自动控制原理课程设计
自动控制原理专业课程设计方案报告

自控课程设计 课程设计(论文)设计(论文)题目 单位反馈系统中传输函数研究学院名称 Z Z Z Z 学院 专业名称 Z Z Z Z Z学生姓名 Z Z Z 学生学号 Z Z Z Z Z Z Z Z Z Z 任课老师 Z Z Z Z Z设计(论文)成绩单位反馈系统中传输函数研究一、设计题目设单位反馈系统被控对象传输函数为 )2)(1()(00++=s s s K s G (ksm7)1、画出未校正系统根轨迹图,分析系统是否稳定。
2、对系统进行串联校正,要求校正后系统满足指标: (1)在单位斜坡信号输入下,系统速度误差系数=10。
(2)相角稳定裕度γ>45º , 幅值稳定裕度H>12。
(3)系统对阶跃响应超调量Mp <25%,系统调整时间Ts<15s3、分别画出校正前,校正后和校正装置幅频特征图。
4、给出校正装置传输函数。
计算校正后系统截止频率Wc和穿频率Wx。
5、分别画出系统校正前、后开环系统奈奎斯特图,并进行分析。
6、在SIMULINK中建立系统仿真模型,在前向通道中分别接入饱和非线性步骤和回环非线性步骤,观察分析非线性步骤对系统性能影响。
7、应用所学知识分析校正器对系统性能影响(自由发挥)。
二、设计方法1、未校正系统根轨迹图分析根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式根在s平面上改变轨迹。
1)、确定根轨迹起点和终点。
根轨迹起于开环极点,最终开环零点;本题中无零点,极点为:0、-1、-2 。
故起于0、-1、-2,最终无穷处。
2)、确定分支数。
根轨迹分支数和开环有限零点数m和有限极点数n中大者相等,连续而且对称于实轴;本题中分支数为3条。
3)、确定根轨迹渐近线。
渐近线和实轴夹角为φa,交点为:σa。
且:φa=(2k+1)πn−m k=0,1,2······n-m-1; σa=∈pi−∈zin−m;则:φa=π3、3π3、5π3;σa=0−1−23=−1。
自动控制原理课程设计

自动控制原理课程设计一、引言自动控制原理课程设计是为了帮助学生深入理解自动控制原理的基本概念、原理和方法,通过实际项目的设计与实现,培养学生的工程实践能力和创新思维。
本文将详细介绍自动控制原理课程设计的标准格式,包括任务目标、设计要求、设计方案、实施步骤、实验结果及分析等内容。
二、任务目标本次自动控制原理课程设计的目标是设计一个基于PID控制算法的温度控制系统。
通过该设计,学生将能够掌握PID控制算法的基本原理和应用,了解温度传感器的工作原理,掌握温度控制系统的设计和实现方法。
三、设计要求1. 设计一个温度控制系统,能够自动调节温度在设定范围内波动。
2. 使用PID控制算法进行温度调节,实现温度的精确控制。
3. 使用温度传感器实时监测温度值,并将其反馈给控制系统。
4. 设计一个人机交互界面,能够实时显示温度变化和控制系统的工作状态。
5. 设计一个报警系统,当温度超出设定范围时能够及时发出警报。
四、设计方案1. 硬件设计方案:a. 使用温度传感器模块实时监测温度值,并将其转换为电信号输入到控制系统中。
b. 控制系统使用单片机作为主控制器,通过PID控制算法计算控制信号。
c. 控制信号通过电路板连接到执行器,实现温度的调节。
d. 设计一个报警电路,当温度超出设定范围时能够触发警报。
2. 软件设计方案:a. 使用C语言编写单片机的控制程序,实现PID控制算法。
b. 设计一个人机交互界面,使用图形化界面显示温度变化和控制系统的工作状态。
c. 通过串口通信将温度数据传输到电脑上进行实时监控和记录。
五、实施步骤1. 硬件实施步骤:a. 搭建温度控制系统的硬件平台,包括温度传感器、控制系统和执行器的连接。
b. 设计并制作电路板,将传感器、控制系统和执行器连接在一起。
c. 进行硬件连接调试,确保各个模块正常工作。
2. 软件实施步骤:a. 编写单片机的控制程序,实现PID控制算法。
b. 设计并编写人机交互界面的程序,实现温度变化和控制系统状态的实时显示。
自动控制原理课程设计

自动控制原理课程设计一、课程目标知识目标:1. 理解自动控制原理的基本概念,掌握控制系统数学模型的建立方法;2. 掌握控制系统性能指标及其计算方法,了解各类控制器的设计原理;3. 学会分析控制系统的稳定性、快速性和准确性,并能够运用所学知识对实际控制系统进行优化。
