福建省南平市2013届高三毕业班质量检查数学文试题 Word版含答案
2013年高考文科数学福建卷试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学文史类(福建卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:C解析:在复平面内,z =-1-2i 对应点的坐标为(-1,-2),故选C.2.答案:A解析:点(2,-1)在直线l :x +y -1=0上,而直线l 上的点的坐标不一定为(2,-1),故“x =2且y =-1”是“点P 在直线l 上”的充分而不必要条件.3.答案:C解析:由题知A ∩B ={1,3},故它的子集个数为22=4.4.答案:B解析:x 2-y 2=1的渐近线方程为y =±x ,顶点坐标为(±1,0),点(±1,0)到y =±x 的距离为2==. 5.答案:A解析:由f (0)=0可知函数图象经过原点.又f (-x )=f (x ),所以函数图象关于y 轴对称,故选A.6.答案:B解析:画出可行域如下图阴影部分所示.画出直线2x +y =0,并向可行域方向移动,当直线经过点(1,0)时,z 取最小值.当直线经过点(2,0)时,z 取最大值.故z max =2³2+0=4,z min =2³1+0=2.7.答案:D解析:∵2x +2y =1≥ ∴212⎛⎫ ⎪⎝⎭≥2x +y ,即2x +y ≤2-2. ∴x +y ≤-2.8.答案:B解析:若n =3,则输出S =7;若n =4,则输出S =15,符合题意.故选B.9.答案:B解析:∵f (x )的图象经过点⎛ ⎝⎭,∴sin θ又∵θ∈ππ,22⎛⎫- ⎪⎝⎭,∴π3θ=. ∴f (x )=πsin 23x ⎛⎫+ ⎪⎝⎭. 由题知g (x )=f (x -φ)=πsin 23x ϕ⎡⎤(-)+⎢⎥⎣⎦,又图象经过点⎛ ⎝⎭,∴g (0)=πsin 23ϕ⎛⎫-+= ⎪⎝⎭. 当5π6ϕ=时满足g (0)B. 10.答案:C解析:∵AC ²BD =-4³1+2³2=0,∴AC ⊥BD .S 四边形ABCD =12|AC ||BD |=152=. 11.答案:C 解析:123456762x +++++==, 021*******y +++++==, 122157n i ii n i i x y nx y b xnx ==-==-∑∑, 13a y bx =-=-,b ′=2021--=2>b ,a ′=-2<a . 12.答案:D解析:由函数极大值的概念知A 错误;因为函数f (x )的图象与f (-x )的图象关于y 轴对称,所以-x 0是f (-x )的极大值点.B 选项错误;因为f (x )的图象与-f (x )的图象关于x 轴对称,所以x 0是-f (x )的极小值点.故C 选项错误;因为f (x )的图象与-f (-x )的图象关于原点成中心对称,所以-x 0是-f (-x )的极小值点.故D 正确.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.答案:-2解析:∵ππtan 144f ⎛⎫=-=-⎪⎝⎭,π4f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=f (-1)=2³(-1)3=-2. 14.答案:13 解析:由3a -1<0,得a <13. ∵0≤a ≤1,∴0≤a <13.根据几何概型知所求概率为11313=. 15.1解析:∵由y x +c )知直线的倾斜角为60°, ∴∠MF 1F 2=60°,∠MF 2F 1=30°.∴∠F 1MF 2=90°.∴MF 1=c ,MF 2.又MF 1+MF 2=2a ,∴c =2a ,即1e ==. 16.答案:①②③解析:①若y =x +1是从A 到B 的一个函数,且x ∈A ,则满足(ⅰ)B ={f (x )|x ∈A }.又f (x )=x +1是单调递增的,所以也满足(ⅱ);②若f (x )=92x -72时,满足(ⅰ)B ={f (x )|x ∈A },又f (x )=92x -72是单调递增的,所以也满足(ⅱ); ③若1tan π2y x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦(0<x <1)时,满足(ⅰ)B ={f (x )|x ∈A }.又()1tan π2f x x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦在(0,1)上是单调递增的,所以也满足(ⅱ).故填①②③.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.解:(1)因为数列{an }的公差d =1,且1,a 1,a 3成等比数列,所以a 12=1³(a 1+2),即a 12-a 1-2=0,解得a 1=-1或a 1=2.(2)因为数列{a n }的公差d =1,且S 5>a 1a 9,所以5a 1+10>a 12+8a 1,即a 12+3a 1-10<0,解得-5<a 1<2.18.解法一:(1)在梯形ABCD 中,过点C 作CE ⊥AB ,垂足为E ,由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理得BE =3,从而AB =6.又由PD ⊥平面ABCD 得,PD ⊥AD ,从而在Rt △PDA 中,由AD =4,∠PAD =60°,得PD =正视图如图所示:正视图(2)取PB 中点N ,连结MN ,CN .在△PAB 中,∵M 是PA 中点,∴MN ∥AB ,MN =12AB =3. 又CD ∥AB ,CD =3,∴MN ∥CD ,MN =CD .∴四边形MNCD 为平行四边形.∴DM ∥CN .又DM ⊄平面PBC ,CN ⊂平面PBC ,∴DM ∥平面PBC .(3)V D -PBC =V P -DBC =13S △DBC ²PD ,又S △DBC =6,PD =V D -PBC =解法二:(1)同解法一.(2)取AB 的中点E ,连结ME ,DE .在梯形ABCD 中,BE ∥CD ,且BE =CD ,∴四边形BCDE 为平行四边形.∴DE ∥BC .又DE ⊄平面PBC ,BC ⊂平面PBC ,∴DE ∥平面PBC .又在△PAB 中,ME ∥PB ,ME ⊄平面PBC ,PB ⊂平面PBC ,∴ME ∥平面PBC .又DE ∩ME =E ,∴平面DME ∥平面PBC .又DM ⊂平面DME ,∴DM ∥平面PBC .(3)同解法一.19.解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60³0.05=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40³0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710. (2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60³0.25=15(人),“25所以得K 2=n ad bc a b c d a c bd (-)(+)(+)(+)(+)=1001525154560403070⨯(⨯-⨯)⨯⨯⨯=2514≈1.79. 因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.20.解:(1)抛物线y 2=4x 的准线l 的方程为x =-1.由点C 的纵坐标为2,得点C 的坐标为(1,2),所以点C 到准线l 的距离d =2,又|CO |所以|MN |== 2.(2)设C 200,4y y ⎛⎫ ⎪⎝⎭,则圆C 的方程为2204y x ⎛⎫- ⎪⎝⎭+(y -y 0)2=4016y +y 02,即x 2-202y x +y 2-2y 0y =0. 由x =-1,得y 2-2y 0y +1+202y =0,设M (-1,y 1),N (-1,y 2),则2220002012441240,21.2y y y y y y ⎧⎛⎫∆=-+=->⎪ ⎪⎪⎝⎭⎨⎪=+⎪⎩ 由|AF |2=|AM |²|AN |,得|y 1y 2|=4, 所以202y +1=4,解得0y =Δ>0. 所以圆心C 的坐标为32⎛ ⎝或3,2⎛ ⎝.从而|CO |2=334,|CO |,即圆C. 21. 解:(1)在△OMP 中,∠OPM =45°,OMOP=由余弦定理得,OM 2=OP 2+MP 2-2³OP ³MP ³cos 45°,得MP 2-4MP +3=0,解得MP =1或MP =3.(2)设∠POM =α,0°≤α≤60°,在△OMP 中,由正弦定理,得sin sin OM OP OPM OMP=∠∠, 所以OM =sin45sin 45OP α︒(︒+). 同理ON =sin45sin 75OP α︒(︒+). 故S △OMN =12³OM ³ON ³sin∠MON =221sin 454sin 45sin 75OP αα︒⨯(︒+)(︒+)=1sin 45sin 4530αα(︒+)(︒++︒)⎣⎦. 因为0°≤α≤60°,30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)的最大值为1,此时△OMN 的面积取到最小值,即∠POM =30°时,△OMN的面积的最小值为8-22.