高中数学解析几何优化计算6大技巧
解析几何问题中简化计算的若干方法

=
=
3 + 4k2 2
39 8k2 +
6
≥25 2
39 = 6 , 6
所以,当 k = 0 时, CM CN 取得 最小 值,为 6.
评注:注意图形的对称性,选择 BC 中点 O 为 原点建立直角坐标系,使方程简洁,问题得到简化.
2 充分 注意对称性,尽量使问题简化 在高中数 学中,有大 量的知识点 与对称有关 ,
x2 + y2 = 1. 45 36
评 注:若设椭圆方程为:
x2 a2
+
y2 a2
9
= 1 ,通过
直线与椭圆方程联立,应用 = 0 可解决该问题,但
说 理及计算上 有一定难度, 若能注意到 对称性的应
用,问题可大为简化.
运 用对称思想 解题,不 仅可以利用 对称的性质
沟 通已知与未 知的关系,使 分散的条件 相对集中,
件的椭圆中,长轴长
最小的椭圆方程.
解ቤተ መጻሕፍቲ ባይዱ 点 F1 关于直 线 l 的对称点为 A( 9,
6),
由 | PF1 | + | P F2 |
=| PA| + | P F2 |≥| AF2 |= 6 5 ,
当且仅当
A、P
、
F 2
三点共线时取最小值,从而
所 求椭圆 的长轴
2a
=
AF 2
=
6
5 ,故 椭圆方 程为:
2
CM = e x + 4 2 = (x + 4 2) / 2,
1
1
CN = e x + 4 2 = ( x + 4 2) / 2
2
2
所以, CM
高中数学解析几何中的解题技巧总结

高中数学解析几何中的解题技巧总结作者:李轩宇来源:《消费导刊》2018年第03期摘要:在高中数学的几何问题的处理过程中,有人将解析法比喻为一把锋利的快刀,这是有一定的道理的。
而在运用解析法的过程中,如果使用不当,就会使运算过程非常复杂。
因此,我们有必要总结出一些解题技巧。
本文根据高中数学学习过程中的总结的经验,例谈高中数学解析几何中的解题技巧。
关键词:高中数学解析几何解题技巧前言在整个高中数学知识系统中,解析几何这部分内容非常重要。
然而,当我们在学习这些这部分内容时,往往感觉难度不小。
从历年高考试题解析几何部分的得分情况来看,不容乐观。
随着新课程改革的到来,其对我们学生的分析问题能力和解决问题的能力提出了越来越高的要求。
对于这部分内容的学习,我们有必要重视起重要性,并总结出一些解题技巧,从而为我们以后解析几何的解题提供参考。
一、高中数学引入解析几何的重要性分析纵观高中数学课程的整个体系,解析几何这部分内容占据了重要的地位,该部分内容对于我们学生的顺序思维和能力的培养有较大的帮助。
具体而言,可以从下面三个角度来分析。
首先,高中解析几何这部分内容有着承上启下的功能,这部分内容不仅能够对初中所学的平面几何内容进行了补充,还是为我们进入大学之后的《空间解析几何》等课程的学习打下坚实的基础。
其次,在高中数学所有知识点中,解析几何这部分内容是一个交叉点。
这部分内容往往要将已经学习过的代数和向量部分的内容结合起来。
如果缺乏这部分内容的基础,那么就很难真正学好解析几何。
因此,我们要在基于学习和掌握这部分数学知识之后,灵活加以运用,从而提升自己的数学能力。
再次,解析几何这部分内容注重方法论。
总体来看,其特点不仅抽象,而且系统性也很强,知识体系比较完善。
因此,解析几何这部分内容的深入学习,不但能够培养我们是数学思维,而且能够增强我们对其他学科或领域的应用。
二、高中数学解析几何中的解题技巧总结(一)紧密结合代数知识解题通过大量几何试题的求解经验可知,在解析几何问题中,使用坐标系,根据代数的方法来研究几何问题,这种方法是非常普遍。
147分学霸分享丨解析几何的解题方法

147分学霸分享丨解析几何的解题方法数学学习有困难的同学,对解析几何有抵触情绪的同学,想要在拉分最明显的题型中拿到高分的同学。
具体经验解析几何是高中数学的重要部分,一般来说,解析几何会在选择填空中出现一到两题,并且会在必做大题中作为压轴题出现。
分值很大,重要性不言而喻,而且难度比较大,想要学好这方面的知识,不是很容易,因此,掌握一定的技巧与方法很重要。