技能目标:1. 能够运用数学软件(如MATLAB)进行控制系统建模、仿真和分析;2. 培养学生运用自动控制原理解决实际问题的能力,提高学生的工程素养;3. 培养学生团队协作、沟通表达和自主学习的能力。
情感态度价值观目标:1. 培养学生对自动控制原理的兴趣,激发学生探索科学技术的热情;2. 培养学生严谨、务实的学术态度,树立正确的价值观;3. 增强学生的国家使命感和社会责任感,认识到自动控制技术在国家经济建设和国防事业中的重要作用。
本课程针对高年级本科学生,结合学科特点和教学要求,将目标分解为具体的学习成果,为后续的教学设计和评估提供依据。
课程注重理论与实践相结合,提高学生的实际操作能力和解决实际问题的能力,为培养高素质的工程技术人才奠定基础。
二、教学内容本课程教学内容主要包括以下几部分:1. 自动控制原理基本概念:控制系统定义、分类及其基本组成;控制系统的性能指标;控制系统的数学模型。
2. 控制器设计:比例、积分、微分控制器的原理和设计方法;PID控制器的参数整定方法。
3. 控制系统稳定性分析:劳斯-赫尔维茨稳定性判据;奈奎斯特稳定性判据。
4. 控制系统性能分析:快速性、准确性分析;稳态误差计算。
5. 控制系统仿真与优化:利用MATLAB软件进行控制系统建模、仿真和分析;控制系统性能优化方法。
6. 实际控制系统案例分析:分析典型自动控制系统的设计原理及其在实际工程中的应用。
教学内容按照以下进度安排:第一周:自动控制原理基本概念及控制系统性能指标。
第二周:控制系统的数学模型及控制器设计。
第三周:PID控制器参数整定及稳定性分析。
第四周:控制系统性能分析及MATLAB仿真。
自动控制原理课程设计

自动控制原理课程设计专业:电气工程及其自动化设计题目:二阶系统的综合设计班级:电自1141班学生姓名:Jason学号12指导教师:王彬分院院长:许建平教研主任:高纯斌电气工程学院目录第一章课程设计内容与要求分析 (2)1.1 课程设计内容 (2)1.2 课程设计要求分析 (2)1.2.1 二阶系统综合设计要求分析 (2)1.2.2 直流电机调速设计要求分析 (3)第二章二阶系统综合设计 (4)2.1 校正系统参数及特性图和结构图的确定 (4)2.2 MATLAB仿真实现过程 (6)2.2.1 程序编写 (6)2.2.2 Simulink仿真过程 (8)第三章直流电机调速 (10)3.1 开环直流电机调速 (10)3.2 单闭环晶闸管直流调速系统实验 (10)第四章自控课设总结 (12)参考文献 (13)致谢 (13)第一章课程设计内容与要求分析1.1 课程设计内容本次课程设计内容主要分为两大部分,第一部分为利用有源串联超前校正网络进行二阶系统校正。
通过校正装置开关的开合来比较校正前后的效果差异,主要利用MATLAB进行相关程序的编写和仿真,结合最终的结果经过分析论证最终得出相应结论。
第二部分为直流电动机开环调速实验和单闭环晶闸管直流调速系统实验。
二阶系统综合设计要求:1)开关S闭合引入校正网络后,在单位阶跃输入信号作用时,’≥4.4弧度/秒,相位裕量γ’≥45°;开环截止频率ωc2)根据性能指标要求,确定串联超前校正装置传递函数;3)手工绘制校正前、后及校正装置对数频率特性曲线;4)利用Matlab仿真软件辅助分析设计,并验算设计结果,绘制校正前、后及校正装置对数频率特性曲线;5)在Matlab-Simulink下建立系统仿真模型,求校正前、后系统单位阶跃响应特性,并进行系统性能比较;6)根据计算结果确定有源超前网络元件参数R、C值。
直流电动机调速设计要求:1)未接入反馈回路时直流电动机的转速随负载的变化而产生变化;2)通过晶闸管直流调速系统对系统进行调速;3)接入反馈后在给定电压和负载下产生一个转速,通过负载的改变系统转速能恢复到原来的状态;4)利用电力系统试验台进行试验。
自动控制原理课程设计

自动控制原理课程设计
自动控制原理课程设计是针对自动控制原理课程的学习内容和要求进行的实践性教学任务。
其目的是通过设计和实现一个自动控制系统,加深学生对自动控制原理的理解和应用能力。
一般来说,自动控制原理课程设计包括以下几个步骤:
1. 选题:根据课程要求和学生的实际情况,选择一个合适的自动控制系统作为课程设计的对象。
可以选择一些简单的控制系统,如温度控制、水位控制等,也可以选择一些复杂的控制系统,如飞行器控制、机器人控制等。