解法一:(1)由f (x )=x -1+e x a ,得f ′(x )=1-e xa , 又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,得f ′(1)=0,即1-e a =0,解得a =e. (2)f ′(x )=1-e xa , ①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x =a ,x =ln a .x ∈(-∞,ln a ),f ′(x )<0;x ∈(ln a ,+∞),f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.(3)当a =1时,f (x )=x -1+1ex . 令g (x )=f (x )-(kx -1)=(1-k )x +1e x , 则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.假设k >1,此时g (0)=1>0,11111<01e k g k -⎛⎫=-+ ⎪-⎝⎭, 又函数g (x )的图象连续不断,由零点存在定理,可知g (x )=0在R 上至少有一解,与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.又k =1时,g (x )=1e x>0,知方程g (x )=0在R 上没有实数解. 所以k 的最大值为1.解法二:(1)(2)同解法一.(3)当a =1时,f (x )=x -1+1e x. 直线l :y =kx -1与曲线y =f (x )没有公共点,等价于关于x 的方程kx -1=x -1+1e x 在R 上没有实数解,即关于x 的方程:(k -1)x =1e x(*) 在R 上没有实数解. ①当k =1时,方程(*)可化为10e x=,在R 上没有实数解. ②当k ≠1时,方程(*)化为11k -=x e x . 令g (x )=x e x ,则有g ′(x )=(1+x )e x.令g ′(x )=0,得x当x =-1时,g (x )min =e-,同时当x 趋于+∞时,g (x )趋于+∞, 从而g (x )的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭. 所以当11k -∈1,e ⎛⎫-∞- ⎪⎝⎭时,方程(*)无实数解,解得k 的取值范围是(1-e,1). 综上①②,得k 的最大值为1.。
2013年福建省普通高中毕业班质量检查文科数学-推荐下载

3n 1 3n 2 3m 2 3m 1
3
3
x x
3
0, 0
有两个不同的零点,则实数
3
三、解答题:本大题共 6 小题,共 74 分.解答应写出文字说明,证明过程或演算步骤.
间 120 分钟.
2013 年福建省普通高中毕业班质量检查文科数学
本试卷分第 1 卷(选择题)和第Ⅱ卷(非选择题).本试卷共 5 页.满分 150 分.考试时
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.
2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内
其中正确的个数是
A. 0
B.1
C.2
第Ⅱ卷(非选择题 共 90 分)
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在答题卡相应位置.
13.一支田径队有男运动员 28 人,女运动员 21 人,现按性别用分层抽样的方法,从中抽
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2013年福建省普通高中毕业班质量检查数学(文)试卷及答案.

2013年福建省普通高中毕业班质量检查文 科 数 学本试卷分第1卷(选择题)和第Ⅱ卷(非选择题).本试卷共5页.满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.参考公式:样本数据x 1,x 2, …,x n 的标准差 锥体体积公式V =31Sh 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式球的表面积、体积公式 V =Sh24S R =π,343V R =π其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数1i z =-,z 为z 的共轭复数,则下列结论正确的是A .1i z =--B .1+i z =-C .2z =D .z =2.已知,0a b c >≠,则下列不等式一定成立的是 A .22a b >B .ac bc >C .a c b c +>+D .a b c c> 3.执行如图所示的程序框图,若输入的x 值为2,则输出的x 值为A .3B .8C .9D .63 4.“1x =”是“210x -=”的A.充分而不必要条件 B.必要而充分不条件 C.充要条件 D.既不充分也不必要条件5.函数2cos 22y x x x ππ⎛⎫=-≤≤ ⎪⎝⎭的图象是6.已知集合{}|28M x x =-≤≤,{}2|320N x x x =-+≤,在集合M 中任取一个元素x ,则 “x MN ∈”的概率是A .110B .16C .310D .127.已知1F ,2F 是椭圆C 的两个焦点,焦距为4.若P 为椭圆C 上一点,且12PF F ∆的周长为14,则椭圆C 的离心率e 为 A .15 B .25 C .45D .5A BCD8.若变量,x y 满足约束条件310,3110,2,x y x y y --≥⎧⎪+-≤⎨⎪≥⎩则2z x y =-的最小值为A .4B .1C .0D .1- 9.设,m n 为两条不同的直线,βα,是两个不同的平面,下列命题正确的是 A .若β//,//m n m ,则β//n B .若αα//,//n m ,则n m // C .若β⊥m n m ,//,则β⊥n D .若n m n m //,,βα⊂⊂,则βα// 10.已知点()0,0O ,()1,2A ,()3,2B ,以线段AB 为直径作圆C ,则直线:30l x y +-=与圆C 的位置关系是A .相交且过圆心B .相交但不过圆心C .相切D .相离 11.已知点()()()0000167n O ,,A ,,A ,,点()1212n A ,A ,,A n ,n -∈≥N 是线段0n A A 的n 等分点,则011+n n OA OA OA OA -+++等于A .5nB .10nC .()51n +D .()101n + 12.定义两个实数间的一种新运算“*”:()l g1010,x yx y *=+,x y ∈R .对任意实数,,a b c ,给出如下结论:①()()c b a c b a ****=; ②a b b a **=; ③()()()**a b c a c b c +=++; 其中正确的个数是A . 0B .1C .2D .3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置. 13.一支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取________人. 14.在ABC ∆中,角,,A B C 所对的边分别为,,a b c .已知3a =,8b =,C=3π,则c = .15.若函数2,0,()ln ,0x a x f x x x ⎧-≤=⎨>⎩有两个不同的零点,则实数a 的取值范围是 . 16.观察下列等式:12133+=; 781011123333+++=; 16171920222339333333+++++=; …则当m n <且,m n ∈N 表示最后结果.313232313333n n m m ++--++++= (最后结果用,m n 表示最后结果). 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)某工厂生产,A B 两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:由于表格被污损,数据y x ,看不清,统计员只记得x y <,且,A B 两种元件的检测数据的平均值相等,方差也相等. (Ⅰ)求表格中x 与y 的值;(Ⅱ)若从被检测的5件B 种元件中任取2件,求2件都为正品的概率. 18.(本小题满分12分)已知函数()sin cos f x x x =+,x ∈R . (Ⅰ)求12f π⎛⎫⎪⎝⎭的值; (Ⅱ)试写出一个函数()g x ,使得()()cos2g x f x x =,并求()g x 的单调区间. 19.(本小题满分12分)某几何体111C B A ABC -的三视图和直观图如图所示. (Ⅰ)求证:平面11AB C ⊥平面11AAC C ; (Ⅱ)若E 是线段1AB 上的一点,且满足1111191C B A ABC C AA E V V --=,求AE 的长.20.(本小题满分12分)某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO 2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO 2的年排放量约为9.3万吨, (Ⅰ)按原计划,“十二五”期间该城市共排放SO 2约多少万吨?(Ⅱ)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO 2的年排放量每年比上一年减少的百分率为p ,为使2020年这一年的SO 2年排放量控制在6万吨以内,求p 的取值范围.