针对高三学生,在学习解析几何的相关内容上,我有一些心得与体会,希望能与大家分享。
大家都知道高考数学卷中解析几何和导数是最不容易的两道大题,最近几年的数学卷趋向基础,只要细心多数同学可以拿到百分之七八十的分数,而想要在数学上力争顶尖的同学就要把握好这两道大题带来的机会。
然而相对于导数需要较强的技巧和想法来讲,解析几何更重要考察的是心里素质。
为什么这样说:第一因为解析几何的题型是有规律可循的,只要接触过类似的题型,拿到其他题的时候一定不会完全没有思路,但要想了解各个题型是需要不怕难题的勇气的。
第二是因为解析几何要求大量的计算,我高三学习解析几何的时候常常一道题写好几张草稿纸,要想完美的完成一道题需要静下心来,需要耐心。
第三是因为这个题型作为压轴题位于试卷的末尾,我在做高考卷的时候也习惯于先做选做题,再回来做导数和解析几何,在考试的最后,时间往往剩下的不多,这往往考察每个同学的定力,能不能不紧张,细心认真的做完自己所有会的步骤。
毋庸置疑,解析几何很花费时间,因此在复习的过程中不能“吝啬”,要肯花精力与时间,数学是对分析能力要求比较高的学科,复习时着重锻炼自己的分析能力,尽量选择整块的时间解决数学问题,否则思路被打断,效率会比较低。
解析几何作为高考的重点,考查项目不仅要求分析,还要求计算能力,大多数人都会觉得解析几何大题中的式子很长,就可能出现心烦意乱,懒得算下去的现象,但其实平时就是一个积累经验与树立信心的过程,越是在平日里认真地、一步步地算,才越有可能在考场上快速地,准确地算出结果。
高中数学解析几何解题方法总结

高中数学解析几何解题方法总结老师在讲题的时候,经常如未卜先知一般,就知道已知条件里经常存在着一个自己完全不知道的信息;或者分析着分析着,就突然来句:“这道题可以用反证法/数学归纳法……”解法是很精妙,但换你来做,你就是没有意识到要采用这样的方法。
我也曾经问过老师,为什么你们当时会想到用这种方法?得到的也往往是“不知道”、“题目做多了就明白了”。
高中数学解析几何解题方法我们先来分析一下解析几何高考的命题趋势:(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,占总分值的20%左右。
(2)整体平衡,重点突出:其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既留意全面,更留意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。
近几年新教材高考对解析几何内容的考查主要集中在如下几个类型:① 求曲线方程(类型确定、类型未定);②直线与圆锥曲线的交点题目(含切线题目);③与曲线有关的最(极)值题目;④与曲线有关的几何证实(对称性或求对称曲线、平行、垂直);⑤探求曲线方程中几何量及参数间的数目特征;高中数学解析几何解题方法:(3)能力立意,渗透数学思想:一些虽是常见的基本题型,但假如借助于数形结合的思想,就能快速正确的得到答案。
(4)题型新奇,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。
加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。
加大探索性题型的分量。
在近年高考中,对直线与圆内容的考查主要分两部分:(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:①与本章概念(倾斜角、斜率、夹角、间隔、平行与垂直、线性规划等)有关的题目;②对痴光目(包括关于点对称,关于直线对称)要熟记解法;③与圆的位置有关的题目,其常规方法是研究圆心到直线的间隔.以及其他“标准件”类型的基础题。
高中数学第二章解析几何初步优化总结北师大版必修2

[解] 原方程可化为(x-2)2+y2=3,表示以点(2,0)为圆心,
3为半径的圆.
(1)设xy=k,即 y=kx,当直线 y=kx 与圆相切时,斜率 k 取得
最大值和最小值,
此时有 |2k-0| = k2+1
3,解得 k=± 3,
故xy的最大值是 3,最小值是- 3.