2. 系统建模:对选定的控制系统进行建模,包括确定系统的输入、输出和状态变量,建立系统的数学模型。
可以使用传递函数、状态空间等方法进行建模。
3. 控制器设计:根据系统模型和控制要求,设计合适的控制器。
可以使用经典控制方法,如比例积分微分(PID)控制器,也可以使用现代控制方法,如状态反馈控制、最优控制等。
4. 系统仿真:使用仿真软件(如MATLAB/Simulink)对设计的控制系统进行仿真,验证控制器的性能和稳定性。
5. 硬件实现:将设计的控制器实现到实际的硬件平台上,如单片机、PLC等。
可以使用编程语言(如C语言、Ladder图等)进行编程。
6. 系统调试:对实际的控制系统进行调试和优化,使其达到设计要求。
可以通过实验和测试来验证系统的性能。
7. 实验报告:根据课程要求,撰写实验报告,包括实验目的、方法、结果和分析等内容。
通过完成自动控制原理课程设计,学生可以深入理解自动控制原理的基本概念和方法,掌握控制系统的设计和实现技术,提高自己的实践能力和创新能力。
《自动控制原理》课程设计

名称:《自动控制原理》课程设计题目:基于自动控制原理的性能分析设计与校正院系:建筑环境与能源工程系班级:学生姓名:指导教师:目录一、课程设计的目的与要求------------------------------3二、设计内容2.1控制系统的数学建模----------------------------42.2控制系统的时域分析----------------------------62.3控制系统的根轨迹分析--------------------------82.4控制系统的频域分析---------------------------102.5控制系统的校正-------------------------------12三、课程设计总结------------------------------------17四、参考文献----------------------------------------18一、课程设计的目的与要求本课程为《自动控制原理》的课程设计,是课堂的深化。
设置《自动控制原理》课程设计的目的是使MATLAB成为学生的基本技能,熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。
使相关专业的本科学生学会应用这一强大的工具,并掌握利用MATLAB对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。
通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。
通过此次计算机辅助设计,学生应达到以下的基本要求:1.能用MATLAB软件分析复杂和实际的控制系统。
2.能用MATLAB软件设计控制系统以满足具体的性能指标要求。
3.能灵活应用MATLAB的CONTROL SYSTEM 工具箱和SIMULINK仿真软件,分析系统的性能。
自动控制原理课程设计

目录一.绪论 (2)1.1相关背景知识 (2)1.2课程设计目的 (2)1.3课程设计任务 (2)二.通过matlab求校正装置的传递函数 (3)三.系统校正前后的分析 (4)3.1特征根的对比 (4)3.2三种响应曲线的对比 (5)3.2.1校正前后的单位脉冲响应曲线对比 (5)3.2.2校正前后的单位阶跃响应曲线对比 (7)3.2.3校正前后的单位斜坡响应曲线对比 (8)四.动态性能的对比 (10)五.系统校正前后的根轨迹 (12)六.系统校正前后的Nyquist图 (14)七.系统校正前后的Bode图 (16)八.心得体会 (18)九.参考文献 (19)一.绪论1.1相关背景知识《自动控制原理》作为自动控制系列课程的实践性教学环节的教程,是新世纪电子信息与自动化系列课程改革教材之一。
该课程综合性强、知识覆盖面广,要求学生具有《工程数学》、《电路》等基础知识,以及较强的计算能力。
而《自动控制原理课程设计》能够帮助学生进一步巩固自控基础知识,并结合电路、电子技术,加强实践操作能力,因此具有很重要的意义。
1.2课程设计目的1.掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。
2.学会使用MATLAB 语言及Simulink 动态仿真工具进行系统仿真与调试。