(参考数据9505.0328≈,9559.0329≈). 21.(本小题满分12分)已知函数()2e xf x ax bx =++.(Ⅰ)当0,1a b ==-时,求()f x 的单调区间; (Ⅱ)设函数()f x 在点()(),P t f t ()01t <<处的切线为l ,直线l 与y 轴相交于点Q .若点Q 的纵坐标恒小于1,求实数a 的取值范围. 22.(本小题满分14分)某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线2:2E y px =,在抛物线上任意画一个点S ,度量点S的坐标俯视图侧(左)视图正(主)视图1A(),S S x y ,如图.(Ⅰ)拖动点S ,发现当4S x =时,4S y =,试求抛物线E 的方程;(Ⅱ)设抛物线E 的顶点为A ,焦点为F ,构造直线SF 交抛物线E 于不同两点S 、T ,构造直线AS 、AT 分别交准线于M 、N 两点,构造直线MT 、NS .经观察得:沿着抛物线E ,无论怎样拖动点S ,恒有MT //NS .请你证明这一结论.(Ⅲ)为进一步研究该抛物线E 的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点F ”改变为其它“定点(),0G g ()0g ≠”,其余条件不变,发现“MT 与NS 不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“MT //NS ”成立?如果可以,请写出相应的正确命题;否则,说明理由.2013年福建省普通高中毕业班质量检查 文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分. 1.D 2.C 3.B 4.A 5.B 6.A 7.B 8.A 9.C 10.B 11.C 12.D二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.13.8; 14.7; 15.01a <≤; 16.22n m -.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分12分.解:(Ⅰ)因为11=+7+75+9+95=8=858555x x x y ⋅⋅+⋅+⋅+A B (7),(6+), 由=x x A B,得17x y +=. ① ………………………………………2分因为222211=1+1+0.25+1+2.25=1.1=4+8+0.25+0.25+855x y ⎡⎤--⎣⎦A B ,s ()s ()(), 由22=A Bs s ,得228+8=1x y --()(). ② …………………………………………4分由①②解得89x y =⎧⎨=⎩,,或98.x y =⎧⎨=⎩,因为x y <, 所以8x y ==. ………………………………………6分(Ⅱ) 记被检测的5件B 种元件分别为12345,,,,B B B B B ,其中2345,,,B B B B 为正品, 从中任取2件,共有10个基本事件,列举如下:()12,B B ,()13,B B ,()14,B B ,()15,B B ,()23,B B , ()24,B B ,()25,B B ,()34,B B ,()35,B B ,()45,B B , ………………………………………8分记“2件都为正品”为事件C ,则事件C 包含以下6个基本事件:()23,B B ,()24,B B ,()25,B B ,()34,B B ,()35,B B ,()45,B B .……………………………10分所以63()105P C ==,即2件都为正品的概率为35. ………………………………………12分 18.本小题主要考查三角函数的图象与性质、两角和与差三角公式、二倍角公式、三角函数的恒等变换等基础知识,考查运算求解能力,考查化归与转化思想等.满分12分.解法一:(Ⅰ)因为())4f x x π=+,………………………………………3分所以121243f ππππ⎛⎫⎛⎫=+==⎪ ⎪⎝⎭⎝⎭……………………………6分 (Ⅱ)()cos sin g x x x =-. …………………………………………………………7分 下面给出证明:因为()()22(cos sin )(sin cos )cos sin cos2,g x f x x x x x x x x =-+=-=所以()cos sin g x x x =-符合要求.……………………………………………………9分又因为()cos sin 4g x x x x π⎛⎫=-=+ ⎪⎝⎭,…………………………………………10分由222,4k x k πππππ+<+<+得3722,44k x k ππππ+<<+ 所以()g x 的单调递增区间为372244k k ππππ⎛⎫++ ⎪⎝⎭,k ∈Z .………………………………11分又由224k x k ππππ<+<+,得32244k x k ππππ-<<+, 所以()g x 的单调递减区间为32244k k ππππ⎛⎫-+⎪⎝⎭,,k ∈Z .………………………………12分 解法二:(Ⅰ)因为()21s i n 2,fx x =+⎡⎤⎣⎦所以231s i n 1262f ππ⎡⎤⎛⎫=+= ⎪⎢⎥⎝⎭⎣⎦,………………………………3分又因为0,12f π⎛⎫>⎪⎝⎭所以12f π⎛⎫=⎪⎝⎭6分 (Ⅱ)同解法一. 解法三:(Ⅰ)sin cos sin cos 1212123434f πππππππ⎛⎫⎛⎫⎛⎫=+=-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭sincoscossincoscossinsin34343434ππππππππ=-++…………………3分112222=-++=………………………………6分 (Ⅱ)同解法一.注:若通过()()cos 2xg x f x =得到()g x 或由()()(cos sin )(cos sin )g x f x x x x x =+-两边同时约去()f x 得到()g x 不扣分.19.本小题主要考查三视图、直线与直线、直线与平面、平面与平面的位置关系,几何体的体积等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查函数与方程思想、数形结合思想、化归与转化思想.满分12分.解法一:(Ⅰ)由三视图可知,几何体111C B A ABC -为三棱柱,侧棱1111C B A AA 底面⊥,1111C A C B ⊥,且41==AC AA ,2=BC .………………………………………2分 1111C B A AA 平面⊥ ,11111111,C B AA C B A C B ⊥∴⊂平面, …………………3分 11111111,A C A AA C A C B =⊥ ,1111ACC A C B 平面⊥∴.……………………5分又1111C AB C B 平面⊂ , C C AA C AB 1111平面平面⊥∴.………………………6分 (Ⅱ)过点E 作11//C B EF 交1AC 于F ,由(Ⅰ)知,11ACC A EF 平面⊥,即EF 为C AA E 1-三棱锥的高. ………7分1111191C B A ABC C AA E V V --= ,,9131111AA S EF S ABC C AA ⋅=⋅∴∆∆ ……………………8分1111442443292EF ⎛⎫⎛⎫∴⨯⨯⨯⨯=⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭,解得32=EF .……………………9分在Rt ABC ∆中,AB ===,在1Rt ABB ∆中,16AB ===,……………………10分由111C B EF AB AE =, ……………………11分 得22326C B EFAB AE 111=⨯=⋅=. ……………………12分解法二:(Ⅰ)同解法一.(Ⅱ)过点E 作11//C B EF 交1AC 于F ,由(Ⅰ)知,11ACC A EF 平面⊥,即EF 为C AA E 1-三棱锥的高. ………7分11111111133C AA B C B A A C B A ABC V V V ---== ,111111113191C AA B C B A ABC C AA E V V V ---==∴ ………8分,313131111111C B S EF S C AA C AA ⋅⨯=⋅∴∆∆,3111C B EF =∴ ………9分 在AB C Rt ∆中,5224AB 2222=+=+=BC AC ,在1ABB Rt ∆中,()6452AB 222121=+=+=BB AB ,……………………10分由111C B EFAB AE =, ……………………11分 得2AB 31AE 1==. ……………………12分 20.本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力和应用意识,考查函数与方程思想.满分12分.解:(Ⅰ)设“十二五”期间,该城市共排放SO 2约y 万吨,依题意,2011年至2015年SO 2的年排放量构成首项为9.3,公差为0.3-的等差数列,……………3分 所以()55159.3(0.3)=43.52y ⨯-=⨯+⨯-(万吨). 所以按计划“十二五”期间该城市共排放SO 2约43.5万吨.……………………6分 (2)由已知得, 2012年的SO 2年排放量9.60.32=9-⨯(万吨),……………………7分所以2012年至2020年SO 2的年排放量构成首项为9,公比为1p -的等比数列,…………………9分由题意得891p ⨯-()<6,即1p -<832, 所以10.9505p -<,解得 4.95%p >.