈环中,代替原来的比较放大环节,单片机的程序要采用比较复杂的PID算法.其三是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,输出PWM波,直接控制电源的工作.这种方式单片机介入电源工作最多.第三种方式是最彻底的单片机控制开关电源,但对单片机的要求也最高.要求单片机运算速度快,而且能够输出足够高频率的PWM波.这样的单片机显然价格也高.DSP类单片机速度够高,但目前价格也很高,从成本考虑,占电源成本的比例太大,不宜采用.廉价单片机中,AVR系列最快,具有PWM输出,可以考虑采用.但AVR单片机的工作频率仍不够高,只能是勉强使用.下面我们具体计算一下AVR单片机直接控制开关电源工作可以达到什么水平.AVR单片机中,时钟频率最高为16MHz.如果PWM分辨率为10位,那么PWM波的频率也就是开关电源的工作频率为16000000/1024=15625(Hz),开关电源工作在这个频率下显然不够(在音频范围内).那么取PWM分辨率为9位,这次开关电源的工作频率为16000000/512=32768(Hz),在音频范围外,可以用,但距离现代开关电源的工作频率还有一定距离.不过必须注意,9位分辨率是说功率管导通-关断这个周期中,可以分成512份,单就导通而言,假定占空比为0.5,则只能分成256份.考虑到脉冲宽度与电源的输出并非线性关系,需要至少再打个对折,也就是说,电源输出最多只能控制到1/128,无论负载变化还是网电源电压变化,控制的程度只能到此为止.还要注意,上面所述只有一个PWM波,是单端工作.如果要推挽工作(包括半桥),那就需要两个PWM波,上述控制精度还要减半,只能控制到约1/64.对要求不高的电源例如电池充电,可以满足使用要求,但对要求输出精度较高的电源,这就不够了.综上所述,AVR单片机只能很勉强地使用在直接控制PWM 的方式中.但是上列第二种控制方式,即单片机调整DA的输出,控制PWM芯片,间接控制电源的工作,却对单片机没有那么高的要求,51系列单片机已可胜任.而51系列单片机的价格比AVR还是低一些.网友coocle曾发表他的看法:“单片机控制开关电源的缺点在于动态响应不够,优点是设计的弹性好,如保护和通讯,我的想法是单片机和pwm芯片相结合,现在的一般单片机的pwm输出的频率普遍还不是太高,频率太高,想要实现单周期控制也很难.所以我觉得单片机可是完成一些弹性的模拟给定,后面还有pwm芯片完成一些工作.”无独有偶,在电子电源综合区中有篇原创文章《DPWM电路的研究》,也是用数字电路输出PWM波直接控制开关电源工作.他是用CPLD再加单片机进行控制.众所周知CPLD的价格以及开发难度绝非单片机可比,那么他为什么要这样做?原因如作者所说,由于单片机的PWM宽度小,导致精度低,不能满足系统的要求.作者又说,在这些情况下,应用片外PWM电路无疑是一种理想的选择.他选择CPLD芯片来实现PWM.我则建议:还是用开关电源原来的控制芯片来实现.不但价格低,而且容易实现单周期电流检测等保护功能.我们大可不必为数字控制而数字控制.。
基于单片机控制的开关电源设计

摘要:开关电源是当代电子科技技术的产物,用于达到输出电压的稳定,开关电源主要是通过改变脉宽调制(PWM)进行输出电压的改变。
它是一种电力电子装置,广泛应用于各种电子设备、工业、通信、航天航空以及军事等领域。
具有输出电压稳定、噪音小、小型化和轻型化等特点。
为了设计并实现一个单片机控制的开关电源,可以通过软件编程让单片机输出一个PWM 波形给双运算放大电路,双运算放大电路对PWM波形进行变换调压,反馈到DC-DC降压电路进行降压和稳压后输出所需要的电压。
输出电压可以通过按键调节,调节范围在0至25V,电压调节幅度为0.5V,由液晶显示屏实时显示。
单片机控制开关电源,实现电源的智能化,具有输出电压范围大、电压可调和输出电压实时显等优点。
关键字:开关电源,单片机,PWM波形,调节,智能化第一章概述开关电源是改变开关管的通断的时间比较来控制输出电压的大小的电力电子器件。