(2)设 y-x=b,即 y=x+b,当直线 y=x+b 与圆相切时 b 取
得最大值和最小值,此时|2-0+b|= 3, 2
解得 b=-2± 6,
故 y-x 的最大值为-2+ 6,最小值为-2- 6.
(3)x2+y2 表示圆上的点与原点距离的平方,由平面几何的知 识知,其在原点和圆心的连线与圆的两个交点处分别取得最 大值和最小值,又知圆心到原点的距离为 2,故 x2+y2 的最大 值为(2+ 3)2=7+4 3,最小值为(2- 3)2=7-4 3.
2.求过圆外一点的圆的切线过程 求过圆外一点的圆的切线方程,一般设为点斜式,运用待定
系数法或判别式法求出斜率k,但用点斜式表示直线方程的前
提是斜率必须存在.过圆外一点可以作圆的两条切线,如果 只有一解,那么一定有一条切线斜率不存在,这时可用数形 结合的方法把“丢掉”的切线方程找回来. 3.已知斜率求圆的切线
如图所示,在平面直角坐标系 xOy 中,已知圆 C1:(x +3)2+(y-1)2=4 和圆 C2:(x-4)2+(y-5)2=4. (1)若直线 l 过点 A(4,0), 且被圆 C1 截得的弦长为 2 3,求直线 l 的方程;
(2)设 P 为平面上的点,满足:存在过点 P 的无穷多对互相垂直
的直线 l1 和 l2,它们分别与圆 C1 和圆 C2 相交,且直线 l1 被圆 C1 截得的弦长与直线 l2 被圆 C2 截得的弦长相等,试求所有满 足条件的点 P 的坐标.
数学解析几何题解题技巧

数学解析几何题解题技巧解析几何作为高中数学重要的一部分,是数学中的一门重要学科。
解析几何题目通常涉及到点、线、面等几何元素,并结合数学分析的方法进行求解。
解析几何题解题技巧的掌握对于学生的考试成绩和数学水平有着重要的影响。
本文将介绍一些解析几何题解题的常见技巧和方法。
一、坐标表示法在解析几何中,常常使用坐标表示法来解决问题。
坐标表示法利用数轴上的点与数的对应关系,将几何问题转化为数学问题进行求解。
在解析几何题目中,常用的坐标表示法包括直角坐标系、极坐标系等。
直角坐标系是最常见的坐标表示法之一。
在直角坐标系中,我们用x和y两个坐标轴来表示二维平面上的点。
在解析几何题目中,可以通过设定坐标原点,确定x轴和y轴的正负方向,来表示点的位置。
利用直角坐标系,我们可以计算线的斜率、距离等问题,从而解决解析几何题目。
极坐标系是另一种常用的坐标表示法。
在极坐标系中,我们用极径和极角来表示平面上的点。
极径表示点到坐标原点的距离,极角表示点与极轴的夹角。
利用极坐标系,我们可以更方便地表示圆、曲线等等问题,从而解决解析几何题目。
二、方程表示法方程表示法是解析几何题目中另一个重要的解题方法。
通过建立方程,可以用代数的方法求解几何问题。
在解析几何题目中,常常利用点、线、曲线的方程来表示几何元素的性质和关系。
例如,对于一条直线,可以通过两点式、点斜式、一般式等不同形式的方程来表示。
在解析几何题目中,可以通过已知条件,建立直线的方程,并结合其他几何元素的方程,解得问题的答案。
对于一条曲线,通常可以通过解析几何的知识,建立其方程,并通过求解方程,得到曲线上的点坐标等问题。
在解析几何题目中,方程表示法是解决问题的重要手段之一。
三、向量表示法向量表示法是解析几何题目中另一个常用的技巧。
向量表示法利用向量的性质和运算,可以更方便地表示点、线、面等几何元素,从而解决解析几何问题。
在解析几何题目中,常常通过设立向量的起点和终点,来表示点或线段。
高中数学必备解析几何中的平面直线方程求解技巧

高中数学必备解析几何中的平面直线方程求解技巧解析几何是高中数学中的重要一部分,其中求解平面直线方程是一个基础而且实用的技巧。
本文将介绍几种常见的方法,帮助读者掌握平面直线方程求解技巧。
一、点斜式点斜式是求解平面直线方程最常用的方法之一。
它的基本思想是通过已知直线上的一点和直线的斜率来确定直线方程。
考虑一个已知直线L,假设通过直线上一点P(x₁, y₁),且直线L的斜率为k。
我们可以使用点斜式方程y - y₁ = k(x - x₁)来求解直线L的方程。
该方法简单直观,适用于已知一点和斜率的情况。
对于其他情况,我们可以通过已知两点求斜率,然后套用点斜式方程来求解直线方程。
二、截距式截距式是另一种常用的求解平面直线方程的方法。
它的基本思想是通过直线在坐标轴上的截距来确定直线方程。
考虑一个已知直线L,假设它与x轴相交于点A(a, 0),与y轴相交于点B(0, b)。
我们可以使用截距式方程x/a + y/b = 1来求解直线L的方程。
该方法适用于已知直线在坐标轴上的截距的情况。
如果我们已知直线通过两点,则可以利用截距公式推导出直线的截距,并进而求解直线方程。
三、法线式法线式是一种特殊的直线方程形式,它的基本思想是通过已知直线上一点P(x₁, y₁)以及直线的法线斜率来确定直线方程。
考虑一个已知直线L,假设通过直线上一点P(x₁, y₁),且直线的法线斜率为k。
我们可以使用法线式方程y - y₁ = -1/k(x - x₁)来求解直线L的方程。
法线式方程的求解方法类似于点斜式,只是斜率取其相反数的倒数。
通过已知点和法线斜率,我们可以轻松地求解直线方程。
四、两直线交点式当我们在解析几何中遇到两条直线相交且已知交点坐标时,可以使用两直线交点式来求解直线方程。
设已知直线L₁过点A(x₁, y₁)和B(x₂, y₂),直线L₂过点C(x₃,y₃)和D(x₄, y₄)。