所以SO 2的年排放量每年减少的百分率p 的取值范围4.95%1p <<<……………………12分21.本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查分类与整合思想、数形结合思想、化归与转化思想.满分12分.解:(Ⅰ)当0,1a b ==-时,()e x f x x =-,()e 1xf x '=-,……………………1分所以,当(,0x ∈-∞时,()0f x '<;当(0,x ∈+∞时,()0f x '>;……………………3分所以函数()f x 的单调递减区间为(),0-∞,单调递增区间为(0,)+∞.……………………4分(Ⅱ)因为()2xf x e ax b '=++,所以()(),P t f t 处切线的斜率()2tk f t e at b '==++,所以切线l 的方程为()()()22t t y e at bt e at b x t -++=++-,令0x =,得()21ty t e a t=-- ()01t << (5)分当01t <<时,要使得点Q 的纵坐标恒小于1,只需()211tt e at --<,即()2110tt e at -++>()01t <<.……………… 6分令()()211tg t t e at =-++,则()()2t g t t e a '=+,………………………………………………………… 7分 因为01t <<,所以1t e e <<, ①若21a ≥-即12a ≥-时,20te a +>, 所以,当()0,1t ∈时,()0g t '>,即()g t 在()0,1上单调递增, 所以()(0)0g t g >=恒成立,所以12a ≥-满足题意.………………………………8分 ②若2a e ≤-即2e a ≤-时,20te a +<,所以,当()0,1t ∈时,()0g t '<,即()g t 在()0,1上单调递减,所以()(0)0g t g <=,所以2ea ≤-不满足题意.………………………………………9分 ③若21e a -<<-即122e a -<<-时,0ln(2)1a <-<.则t 、()g t '、()g t 的关系如下表:所以()()l n (2)00g a g -<=,所以22a -<<-不满足题意.………………………………11分 综合①②③,可得,当12a ≥-时,()0g t >()01t <<时,此时点Q 的纵坐标恒小于1.…………12分22.本小题主要考查抛物线的标准方程、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、数形结合思想等.满分14分.解法一:(Ⅰ)把4S x =,4S y =代入22y px =,得248p =,……………………2分所以2p =,………………………………………………………………………3分因此,抛物线E 的方程24y x =.…………………………………………………4分(Ⅱ)因为抛物线E 的焦点为()1,0F ,设()()1122,,,S x y T x y , 依题意可设直线:1l my x =-,由241y x my x ⎧=⎨=-⎩,得2440y my --=,则121244.y y m y y +=⎧⎨⋅=-⎩, ①……………………6分又因为11:AS y l y x x =,22:AT yl y x x =,所以111,y M x ⎛⎫-- ⎪⎝⎭,221,y N x ⎛⎫-- ⎪⎝⎭,所以12211,y MT x y x ⎛⎫=++⎪⎝⎭,21121,y NS x y x ⎛⎫=++ ⎪⎝⎭, ……………………7分 又因为()()1221121211y y y x y x x x ⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭……………………………………8分 2221121241411144y y y y y y ⎛⎫⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22122112*********4y y y y y y y y y y ⎛⎫⎛⎫=+++-+++ ⎪ ⎪⎝⎭⎝⎭()21121212144y y y y y y y y -=-+()22121212164y y y y y y ⎛⎫-=- ⎪⎝⎭, ②把①代入②,得()221212121604y y y y y y ⎛⎫--= ⎪⎝⎭, (10)分即()()12211212110y y y x y x x x ⎛⎫⎛⎫++-++= ⎪ ⎪⎝⎭⎝⎭,所以//MT NS ,又因为M 、T 、N 、S 四点不共线,所以MT //NS .……………………………………………11分(Ⅲ)设抛物线2:4E y x =的顶点为A ,定点()(),00G g g ≠,过点G 的直线l 与抛物线E 相交于S 、T 两点,直线AS 、AT 分别交直线x g =-于M 、N 两点,则MT //NS .……………………14分解法二:(Ⅰ)同解法一.(Ⅱ)因为抛物线E 的焦点为()1,0F ,设()()221122,2,,2S t t T t t ,……………………5分依题意,可设直线:1ST l my x =-,由241y x my x ⎧=⎨=-⎩得2440y my --=, 则1212224,224,t t m t t +=⎧⎨⋅=-⎩所以12124,1.t t m t t +=⎧⎨⋅=-⎩ (7)分又因为2:2AS l y t x =-,1:2AT l y t x =-, 所以()21,2M t -,()11,2N t -,………………………………………………………………………10分所以MT k =,0NS k =,………………………………………………………………………………10分又因为M 、T 、N、S四点不共线,所以MT //NS .…………………………………………………11分(Ⅲ)同解法一. 解法三:(Ⅰ)同解法一.(Ⅱ)因为抛物线E 的焦点为()1,0F ,设()()1122,,,S x y T x y , 依题意,设直线:1l my x =-,由241y xmy x ⎧=⎨=-⎩得2440y my --=,则121244y y my y +=⎧⎨⋅=-⎩,…………………………………………6分 又因为11:AS y l y x x =,22:AT yl y x x =,所以111,y M x ⎛⎫-- ⎪⎝⎭,221,y N x ⎛⎫-- ⎪⎝⎭, 又因为212y y x ⎛⎫-- ⎪⎝⎭221122224404y y y y y x y +=+=,……………………………………9分 所以212y y x =-,所以NS 平行于x 轴; 同理可证MT 平行于x 轴;又因为M、T、N、S四点不共线,所以MT//NS.…………………………………………………11分(Ⅲ)同解法一.…………………………………………………14分。
2013年高考文科数学福建卷(含详细答案)

绝密★启用前2013年普通高等学校招生全国统一考试(福建卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数12i z =--(i 为虚数单位)在复平面内对应的点位于( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. 设点(,)P x y ,则“2x =且1y =-”是“点P 在直线:10l x y +-=上”的 ( )A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 3. 若集合{1,2,3}A =,{1,3,4}B =,则A B 的子集个数为 ( ) A . 2 B . 3 C . 4D . 16 4. 双曲线221x y -=的顶点到其渐进线的距离等于( )A . 12B .C . 1D .5. 函数2()ln(1)f x x =+的图象大致是( )A .B .C .D .6. 若变量x ,y 满足约束条件2,1,0,x y x y +⎧⎪⎨⎪⎩≤≥≥则2z x y =+的最大值和最小值分别为( )A . 4和3B . 4和2C . 3和2D . 2和07. 若221x y +=,则x y +的取值范围是( )A . [0,2]B . [2,0]-C . [2,)-+∞D . (,2]-∞- 8. 阅读如图所示的程序框图,运行相应的程序.如果输入某个正整数n 后,输出的(10,20)S ∈,那么n 的值为( )A . 3B . 4C . 5D . 69. 将函数ππ()sin(2)()22f x x θθ=+-<<的图象向右平移(0)ϕϕ>个单位长度后得到函数()g x 的图象,若()f x ,()g x的图象都经过点P ,则ϕ的值可以是 ( )A . 5π3B . 5π6C . π2D . π610. 在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则该四边形的面积为 ( ) A .B .C . 5D . 1011. 已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y bx a =+,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y b x a ''=+,则以下结论正确的是( )A . ,b b a a ''>>B . ,b b a a ''><C . ,b b a a ''<>D . ,b b a a ''<<12. 