随着世界科技的快速发展,开关电源成为了人们生命中不可缺少的必需品,其应用于工业、农业、通信、航空和计算机等领域,具有高效率转换、重量小、小体积和高精度等特点。
传统的开关电源系统存在调整之繁琐,电路很繁琐,可靠性低等问题,本文通过对单片机进行编程实现开关电源的有效输出,具体是将常用电源220V交流电通入变压器转换成24V的交流电,经过整流电路得到直流信号,通过电容滤波得到相对干净的直流电分别接入两个LM2596S-ADJ芯片,一个是构成DC-DC降压型电路,一个是构成5V稳压电路,前者是控制输出电压的,后者是给单片机和液晶显示屏供电的。
输出电压的大小由PWM控制,将PWM 波形送到PWM调压电路,进行稳压和调压,并反馈到DC-DC降压电路后输出。
按键能控制输出电压的大小,输出电压能在0-25V范围里可连续调节,步加步减在0.5V,复位按键可以是输出电压恢复到5V,并由液晶显示屏显示。
单片机控制开关电源,具有灵活性好的优势,可根据设计人员的想法进行设计。
基于单片机控制的开关电源论文(经典)

基于单片机控制的开关电源论文(经典)目录引言 (3)1 概述................................................ 错误!未定义书签。
1.1 课题来源及意义...................................... 错误!未定义书签。
1.2 课题基本要求........................................ 错误!未定义书签。
1.3 课题相关背景 (1)2 开关电源方案设计 (1)2.1 开关电源工作原理 (1)2.2 开关电源与线性电源的比较 (2)2.3 方案论证 (3)2.3.1方案1 (3)2.3.2方案2 (3)2.3.3方案3 (3)2.3.4方案分析 (3)2.3.5总体结构设计 (3)2.4 难点分析 (5)2.4.1如何提高电源工作频率 (5)2.4.2储能电感的绕制 (5)2.4.3标度转换技术 (6)2.5 控制技术选择 (6)2.6 开关变换器结构分析与选择 (8)2.7 开关电路器件参数选择 (10)2.7.1功率开关管的选择 (10)2.7.2 滤波电容的选择 (11)2.7.3储能电感的选择 (12)2.7.4续流二极管的选择 (12)3 硬件电路设计 (12)3.1 电源电路设计 (12)3.1.1整流滤波电路 (12)3.1.2开关变换电路 (13)3.1.3分压电阻的计算 (13)3.1.4保护电路 (14)3.2 控制电路设计 (15)3.2.1反馈电路设计 (16)3.2.2四位数码显示电路设计 (17)3.2.3单片机与键盘接口电路设计 (18)4 软件设计 (18)4.1 总体编程思想 (18)4.1.1键盘防抖动子程序 (19)4.1.2数码显示子程序 (20)4.1.3采样子程序 (21)4.1.4中断处理程序设计 (22)4.1.5PID控制算法 (23)4.1.6数字滤波 (23)5 系统调试 (24)5.1 硬件模块调试 (24)5.1.1整流滤波电路的调试 (24)5.1.2AD转换的调试 (24)5.1.3脉冲输出电路的调试 (24)5.1.4功率开关管的调试 (25)5.2 电源性能指标的测试 (25)5.2.1开关电源的技术指标 (25)5.2.2输出电压的测试 (26)5.2.3最大输出电流的测试 (27)5.2.4过流保护的测试 (27)5.2.5电压调整率的测试 (27)5.2.6纹波电压的测试 (28)6 结论 (28)谢辞 (29)参考文献 (30)附录 (32)1.3 课题相关背景我国的三极管直流变换器及开关电源的研制工作开始于60年代初期,到了60年代中期进入了实用阶段,紧跟着70年代初开始研制无工频变压器开关电源。
基于单片机控制的开关电源及其设计

基于单片机控制的开关电源及其设计单片机控制的开关电源是一种高效率、高稳定性的电源系统,常用于电子设备中。
本文将介绍基于单片机控制的开关电源的原理、设计步骤以及相关注意事项。