我们可以使用两直线交点式(y - y₁)/(x - x₁) = (y₃ -y₄)/(x₃ - x₄)来求解直线方程。
理解高中数学中的平面解析几何问题的解题技巧

理解高中数学中的平面解析几何问题的解题技巧平面解析几何是高中数学中的重要内容之一,它旨在研究平面上的点、直线、圆、曲线等几何对象,通过数学方法解决几何问题。
理解和掌握平面解析几何问题的解题技巧,对于学生的数学学习和问题解决能力的提升至关重要。
本文将从几何问题的构建、坐标的选择和运用、方程的建立与解析以及图像的推导等方面,探讨高中数学中平面解析几何问题的解题技巧。
一、几何问题的构建要理解几何问题的解题技巧,首先需要对问题进行准确的构建。
解题时应仔细阅读题目,理解问题所给条件以及要求的内容。
在构建几何问题时,可以利用直观的几何图形进行辅助,将问题所给的对象用符号表示,明确问题的限定条件和要求。
对于不同类型的问题,可以采用不同的方法进行分析和求解。
在初步确定了问题构建的基础上,接下来将介绍坐标的选择和运用对解题过程的影响。
二、坐标的选择与运用在平面解析几何问题中,坐标的选择和运用是十分重要的一环。
在解题过程中,我们通常会给平面上的点和几何对象选取适当的坐标,并利用坐标之间的关系进行推导和计算。
正确选择坐标能够简化问题的分析,提高解题的效率。
对于给定的几何问题,可以根据问题的特点选择不同的坐标系。
一般常用的坐标系有直角坐标系、极坐标系等。
根据问题的情况,选取合适的坐标系能够简化问题的分析和计算。
在选取坐标后,应合理运用坐标系中的几何关系,通过运算得到问题的解答。
在运用坐标进行分析时,我们通常需要建立相应的方程来描述几何对象的性质。
三、方程的建立与解析在平面解析几何问题中,方程的建立与解析是解题的核心步骤。
通过建立几何对象所满足的代数关系,我们可以将几何问题转化为代数问题,进而通过求解方程得到问题的解答。
在建立方程时,需要根据已知条件和问题要求,运用几何和代数知识进行推导。
在建立方程时,应注意方程的简化与转化。
在需要消除坐标的情况下,可以利用代数运算的性质进行简化,将复杂的方程转化为简单的形式,减少计算的复杂性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何优化计算6大技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.技巧一回归定义,以逸待劳回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.【例题】如图,F 1,F 2是椭圆C 1:x 24y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是()A.2B.3C.32D.62【解析】由已知,得F 1(-3,0),F 2(3,0),设双曲线C 2的实半轴长为a ,由椭圆及双曲线的定义和已知,1|+|AF 2|=4,2|-|AF 1|=2a ,1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62.【答案】D [关键点拨]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[对点训练]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是()A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解析:选A 由题意可得S△BCFS △ACF =|BC ||AC |=x B x A =|BF |-p 2|AF |-p 2=|BF |-1|AF |-1.2.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|PA |2=(x P +m )2+y 2P=(x P +m )2+4mx P ,则=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||PA |≥22,所以|PF ||PA |的最小值为22.答案:22技巧二设而不求,金蝉脱壳设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.【例题】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为()A.x 245+y 236=1 B.x 236+y 227=1C.x 227+y 218=1 D.x 218+y 29=1【解析】设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=-2,+y 21b 2=1,+y 22b2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.【答案】D [关键点拨](1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.(2)在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.[对点训练]1.