设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A . x ∀∈R ,0()()f x f x ≤B . 0x -是()f x -的极小值点C . 0x -是()f x -的极小值点D . 0x -是()f x --的极小值点第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13. 已知函数32,0,()πtan ,0,2x x f x x x⎧⎪=⎨-⎪⎩<≤<则π(())4f f =________.14. 利用计算机产生0~1之间的均匀随机数a ,则事件“310a -<”发生的概率为________.15. 椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为1F ,2F ,焦距为2c .若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于_________.16. 设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(ⅰ){()|}T f x x S =∈;(ⅱ)对任意12,x x S ∈,当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.现给出以下3对集合: ①A =N ,*B =N ;②{|13}A x x =-≤≤,{|810}B x x =-≤≤; ③{|01}A x x =<<,B =R . 其中,“保序同构”的集合对的序号是_________.(写出所有“保序同构”的集合对的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的公差1d =,前n 项和为n S . (Ⅰ)若1,1a ,3a 成等比数列,求1a ;(Ⅱ)若519S a a >,求1a 的取值范围.姓名________________ 准考证号_____________---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------18.(本小题满分12分)如图,在四棱锥P ABCD -中,PD ⊥平面A B C D ,AB DC ∥,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=.(Ⅰ)当正视方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图(要求标出尺寸,并写出演算过程);(Ⅱ)若M 为PA 的中点,求证:DM ∥平面PBC ; (Ⅲ)求三棱锥D PBC -的体积.19.(本小题满分12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(Ⅰ)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率; (Ⅱ)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22⨯列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:22112212211212()n n n n n n n n n χ++++-=(注:此公式也可以写成22()()()()()n ad bc K a b c d a c b d -=++++)20.(本小题满分12分)如图,抛物线2:4E y x =的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,||CO 为半径作圆,设圆C 与准线l 交于不同的两点M ,N .(Ⅰ)若点C 的纵坐标为2,求||MN ; (Ⅱ)若2|||| ||AF AM AN =,求圆C 的半径.21.(本小题满分12分)如图,在等腰直角OPQ △中,90POQ ∠=,OP =点M 在线段PQ 上.(Ⅰ)若OM ,求PM 的长;(Ⅱ)若点N 在线段MQ 上,且30MON ∠=,问:当POM ∠取何值时,OMN △的面积最小?并求出面积的最小值.22.(本小题满分14分)已知函数()1ex af x x =-+(a ∈R ,e 为自然对数的底数). (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(Ⅱ)求函数()f x 的极值;(Ⅲ)当1a =时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.2013年普通高等学校招生全国统一考试(福建卷)数学(文史类)答案解析A B={1,3}【解析】本题考查的是双曲线的性质.因为双曲线的两个顶点到两条渐近线的距离都相等,故可取双曲线数学试卷 第10页(共27页)2x y ,即2x 因为1(AC BD =⨯-所以AC BC ⊥,2221(4)2||||22AC BD -+=,故选C正视图如图所示:AB,1MN又DM⊄平面PBC,CN⊂平面PBC∴DM∥平面PBCDBCPD又PBCs△(Ⅰ)由已知得,样本中有25数学试卷第16页(共27页)||| AN,得y=,解得数学试卷第22页(共27页)。
(最新整理)年高考福建文科数学试题及答案(word解析版)

(A)第一象限
(B)第二象限
(C)第三象限
(D)第四
象限
【答案】C
【解析】在复平面内, z 1 2i 对应点的坐标为 (1, 2) ,故选 C.
( 2)【 2013 年 福 建 , 文 2】 设 点 P(x, y) , 则 “ x 2 且 y 1 ”是 “点 P 在 直 线 l : x y 1 0 上 ”的
1 2
AC
BD
1 2
1 22
42 22 5 ,故选 C.
(11)【2013 年福建,文 11】已知 x 与 y 之间的几组数据如下表:
(D)10
x
1
2
3
4
5
6
3
2013 年高考福建文科数学试题及答案(word 解析版)
y
0
2
1
3
3
4
假设根据上表数据所得线性回归直线方程为 yˆ bˆx aˆ .若某同学根据上表中前两组数据
2013 年高考福建文科数学试题及答案(word 解析版)
2013 年高考福建文科数学试题及答案(word 解析版)
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2013 年高考福建文科数学试 题及答案(word 解析版))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建 议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为 2013 年高考福建文科数学试题及答案(word 解析版)的全部内容。
6
2013年福建省福州市高中毕业班数学质量检查试卷参考答案及评分标准(文科)网页版_高三试卷

2013年福建省福州市高中毕业班数学质量检查试卷参考答案及评分标准(文科)网页版_高
三试卷
2013年福州市高中毕业班质量检查
数学(文科)试卷参考答案及评分标准
说明:
一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.
四、只给整数分数.选择题和填空题不给中间分.
一、选择题:本大题考查基础知识和基本运算.每小题5分,共60分.
1.B
2.B
3.C
4.C
5.A
6.C
7.B
8.B
9.A 10.D 11.A 12.C
二、填空题:本大题考查基础知识和基本运算.每小题4分,共16分.
13.1 14. 7 15. ②、③、④ 16.
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
17. 本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力和应用意识,考查函数与方程思想,满分12分.
点击此处下载:2013年福建省福州市高中毕业班数学质量检查试卷参考答案及评分标准(文科)全部内容word版.doc。
福建省福州市2013届高三5月质检数学文科试题
P( K 2 ≥ k ) k
(参考公式: K 2 =
0.15 2.072
0.10 2.706
2
0.05 3.841
0.010 6.635
0.005
[来 ]
0.001 10.828
7.879
n( ad − bc ) ,其中 n = a + b + c + d ) ( a + b)( c + d )( a + c)( b + d)
1
第 7 题图
⎧2 x + y ≤ 4 ⎪ 8. 设动点 P(x , y ) 满足 ⎨ x + 2 y ≥ 2 ,则 z = x − y 的最小值是 ⎪x ≥ 0 ⎩
A. 2 那么 f (−1) = . A .2 B.1 C.-1 D. − 2 10. 已知 OA =1, OB = B. -4 C. -1 D. 4
s=
1⎡ 2 2 2 ( x1 − x ) + ( x2 − x ) + ⋯ + ( xn − x ) ⎤ ⎦ n⎣
其中 x 为样本平均数 柱体体积公式
V = Sh
锥体体积公式 1 V = Sh 3 其中 S 为底面面积, h 为高 球的表面积、体积公式
S = 4πR 2 , V = πR 3
其中 R 为球的半径 第Ⅰ卷 (选择题 共 60 分)
m = n
B.