1.3课程设计任务题目:已知单位负反馈系统被控制对象的传递函数为m m 1m 2012m n n 1n 2012n b b b b ()s s s G s a s a s a s a ----++++=++++ (n m ≥)。
参数n 210a ,a ,a ,a 和m 210b ,b ,b ,b 以及性能指标要求因小组而异。
本组题目: 已知单位负反馈系统的开环传递函数0K G(S)S(S 1)(0.125S 1)=++,试用频率法设计串联滞后校正装置,使系统的相角裕量030γ>,静态速度误差系数1v K 10s -=设计要求:1)首先, 根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。
自动控制原理课程设计

总结词
自动控制系统是一种无需人为干 预,能够根据输入信号和系统内 部参数自动调节输出信号,以实 现特定目标的系统。
详细描述
自动控制系统通过传感器检测输 入信号,经过控制器处理后,输 出控制信号驱动执行机构,以调 节被控对象的输出参数。
自动控制系统分类
总结词
根据不同的分类标准,可以将自动控制系统分为多种类型。
生对自动控制原理的理解和应用能力。
03
教学效果
通过本次课程设计,学生能够掌握自动控制系统的基本原理和设计方法,
具备一定的系统分析和设计能力,为后续的专业学习和实践打下坚实的
基础。
课程设计展望
加强实践环节
在未来的课程设计中,可以进一步增加实践环节的比重,通过更多的实验和项目实践,提 高学生的动手能力和解决实际问题的能力。
软件测试与调试
对软件进行测试和调试,确保软件功能正确、 稳定。
控制系统应用实例
温度控制系统
以温度为被控量,实现温 度的自动控制,应用于工 业、农业等领域。
液位控制系统
以液位为被控量,实现液 位的自动控制,应用于化 工、水处理等领域。
电机控制系统
以电机转速或位置为被控 量,实现电机的自动控制, 应用于工业自动化、电动 车等领域。
详细描述
根据控制方式,自动控制系统可以分为开环控制系统和闭环 控制系统;根据任务类型,可以分为调节系统、随动系统和 程序控制系统;根据控制对象的特性,可以分为线性控制系 统和非线性控制系统。
自动控制系统基本组成
总结词
自动控制系统通常由输入环节、控制环节、执行环节和被控对象组成。
详细描述
输入环节负责接收外部信号并将其传输给控制环节;控制环节通常由控制器组 成,用于处理输入信号并产生控制信号;执行环节接收控制信号并驱动执行机 构;被控对象是受控对象,其输出参数由执行机构调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告( 2013-- 2014 年度第 1 学期)名称:《自动控制理论》课程设计题目:基于自动控制理论的性能分析与校正院系:自动化系班级:学号:学生姓名:指导教师:孙建平设计周数:1周成绩:日期:2014 年 1 月3 日一、课程设计的目的与要求本课程为《自动控制理论A》的课程设计,是课堂的深化。
设置《自动控制理论A》课程设计的目的是使MATLAB成为学生的基本技能,熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。
作为自动化专业的学生很有必要学会应用这一强大的工具,并掌握利用MATLAB对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。
通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。
通过此次计算机辅助设计,学生应达到以下的基本要求:1.能用MATLAB软件分析复杂和实际的控制系统。
2.能用MATLAB软件设计控制系统以满足具体的性能指标要求。
3.能灵活应用MATLAB的CONTROL SYSTEM 工具箱和SIMULINK仿真软件,分析系统的性能。
二、主要内容1.前期基础知识,主要包括MA TLAB系统要素,MA TLAB语言的变量与语句,MATLAB 的矩阵和矩阵元素,数值输入与输出格式,MATLAB系统工作空间信息,以及MA TLAB的在线帮助功能等。
2.控制系统模型,主要包括模型建立、模型变换、模型简化,Laplace变换等等。
3.控制系统的时域分析,主要包括系统的各种响应、性能指标的获取、零极点对系统性能的影响、高阶系统的近似研究,控制系统的稳定性分析,控制系统的稳态误差的求取。