一、原理1.1开关电源的工作原理开关电源的核心部分是一个开关管,它通过不断开闭来调整输出电压和电流。
当开关管关断时,电源输入端的电压会通过变压器产生瞬态电流,这个电流被蓄能电容器存储在电容中。
当开关管打开时,储存在电容中的能量被释放,通过滤波电感得到稳定的电压输出。
1.2单片机控制开关电源的工作原理在单片机控制的开关电源中,单片机通过控制开关管的开闭状态来调整输出电压和电流。
单片机能够实时监测电源的输入和输出情况,并根据设定的参数进行调整。
同时,单片机还可以实现一些保护功能,如过压、过流、过温等保护。
二、设计步骤2.1确定需求首先要确定开关电源的功率需求、输入电压范围和输出电压范围。
根据需求选择合适的开关管和变压器等元器件。
2.2定义控制策略根据开关电源的工作原理以及需求,确定单片机的控制策略。
可以采用PWM(脉宽调制)控制方法来控制开关管的开闭时间,以实现对输出电压的调节。
2.3确定单片机和外围电路选择合适的单片机控制器,并设计相应的外围电路,包括ADC(模拟数字转换)模块、PWM输出模块、电流传感器等。
2.4编写软件程序根据控制策略,编写单片机的控制程序,并完成软件的调试和优化。
2.5PCB设计与制造根据电路原理图设计PCB布局,并制造相关的电路板。
2.6装配与测试完成PCB板的焊接与装配,进行电源的测试和调试。
三、注意事项3.1安全性开关电源具有高电压、高电流的特点,因此在设计和使用过程中要注意安全性。
应采用合适的绝缘措施,保证电源与其他电路之间的隔离。
3.2效率和稳定性开关电源的效率和稳定性是设计过程中需要考虑的重要因素。
应合理选择元器件,控制开关管的导通和关断时间,以提高电源的效率和稳定性。
3.3EMC(电磁兼容)设计开关电源由于工作频率较高,容易产生电磁干扰。
基于单片机控制的开关电源及其设计

2、基于单片机控制的开关电源的可选设计方案由单片机控制的开关电源, 从对电源输出的控制来说, 可以有三种控制方式, 因此, 可供选择的设计方案有三种:( 1) 单片机输出一个电压( 经D/AC 芯片或PWM方式) , 用作开关电源的基准电压。
这种方案仅仅就是用单片机代替了原来开关电源的基准电压, 可以用按键设定电源的输出电压值, 单片机并没有加入电源的反馈环, 电源电路并没有什么改动。
这种方式最简单。
( 2) 单片机与开关电源专用PWM芯片相结合。
此方案利用单片机扩展A/D 转换器, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 调整D/A 转换器的输出, 控制PWM芯片, 间接控制电源的工作。
这种方式单片机已加入到电源的反馈环中, 代替原来的比较放大环节, 单片机的程序要采用比较复杂的PID 算法。
( 3) 单片机直接控制型。
即单片机扩展A/DC, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 输出PWM波, 直接控制电源的工作。
这种方式单片机介入电源工作最多。
3、最优设计方案分析三种方案比较第一种方案: 单片机输出一个电压( 经D/AC芯片或PWM方式) , 用作开关电源的基准电压。
这种方案中, 仅仅就是用单片机代替了原来开关电源的基准电压, 没有什么实际性的意义。
第二种方案: 由单片机调整D/AC 的输出, 控制PWM芯片, 间接控制电源的工作。
这种方案中单片机可以只就是完成一些弹性的模拟给定, 后面则由开关电源专用PWM芯片完成一些工作。
在这种方案中,对单片机的要求不就是很高, 51 系列单片机已可胜任; 从成本上考虑,51 系列单片机与许多PWM控制芯片的价格低廉; 另外, 此方案充分解决了由单片机直接控制型的开关电源普遍存在的问题———由于单片机输出的的PWM脉冲频率低, 导致精度低, 不能满足要求的问题。
因此, 单片机与PWM芯片相结合, 就是一种完全可行的方案。
基于单片机控制的开关电源及其设计