2
1 4
1 3
C.
1 2
D.1
2 x2 − y = 1(a > 0,b > 0) 的两条渐近线围成一个等腰直角三角 a2 b2
11. 已知抛物线 x = −4 y 的准线与双曲线 形,则该双曲线的离心率是 A. 2 B. 2 C. 5
2013年高考福建文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(福建卷)数学(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2013年福建,文1】复数12i z =--(i 为虚数单位)在复平面内对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】C【解析】在复平面内,12i z =--对应点的坐标为(12)--,,故选C . (2)【2013年福建,文2】设点(,)P x y ,则“2x =且1y =-”是“点P 在直线:10l x y ++=上”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】点(2,-1)在直线l :x +y -1=0上,而直线l 上的点的坐标不一定为(2,-1),故“x =2且y =-1”是“点P 在直线l 上”的充分而不必要条件,故选A .(3)【2013年福建,文3】若集合{1,2,3},{1,3,4}A B ==,则A B 的子集个数为( )(A )2 (B )3 (C )4 (D )16【答案】C 【解析】由题知{}1,3AB =,故它的子集个数为224=,故选C .(4)【2013年福建,文4】双曲线221x y -=的顶点到其渐近线的距离等于( )(A )12(B(C )1 (D【答案】B【解析】221x y -=的渐近线方程为y x =±,顶点坐标为()1,0±,点()1,0±到y x =±==, 故选B .(5)【2013年福建,文5】函数2()ln(1)f x x =+的图象大致是( )(A ) (B ) (C ) (D ) 【答案】A【解析】由()00f =可知函数图象经过原点.又()()f x f x -=,所以函数图象关于y 轴对称,故选A . (6)【2013年福建,文6】若变量,x y 满足约束条件210x y x y +≤⎧⎪≥⎨⎪≥⎩,则2z x y =+的最大值和最小值分别为( ) (A )4和3 (B )4和2 (C )3和2 (D )2和0 【答案】B【解析】画出可行域如下图阴影部分所示.画出直线20x y =+,并向可行域方向移动,当直线经过点()1,0时,z 取最小值.当直线经过点()2,0时,z 取最大值.故2204max z =⨯=+,2102min z =⨯=+,故选B .(7)【2013年福建,文7】若221x y +=,则x y +的取值范围是( )(A )[0,2] (B )[2,0]- (C )[2,)-+∞ (D )(,2]-∞- 【答案】D【解析】∵221xy=≥+,∴2221x y ⎛⎫⎪≥⎝⎭+,即222x y -≤+.∴2x y ≤-+,故选D .(8)【2013年福建,文8】阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n 后,输出的()10,20S ∈,那么n 的值为( )(A )3 (B )4 (C )5 (D )6 【答案】B【解析】若3n =,则输出7S =;若4n =,则输出15S =,符合题意,故选B .(9)【2013年福建,文9】将函数()sin(2)()22f x x ππθθ=+-<<的图象向右平移(0)ϕϕ>个单位长度后得到函数()g x 的图象,若()(),f x g x的图象都经过点P ,则ϕ的值可以是( )(A )53π (B )56π (C )2π (D )6π【答案】B【解析】∵()f x的图象经过点⎛ ⎝⎭,∴sin θππ,22θ⎛⎫- ⎪⎝⎭∈,∴π3θ=.∴()πsin 23f x =x ⎛⎫+ ⎪⎝⎭. 由题知()π()sin 23g x f x x ϕϕ⎡⎤(-)+⎢⎥⎣=-⎦=,又图象经过点⎛ ⎝⎭,∴()π0=sin 23g ϕ⎛⎫-+= ⎪⎝⎭. 当5π6ϕ=时满足()0g =,故选B .(10)【2013年福建,文10】在四边形ABCD 中,(1,2),(4,2)AC BD ==-,则该四边形的面积为( ) (A(B) (C )5 (D )10 【答案】C【解析】∵41220AC BD ⋅=⨯+⨯=·41220BD =-⨯⨯=+,∴AC BD ⊥.12152ABCD S AC BD ===四边形,故选C .(11)【2013年福建,文11】已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为ˆˆˆybx a =+.若某同学根据上表中前两组数据(1,0)和(2,2)求得的直线方程为y b x a ''=+,则以下结论正确的是( )(A )ˆˆ,bb a a ''>> (B )ˆˆ,b b a a ''>< (C )ˆˆ,b b a a ''<> (D )ˆˆ,b b a a ''<< 【答案】C【解析】123456762x +++++==,0213341366y +++++==,122157ni i i nii x y nxyb xnx ==-==-∑∑,13a y bx =-=-, 20221b b -=>-'=,2a a '=-<,故选C . (12)【2013年福建,文12】设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )(A )0,()()x R f x f x ∀∈≤ (B )0x -是()f x -的极小值点 (C )0x -是()f x -的极小值点 (D )0x -是()f x --的极小值点 【答案】D【解析】由函数极大值的概念知A 错误;因为函数()f x 的图象与()f x -的图象关于y 轴对称,所以0x -是()f x -的极大值点.B 选项错误;因为()f x 的图象与()f x -的图象关于x 轴对称,所以0x 是()f x -的极小值点.故C 选项错误;因为()f x 的图象与()f x --的图象关于原点成中心对称,所以0x -是()f x --的极小值点,故选D .第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. (13)【2013年福建,文13】已知函数32,0()tan ,02x x f x x x π⎧<⎪=⎨-≤<⎪⎩,则(())4f f π= .【答案】2-【解析】∵ππtan 144f ⎛⎫=-=- ⎪⎝⎭,3121π2()()4f f f =-=⨯⎛⎫⎛⎫ ⎪ ⎪⎝⎭-⎭=-⎝.(14)【2013年福建,文14】利用计算机产生0~1之间的均匀随机数a ,则事件“310a -<”发生的概率为 .【答案】13【解析】由310a -<,得13a <.∵01a ≤≤,∴013a ≤<.根据几何概型知所求概率为11313=.(15)【2013年福建,文15】椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为12,F F ,焦距为2c .若直线l 与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于 .1【解析】∵由)y x c =+知直线的倾斜角为60︒,∴1260MF F ∠=︒,2130MF F ∠=︒.∴1290F MF ∠=︒.∴1MF c =,2MF =.又122MF MF a =+,∴2c a =,即1e ==. (16)【2013年福建,文16】设,S T 是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足; (i ){()|}T f x x S =∈;(ii )对任意12,x x S ∈,当12x x <时,恒有12()()f x f x <.那么称这两个集合“保序同构”.现给出以下3对集合: ①*,A N B N ==;②{|13},{|810}A x x B x x =-≤≤=-≤≤; ③{|01},A x x B R =<<=.其中,“保序同构”的集合对的序号是 (写出所有“保序同构”的集合对的序号). 【答案】①②③【解析】①若1y x =+是从A 到B 的一个函数,且x A ∈,则满足(i )(){|}B f x x A =∈.又()1f x x =+是单调递增的,所以也满足(ii );②若()9722f x x =-时,满足(i )(){|}B f x x A =∈,又()9722f x x =-是单调递增的,所以也满足(ii )③若()11tan π02x y x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎦<⎣<⎭时,满足(i )(){|}B f x x A =∈.又()1tan π2f x x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦在()0,1上是单调递增的,所以也满足(ii ).三、解答题:本大题共6题,共74分.解答应写出文字说明,演算步骤或证明过程. (17)【2013年福建,文17】(本小题满分12分)已知等差数列{}n a 的公差1d =,前n 项和为n S .(1)若131,,a a 成等比数列,求1a ; (2)若519S a a >,求1a 的取值范围.解:(1)因为数列{}n a 的公差1d =,且131,,a a 成等比数列,所以2111(2)a a =⨯+,即21120a a --=,解得11a =-或12a =.