4.控制系统的根轨迹分析,主要包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和控制系统的根轨迹分析。
5.控制系统的频域分析,主要包括系统Bode图、Nyquist图、稳定性判据和系统的频域响应。
6.控制系统的校正,主要包括根轨迹法超前校正、频域法超前校正、频域法滞后校正以及校正前后的性能分析。
三、设计正文1,控制系统模型:(1)求)42()2(823)(22+⨯+⨯+⨯+⨯+⨯=s s s s s s s X 的拉氏逆变换。
解:>> syms sXs=(3*s^2+2*s+8)/s/(s+2)/(s^2+2*s+4); Xt=ilaplace(Xs);%拉氏逆变换 Xt=simplify(Xt) Xt =-2*exp(-2*t)+1+exp(-t)*cos(3^(1/2)*t)(2)已知系统的传递函数为()()()()()()2441649s 10s +++++=s s s s G ,在MATLAB 环境下获得其连续传递函数形式模型;若已知脉冲传递函数为()s G ,在MATLAB 环境下获得采样时间为8s 的传递函数形式模型;获得其延时时间为5s 的模型。
解:连续传递函数形式模型获得 syms s z=[-9 -4]'; p=[-6 -41 -24]'; k=10;Gzpk=zpk(z,p,k)Zero/pole/gain: 10 (s+9) (s+4) ------------------- (s+6) (s+24) (s+41)>> [num,den]=zp2tf(z,p,k)num =0 10 130 360den =1 71 1374 5904 >> Gs=tf(num,den)Transfer function:10 s^2 + 130 s + 360----------------------------s^3 + 71 s^2 + 1374 s + 5904采样时间为8s的传递函数形式模型获得Gs1=tf(num,den,Ts)Transfer function:10 z^2 + 130 z + 360----------------------------z^3 + 71 z^2 + 1374 z + 5904Sampling time: 8延时时间为5s的模型(待解决)2,时域分析法:(1)已知二阶系统的传递函数为:()2223n n n s s s G ωξωω++=,ωn=5ξ=0.1、0.3、0.5、…4,时的阶跃响应和脉冲响应曲线。
解: >> clear,clf syms wn k wn=5;num=wn*wn; for k=0.1:0.2:4 den=[1 3*wn*k num];step(num,den);%求阶跃响应并输出图形hold on;%保持图形end>> for k=0.1:0.2:4 den=[1 3*wn*k num];impulse(num,den);%求脉冲响应并输出图形 hold on;%保持图形(2)设一单位反馈控制系统的开环传递函数()()11.00+=ssksG,试分别求出当K=10和K=20时系统的阻尼系数ξ,无阻尼自然振荡频率Wn,单位阶跃响应的超调量σ%和调整时间ts,并讨论K的大小对过渡过程性能指标的影响。
解:>> clear,clfs=tf('s');k=input('k=');Go=k/s/(0.1*s+1);sys=feedback(Go,1);step(sys)k=10>> [wn z]=damp(sys)10.000010.0000z =0.50000.5000>> s=tf('s');k=input('k='); Go=k/s/(0.1*s+1); sys=feedback(Go,1); step(sys)k=20>> [wn z]=damp(sys) wn =14.142114.1421z =0.35360.3536性能指标如表格所示:Array由表格可以得出,开环增益增大时,阻尼系数减小,无阻尼自然振荡频率增大,超调量增大,调节时间基本不变。
3,根轨迹分析法(1)设闭环系统的开环传递函数为()()()()8452+++=s s s s k s H s G 。
试用幅角条件检验s 平面上的点○1点(-1.5,j2)和点○2点(-4,j3)是不是根轨迹上的点,如果是,则利用幅值条件计算该点所对应的K 值。