2.鉴于单片机控制的开关电源的可选设计方案由单片机控制的开关电源 , 从对电源输出的控制来说 , 能够有三种控制方式 ,所以 , 可供选择的设计方案有三种 :( 1)单片机输出一个电压(经D/AC芯片或PWM方式) ,用作开关电源的基准电压。
这类方案不过是用单片机取代了本来开关电源的基准电压,能够用按键设定电源的输出电压值,单片机并无加入电源的反应环,电源电路并无什么变动。
这类方式最简单。
( 2) 单片机和开关电源专用 PWM芯片相联合。
此方案利用单片机扩展 A/D 变换器 , 不停检测电源的输出电压 , 依据电源输出电压与设定值之差 , 调整 D/A 变换器的输出 , 控制 PWM芯片 , 间接控制电源的工作。
这类方式单片机已加入到电源的反应环中 ,取代本来的比较放大环节,单片机的程序要采纳比较复杂的PID 算法。
( 3)单片机直接控制型。
即单片机扩展A/DC, 不停检测电源的输出电压,依据电源输出电压与设定值之差,输出PWM波,直接控制电源的工作。
这类方式单片机介入电源工作最多。
3.最优设计方案剖析三种方案比较第一种方案:单片机输出一个电压(经D/AC芯片或PWM方式) ,用作开关电源的基准电压。
这类方案中 ,不过是用单片机取代了本来开关电源的基准电压 , 没有什么实质性的意义。
第二种方案: 由单片机调整 D/AC 的输出 ,控制 PWM芯片 ,间接控制电源的工作。
这类方案中单片机能够不过达成一些弹性的模拟给定 ,后边则由开关电源专用 PWM芯片达成一些工作。
在这类方案中 , 对单片机的要求不是很高 , 51 系列单片机已可胜任 ;从成本上考虑 ,51 系列单片机和很多 PWM控制芯片的价钱便宜 ; 此外 , 此方案充足解决了由单片机直接控制型的开关电源广泛存在的问题———因为单片机输出的的PWM脉冲频次低 , 致使精度低 , 不可以知足要求的问题。
所以 , 单片机和 PWM芯片相联合 , 是一种完整可行的方案。
单片机控制的开关电源设计

单片机控制的开关电源设计一、引言开关电源作为电子设备中常用的电源之一,具有体积小、效率高、稳定性好等优点,广泛应用于各个领域。
而单片机作为微处理器的一种,可以提供精确的控制和调节功能。
将单片机与开关电源结合,可以实现更加智能化、稳定的电源控制系统。
本文就单片机控制的开关电源设计进行详细介绍。
二、设计原理1.开关电源工作原理开关电源的基本原理是将交流电转换成高频的脉冲电压,再通过整流滤波和稳压控制电路得到稳定的直流电压输出。
其主要的组成部分包括输入滤波电路、直流转换电路和输出稳压控制电路。
2.单片机控制原理单片机通过编程控制器件的工作方式和电路的连接方式,实现对整个系统的控制。
单片机具有高集成度、强控制能力、稳定性好等优势,可以对电源输出进行精确的调控和监测。
三、设计过程1.确定电源参数根据设计需求,确定电源的输电电压、输出电压和输出电流等参数。
并根据这些参数选取合适的开关电源和单片机。
2.设计输入滤波电路输入滤波电路的主要作用是对交流电进行滤波处理,确保电源工作的稳定性和可靠性。
可以采用低通滤波器进行滤波设计。
3.设计直流转换电路直流转换电路包括开关电源的主电路和控制电路。
主电路由开关管、变压器等组成,控制电路由电源控制芯片、放大器、反馈电路等部分组成。
4.设计输出稳压控制电路输出稳压控制电路的主要作用是对输出电压进行精确的稳定控制,使其符合设计要求。
可以采用PID控制算法进行输出稳压控制。
5.单片机控制电路设计通过单片机对电源进行控制和调节,可以实现开关电源的智能化控制。
可以根据需要添加按键、显示屏、数据传输接口等组件。
6.系统调试和测试设计好电路后,需要进行系统调试和测试。
通过编写单片机程序,对电源进行控制和温度、电流等参数进行监测。
四、技术难点及解决方法1.如何选择合适的开关电源和单片机。
解决方法:根据设计参数,选取性能稳定、符合设计需求的开关电源和单片机。
2.如何实现对输出电压的精确稳定控制。
基于单片机控制的开关电源的设计

基于单片机控制的开关电源的设计开关电源是一种常见的电源供应器,其基本原理是通过开关器件(如MOSFET、IGBT等)的开关行为来实现电源的稳定输出。