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为()A.13B.12C.23D.34解析:选A 设OE 的中点为G ,由题意设直线l 的方程为y =k (x +a ),分别令x =-c 与x =0得|FM |=k (a -c ),|OE |=ka ,由△OBG ∽△FBM ,得|OG ||FM |=|OB ||FB |,即12ka k (a -c )=a a +c,整理得c a =13,所以椭圆C 的离心率e =13.2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2)+y 21b2=1,+y 22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22.答案:22技巧三巧设参数,变换主元换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.【例题】设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |>3.【解析】法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).kx 0,+y 20b2=1,消去y 0并整理,得x 20=a 2b2k 2a 2+b2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k+4.又a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.法二:依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k2,代入②,得(1+k2)·4a2(1+k2)2<a2,解得k2>3,所以|k|> 3.法三:设P(a cosθ,b sinθ)(0≤θ<2π),则线段OP的中点Qθ,b2sin|AP|=|OA|⇔A Q⊥OP⇔k A Q×k=-1.又A(-a,0),所以k A Q=b sinθ2a+a cosθ,即b sinθ-ak A Q cosθ=2ak A Q.从而可得|2ak A Q|≤b2+a2k2A Q<a1+k2A Q,解得|k A Q|<33,故|k|=1|k A Q|> 3.[关键点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量.[对点训练]设直线l与抛物线y2=4x相交于A,B两点,与圆C:(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,求r的取值范围.解:当斜率不存在时,有两条,当斜率存在时,不妨设直线l的方程为x=ty+m,A(x1,y1),B(x2,y2),代入抛物线y2=4x并整理得y2-4ty-4m=0,则有Δ=16t2+16m>0,y1+y2=4t,y1y2=-4m,那么x1+x2=(ty1+m)+(ty2+m)=4t2+2m,可得线段AB的中点M(2t2+m,2t),而由题意可得直线AB与直线MC垂直,即k MC·k AB=-1,可得2t-02t2+m-5·1t=-1,整理得m=3-2t2(当t≠0时),把m=3-2t2代入Δ=16t2+16m>0,可得3-t2>0,即0<t2<3,又由于圆心到直线的距离等于半径,即d =|5-m |1+t 2=2+2t 21+t 2=21+t 2=r ,而由0<t 2<3可得2<r <4.故r 的取值范围为(2,4).技巧四数形结合,偷梁换柱著名数学家华罗庚说过:“数与形本是两相倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”在圆锥曲线的一些问题中,许多对应的长度、数式等都具有一定的几何意义,挖掘题目中隐含的几何意义,采用数形结合的思想方法,可解决一些相应问题.【例题】已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.【解析】设双曲线的左焦点为F 1,根据双曲线的定义可知|PF |=2a +|PF 1|,则△APF 的周长为|PA |+|PF |+|AF |=|PA |+2a +|PF 1|+|AF |=|P A |+|PF 1|+|AF |+2a ,由于|AF |+2a 是定值,要使△APF 的周长最小,则|PA |+|PF 1|最小,即P ,A ,F 1共线,由于A (0,66),F 1(-3,0),则直线AF 1的方程为x -3+y 66=1,即x =y26-3,代入双曲线方程整理可得y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为26,所以=12×6×66-12×6×26=12 6.【答案】126[关键点拨]要求△APF 的周长的最小值,其实就是转化为求解三角形三边长之和,根据已知条件与双曲线定义加以转化为已知边的长度问题与已知量的等价条件来分析,根据直线与双曲线的位置关系,通过数形结合确定点P 的位置,通过求解点P 的坐标进而利用三角形的面积公式来处理.[对点训练]1.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是()A.55B.655C.855D.455解析:选C 如图所示,设椭圆的右焦点为F ′,连接MF ′,NF ′.因为|MF |+|NF |+|MF ′|+|NF ′|≥|MF |+|NF |+|MN |,所以当直线x =m 过椭圆的右焦点时,△FMN 的周长最大.此时|MN |=2b 2a =855,又c =a 2-b 2=5-4=1,所以此时△FMN 的面积S =12×2×855=855.