解:根据题意可设开环传递函数为()()()8452+++='s s s s s H s G ,利用试验点验证是否是根轨迹上的点,若是,根据)H(s )(1'=s G k 计算K 值。
>> s=input('s='); GH1=(s+5)/s/(s^2+4*s+8) if(angle(GH1)==pi) k=1/abs(GH1);fprintf('S 是根轨迹上的点,对应的K 值为%f\n',k) elsefprintf('s 不是根轨迹上的点\n') end s=-1.5+2*j GH1 =-0.8000S 是根轨迹上的点,对应的K 值为1.250000>> s=input('s=');GH1=(s+5)/s/(s^2+4*s+8) %开环传递函数 if(angle(GH1)==pi) k=1/abs(GH1);%若是,求K 的值fprintf('S 是根轨迹上的点,对应的K 值为%f\n',k)elsefprintf('s 不是根轨迹上的点\n') end s=-4+3*j GH1 =0.0483 + 0.0207is 不是根轨迹上的点(2)已知控制系统的开环传递函数为)962()2)(5()()(2++-+-=s s s s s k s H s G 。
试求:1),绘制根轨迹2),使闭环系统稳定的K 值取值范围。
解:开环传函有负号,绘制为0度根轨迹: >> num=conv([1 5],[1 -2]); den=conv([1 0],[2 6 9]); sys=tf(-num,den); %传函输入 rlocus(sys); %绘制根轨迹 axis equal %统一横纵坐标单位长度title('root-locus plot of G(s)=-k(s+5)(s-2)/s/(2s^2+6s+9)') %添加标题3,频域分析法(1)已知单位反馈系统的开环传递函数为)18)(16)(13(6)()(+++=s s s s H s G求:1),求闭环幅频特性;2),确定谐振峰值Mr 和谐振频率Wr ;3)估计单位阶跃响应的超调量σ%和调整时间ts 解: >> s=tf('s');Go=6/(3*s+1)/(6*s+1)/(8*s+1); %开环传递函数 G=feedback(Go,1);w=logspace(-2,2,100); %自定义频率点 [mag phase]=bode(G ,w); %求闭环传递函数 mag=reshape(mag,[100 1]); w=w';magB=20*log10(mag);semilogx(w,magB); %绘制闭环幅频特性曲线 grid on[Mr K]=max(magB) %谐振峰值对应的K值及峰值Wr=w(k); %谐振频率disp('Mr=');disp(Mr); %显示闭环系统谐振峰值及频率disp('Wr=');disp(Wr);figurestep(G) %绘制阶跃响应曲线,求超调量和调整时间Mr =11.7871K =37??? Attempted to access w(1.25); index must be a positive integer or logical.通过编辑程序运行得到如图所示的幅频特性曲线,从图可以得知谐振峰值为11.79db ,谐振频率为1.41,σ%=859.0859.041.1-=64%,ts=102(s).(2)设单位反馈系统的开环传递函数为3)101.0()()(+=s ks H s G ,要求系统有相位裕量γ=︒45,求K 值应为多少?解:>> syms w kG=k/(0.01*j*w+1)^3 %开环频率特性 phaseG=-3*atan(0.01*w); %相角特性 AG=abs(G); %幅值特性PM45=pi+phaseG-45*pi/180; %构造gama=45度的方程 wc=solve(PM45,'w'); %求出剪切频率wc A1=AG-1; %构造A(wc)=1的方程 A1=subs(A1,'w',wc); %用wc 替代A-1中的w k=double(solve(A1,'k')) %求K %用wc 替代A-1中的w G =k/(1/100*i*w+1)^3 k =-2.8284 2.8284由此可知,K 的值为2.82844,校正设计1),根轨迹超前校正被控对象传递函数为2400()(30200)G s s s s =++,要求的技术指标是ξ=0.5和n ω=13.5rad/s.试用根轨迹设计——串联校正。