在单片机控制下,可以实现更精确的电压和电流调节,从而提高功率转换效率和供电稳定性。
本文将详细介绍基于单片机控制的开关电源的设计。
首先,我们需要选择合适的单片机。
在选择单片机时,应考虑其性能、成本和易用性。
常用的单片机有PIC、AVR、STM32等,可以根据实际需求选择最适合的单片机类型。
接下来,进行开关电源的电路设计。
开关电源的基本电路包括输入滤波电路、整流电路、开关器件、输出滤波电路和反馈控制电路。
输入滤波电路的作用是滤除输入电源中的高频噪声,以保证电源的稳定性。
整流电路用于将交流输入转换为直流电压。
开关器件是开关电源的关键部分,通过控制开关器件的开关状态,可以实现电源的输出调节。
输出滤波电路用于滤波输出的脉动电压,以获得稳定的直流电压输出。
反馈控制电路用于监测输出电压,并通过单片机进行调节。
在设计过程中,要考虑电路的稳定性和效率。
一方面,电路应具有足够的稳定性以保证电源输出的精度和稳定性。
另一方面,电路应具有较高的功率转换效率,以减少功耗和热量产生。
根据设计要求,可以选择合适的电路元件,如电感、电容、二极管等,以提高电路的稳定性和效率。
在单片机控制下,可以实现电源的自动调节和保护功能。
通过单片机的输入输出引脚连接到开关器件的驱动电路,可以实现开关器件的开关控制。
通过单片机的AD转换功能,可以实时监测电源的输出电压,并通过PID控制算法进行调节,从而实现电源输出的精确控制。
此外,可以通过单片机的IO口连接各种传感器,如温度传感器和过流保护电路,实现对电源工作状态的实时监测和保护功能。
在程序设计方面,可以利用单片机的中断和定时器功能来实现电源的调节和保护。
通过中断,可以实现对输入电压的过压和欠压保护,以防止电源工作在不正常的电压范围内。
通过定时器,可以实现对输出电流的过流保护,以避免电源损坏或者对负载产生过大的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机控制开关电源
单片机控制开关电源,单从对电源输出的控制来说,可以有几种控制方式.其
一是单片机输出一个电压(经DA芯片或PWM方式),用作电源的基准电压.这种
方式仅仅是用单片机代替了原来的基准电压,可以用按键输入电源的输出电压值,单片机并没有加入电源的反馈环,电源电路并没有什么改动.这种方式最简单.其二
是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,
调整DA的输出,控制PWM芯片,间接控制电源的工作.这种方式单片机已加入
到电源的反馈环中,代替原来的比较放大环节,单片机的程序要采用比较复杂的PID算法.其三是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与
设定值之差,输出PWM波,直接控制电源的工作.这种方式单片机介入电源工作
最多.第三种方式是最彻底的单片机控制开关电源,但对单片机的要求也最高.要
求单片机运算速度快,而且能够输出足够高频率的PWM波.这样的单片机显然价格也高.DSP类单片机速度够高,但目前价格也很高,从成本考虑,占电源成本的比例太大,不宜采用.廉价单片机中,AVR系列最快,具有PWM输出,可以考虑采用.
但AVR单片机的工作频率仍不够高,只能是勉强使用.下面我们具体计算一下AVR单片机直接控制开关电源工作可以达到什么水平.AVR单片机中,时钟频率
最高为16MHz.如果PWM分辨率为10位,那么PWM波的频率也就是开关电源的工作频率为16000000/1024=15625(Hz),开关电源工作在这个频率下显然不够(在音频范围内).那么取PWM分辨率为9位,这次开关电源的工作频率为16000000/512=32768(Hz),在音频范围外,可以用,但距离现代开关电源的工作频率还有一定距离.不过必须注意,9位分辨率是说功率管导通-关断这个周期中,可
以分成512份,单就导通而言,假定占空比为0.5,则只能分成256份.考虑到脉冲
宽度与电源的输出并非线性关系,需要至少再打个对折,也就是说,电源输出最多。