故选C.2.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x-4)2+y 2=1上的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=()A .4 B.5C .6D .7解析:选C 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C.技巧五妙借向量,无中生有平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.【例题】如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.【解析】把y =b 2代入椭圆x 2a 2+y 2b 2=1,可得x =±32a ,则-32a 而F (c,0),则FB -32a -c FC -c 又∠BFC =90°,故有FB ·FC -32a -c -c c 2-34a 2+14b 2=c 2-34a 2+14(a 2-c 2)=34c 2-12a 2=0,则有3c 2=2a 2,所以该椭圆的离心率e =c a =63.【答案】63[关键点拨]本题通过相关向量坐标的确定,结合∠BFC =90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.[对点训练]设直线l 是圆O :x 2+y 2=2上动点P (x 0,y 0)(x 0y 0≠0)处的切线,l 与双曲线x 2-y 22=1交于不同的两点A ,B ,则∠AOB 为()A .90° B.60°C .45°D .30°解析:选A ∵点P (x 0,y 0)(x 0y 0≠0)在圆O :x 2+y 2=2上,∴x 20+y 20=2,圆在点P (x 0,y 0)处的切线方程为x 0x +y 0y =2.2-y 22=1,0x +y 0y =2及x 20+y 20=2得(3x 20-4)x 2-4x 0x +8-2x 20=0.∵切线l 与双曲线交于不同的两点A ,B ,且0<x 20<2,∴3x 20-4≠0,且Δ=16x 20-4(3x 20-4)·(8-2x 20)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4x 03x 20-4,x 1x 2=8-2x 203x 20-4∵OA ·OB =x 1x 2+y 1y 2=x 1x 2+1y 20(2-x 0x 1)(2-x 0x 2)=x 1x 2+12-x 20[4-2x 0(x 1+x 2)+x 2x 1x 2]=8-2x 203x 20-4+12-x 204-8x 203x 20-4+x 20(8-2x 20)3x 20-4=0,∴∠AOB =90°.技巧六巧用“根与系数的关系”某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.【例题】已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解析】(1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以-65,(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),k (x +2),y 2=1,化简得(1+4k 2)x 2+16k 2x +16k 2-4=0.则x A +x M =-16k 21+4k2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k 21+4k2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为-65,证明如下:因为k MP =y M x M +65=2-8k 21+4k 2+65=5k 4-4k 2,同理可得k PN =5k 4-4k2.所以直线MN 过x 轴上的一定点-65,[关键点拨]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k2这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点训练]已知椭圆C :x2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c2,b 2=3c 2,将点P c 2=1,故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1,代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0,显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0,则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t2,r 0=327,=12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|)=12r 0·4a =12×8×327=1227所以12t 2+14+3t2=1227,解得t 2=1,因为所求圆与直线l 相切,所以半径r =2t 2+1=2,所以所求圆的方程为(x -1)2+y 2=2.。