(2)因为数列{}n a 的公差1d =,且519S a a >,所以21115108a a a +>+;即2113100a a +-<,解得152a -<<.(18)【2013年福建,文18】(本小题满分12分)如图,在四棱锥P ABCD -中,PD ⊥面ABCD ,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=︒.(1)当正视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程);(2)若M 为PA 的中点,求证://DM 面PBC ; (3)求三棱锥D PBC -的体积. 解:(1)在梯形ABCD 中,过点C 作CE AB ⊥,垂足为E ,由已知得,四边形ADCE 为矩形,3AE CD ==,在Rt BEC ∆中,由5BC =,4CE =,依勾股定理得:3BE =,从而6AB =,又由PD ⊥平面ABCD 得,PD AD ⊥从而在Rt PDA ∆中,由4AD =,60PAD ∠=︒, 得43PD =,正视图如右图所示: (2)解法一:取PB 中点N ,连结MN ,CN ,在PAB ∆中,M 是PA 中点,∴//MN AB ,132MN AB ==,又//CD AB , 3CD =,∴MN CD ,MN CD =∴四边形MNCD 为平行四边形,∴//DM CN . 又DM ⊄平面PBC , CN ⊂平面PBC ,∴//DM 平面PBC . 解法二:取AB 的中点E ,连结ME ,DE ,在梯形ABCD 中,//BE CD ,且BE CD =,∴四边形BCDE 为平行四边形,∴//DE BC ,又DE ⊄平面PBC ,BC ⊂平面PBC , ∴//DE 平面PBC ,又在PAB ∆中,//ME PB ,ME ⊄平面PBC ,PB ⊂平面PBC , ∴//ME 平面PBC .又DE ME E =,∴平面//DME 平面PBC ,又DM ⊂平面DME , ∴//DM 平面PBC .(3)13D PBC P DBC DBC V V S PD --∆==⋅,又6PBC S ∆=,43PD =,所以83D PBC V -=.(19)【2013年福建,文19】(本小题满分12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[)50,60,[)60,70,[)70,80,[)80,90,[)90,100分别加以统计,得到如图所示的频率分布直方图.25周岁以上组 25周岁以下组(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”? 附:22112212211212n n n n n n n n n χ++++()=解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名,所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=(人),记为1A ,2A ,3A ;25周岁以下组 工人有400.052⨯=(人),记为1B ,2B ,从中随机抽取2名工人,所有可能的结果共有10种,他们是: 12(,)A A ,13(,)A A ,23(,)A A ,11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,其 中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =.P (χ2≥k ) 0.100 0.050 0.010 0.001 k 2.706 3.841 6.635 10.828(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手600.2515⨯=(人),“25周岁以下组”中的生产能手400.37515⨯=(人),据此可得22⨯列联表如下:生产能手 非生产能手 合计25周岁以上组15 45 60 25周岁以下组15 25 40 合计30 70 100 所以得:222()100(15251545)251.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯,因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.(20)【2013年福建,文20】(本小题满分12分)如图,在抛物线2:4E y x =的焦点为F ,准线l与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心OC 为半径作圆,设圆C 与准线l 的交于不同的两点,M N .(1)若点C 的纵坐标为2,求MN ; (2)若2AF AM AN =⋅,求圆C 的半径.解:(1)抛物线24y x =的准线l 的方程为1x =-,由点C 的纵坐标为2,得点C 的坐标为(1,2)所以点C 到准线l 的距离2d =,又||5CO =.所以22||2||2542MN CO d =-=-=.(2)设200(,)4y C y ,则圆C 的方程为242220000()()416y y x y y y -+-=+,即22200202y x x y y y -+-=. 由1x =-,得22002102y y y y -++=,设1(1,)M y -,2(1,)N y -,则:222000201244(1)240212y y y y y y ⎧∆=-+=->⎪⎪⎨⎪=+⎪⎩, 由2||||||AF AM AN =⋅,得12||4y y =,所以20142y +=,解得06y =±,此时0∆>,所以圆心C 的坐标为3(,6)2或3(,6)2-从而233||4CO =,33||2CO =,即圆C 的半径为332.(21)【2013年福建,文21】(本小题满分12分)如图,在等腰直角三角形OPQ ∆中,90OPQ ∠=,22OP =,点M 在线段PQ 上.(1)若3OM =,求PM 的长;(2)若点N 在线段MQ 上,且30MON ∠=,问:当POM ∠取何值时,OMN ∆的面积最小?并求出面积的最小值.解:(1)在OMP ∆中,45OPM ∠=︒,5OM =,22OP =,由余弦定理得,2222cos45OM OP MP OP MP =+-⨯⨯⨯︒,得2430MP MP -+=,解得1MP =或3MP =.(2)设POM α∠=,060α︒≤≤︒,在OMP ∆中,由正弦定理得sin sin OM OP OPM OMP =∠∠,()sin 45sin 45OP OM α︒∴=︒+, 同理()sin 45sin 75OP ON α︒=︒+,故1sin 2OMN S OM ON MON ∆=⨯⨯⨯∠()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+()()1sin 45sin 4530αα=︒+︒++︒()()()131sin 45sin 45cos 4522ααα=⎡⎤︒+︒++︒+⎢⎥⎣⎦()()()2131sin 45sin 45cos 4522ααα=︒++︒+︒+()()1311cos 902sin 90244αα=-︒++︒+⎡⎤⎣⎦=因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆的面积取到最小值.即230POM ∠=︒时,OMN ∆的面积的最小值为8-(22)【2013年福建,文22】(本题满分14分)已知函数()1x af x x e=-+(a R ∈,e 为自然对数的底数).(1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值; (2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.解:(1)由()1x a f x x e =-+,得()1x af x e'=-.又曲线()y f x =在点()()1,1f 处的切线平行于x 轴,得()10f '=,即10ae-=,解得a e =.(2)()1x af x e'=-,①当0a ≤时,()0f x '>,()f x 为(),-∞+∞上的增函数,所以函数()f x 无极值.②当0a >时,令()0f x '=,得x e a =,ln x a =.(),ln x a ∈-∞,()0f x '<;()ln ,x a ∈+∞,()0f x '>. 所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,故()f x 在ln x a =处取得极小值,且极小值为()ln ln f a a =,无极大值.综上,当0a ≤时,函数()f x 无极小值;当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值. (3)解法一:当1a =时,()11x f x x e =-+,令()()()()111xg x f x kx k x e =--=-+,则直线l :1y kx =-与曲线 ()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1111101k g k e -⎛⎫=-+< ⎪-⎝⎭,又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有 一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()10x g x e=>,知方程()0g x = 在R 上没有实数解.所以k 的最大值为1. 解法二:当1a =时,()11x f x x e=-+.直线l :1y kx =-与曲线()y f x =没有公共点,等价于关于x 的方程111x kx x e -=-+在R 上没有实数解,即关于x 的方程:()11x k x e -=(*) 在R 上没有实数解.①当1k =时,方程(*)可化为10x e =,在R 上没有实数解.②当1k ≠时,方程(*)化为11x xe k =-.令()x g x xe =,则有()()1x g x x e '=+.令()0g x '=,得1x =-, 当x 变化时,()g x '的变化情况如下表:当1x =-时,()min1g x e =-,同时当x 趋于+∞时,()g x 趋于+∞,从而()g x 的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭.所以当11,1k e⎛⎫∈-∞-⎪-⎝⎭时,方程(*)无实数解,解得k的取值范围是()1,1e-.综上,得k的最大值为1.。
【2013福建省质检】福建省2013届高三毕业班质量检测数学文试卷Word版含答案
2013年福建省普通高中毕业班质量检查文 科 数 学本试卷分第1卷(选择题)和第Ⅱ卷(非选择题).本试卷共5页.满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.参考公式:样本数据x 1,x 2, …,x n 的标准差 锥体体积公式V =31Sh 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式球的表面积、体积公式 V =Sh24S R =π,343V R =π其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数1i z =-,z 为z 的共轭复数,则下列结论正确的是A .1i z =--B .1+i z =-C .2z =D .z =2.已知,0a b c >≠,则下列不等式一定成立的是 A .22a b >B .ac bc >C .a c b c +>+D .a b c c> 3.执行如图所示的程序框图,若输入的x 值为2,则输出的x 值为A .3B .8C .9D .63 4.“1x =”是“210x -=”的A.充分而不必要条件 B.必要而充分不条件 C.充要条件 D.既不充分也不必要条件5.函数2cos 22y x x x ππ⎛⎫=-≤≤ ⎪⎝⎭的图象是6.已知集合{}|28M x x =-≤≤,{}2|320N x x x =-+≤,在集合M 中任取一个元素x ,则 “x MN ∈”的概率是A .110B .16C .310D .127.已知1F ,2F 是椭圆C 的两个焦点,焦距为4.若P 为椭圆C 上一点,且12PF F ∆的周长为14,则椭圆C 的离心率e 为 A .15 B .25 C .45DA BCD8.若变量,x y 满足约束条件310,3110,2,x y x y y --≥⎧⎪+-≤⎨⎪≥⎩则2z x y =-的最小值为A .4B .1C .0D .1- 9.设,m n 为两条不同的直线,βα,是两个不同的平面,下列命题正确的是 A .若β//,//m n m ,则β//n B .若αα//,//n m ,则n m // C .若β⊥m n m ,//,则β⊥n D .若n m n m //,,βα⊂⊂,则βα// 10.已知点()0,0O ,()1,2A ,()3,2B ,以线段AB 为直径作圆C ,则直线:30l x y +-=与圆C 的位置关系是A .相交且过圆心B .相交但不过圆心C .相切D .相离 11.已知点()()()0000167n O ,,A ,,A ,,点()1212n A ,A ,,A n ,n -∈≥N 是线段0n A A 的n 等分点,则011+n n OA OA OA OA -+++等于A .5nB .10nC .()51n +D .()101n +12.定义两个实数间的一种新运算“*”:()lg 1010,x y x y *=+,x y ∈R .对任意实数,,a b c ,给出如下结论:①()()c b a c b a ****=; ②a b b a **=; ③()()()**a b c a c b c +=++; 其中正确的个数是A . 0B .1C .2D .3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置. 13.一支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取________人.14.在ABC ∆中,角,,A B C 所对的边分别为,,a b c .已知3a =,8b =,C=3π,则c = .15.若函数2,0,()ln ,0x a x f x x x ⎧-≤=⎨>⎩有两个不同的零点,则实数a 的取值范围是 . 16.观察下列等式:12133+=; 781011123333+++=; 16171920222339333333+++++=; …则当m n <且,m n ∈N 表示最后结果.313232313333n n m m ++--++++= (最后结果用,m n 表示最后结果). 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)某工厂生产,A B 两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:由于表格被污损,数据y x ,看不清,统计员只记得x y <,且,A B 两种元件的检测数据的平均值相等,方差也相等. (Ⅰ)求表格中x 与y 的值;(Ⅱ)若从被检测的5件B 种元件中任取2件,求2件都为正品的概率. 18.(本小题满分12分)已知函数()sin cos f x x x =+,x ∈R . (Ⅰ)求12f π⎛⎫⎪⎝⎭的值; (Ⅱ)试写出一个函数()g x ,使得()()cos 2g x f x x =,并求()g x 的单调区间. 19.(本小题满分12分)某几何体111C B A ABC -的三视图和直观图如图所示. (Ⅰ)求证:平面11AB C ⊥平面11AAC C ; (Ⅱ)若E 是线段1AB 上的一点,且满足1111191C B A ABC C AA E V V --=,求AE 的长.20.(本小题满分12分)某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO 2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO 2的年排放量约为9.3万吨, (Ⅰ)按原计划,“十二五”期间该城市共排放SO 2约多少万吨?(Ⅱ)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO 2的年排放量每年比上一年减少的百分率为p ,为使2020年这一年的SO 2年排放量控制在6万吨以内,求p 的取值范围.(参考数据9505.0328≈,9559.0329≈). 21.(本小题满分12分)已知函数()2e xf x ax bx =++.(Ⅰ)当0,1a b ==-时,求()f x 的单调区间; (Ⅱ)设函数()f x 在点()(),P t f t ()01t <<处的切线为l ,直线l 与y 轴相交于点Q .若点Q 的纵坐标恒小于1,求实数a 的取值范围. 22.(本小题满分14分)某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线2:2E y px =,在抛物线上任意画一个点S ,度量点S的坐标俯视图侧(左)视图正(主)视图1A(),S S x y ,如图.(Ⅰ)拖动点S ,发现当4S x =时,4S y =,试求抛物线E 的方程;(Ⅱ)设抛物线E 的顶点为A ,焦点为F ,构造直线SF 交抛物线E 于不同两点S 、T ,构造直线AS 、AT 分别交准线于M 、N 两点,构造直线MT 、NS .经观察得:沿着抛物线E ,无论怎样拖动点S ,恒有MT //NS .请你证明这一结论.(Ⅲ)为进一步研究该抛物线E 的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点F ”改变为其它“定点(),0G g ()0g ≠”,其余条件不变,发现“MT 与NS 不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“MT //NS ”成立?如果可以,请写出相应的正确命题;否则,说明理由.2013年福建省普通高中毕业班质量检查 文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分. 1.D 2.C 3.B 4.A 5.B 6.A 7.B 8.A 9.C 10.B 11.C 12.D二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分. 13.8; 14.7; 15.01a <≤; 16.22n m -.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分12分.解:(Ⅰ)因为11=+7+75+9+95=8=858555x x x y ⋅⋅+⋅+⋅+A B (7),(6+), 由=x x A B,得17x y +=. ① ………………………………………2分因为222211=1+1+0.25+1+2.25=1.1=4+8+0.25+0.25+855x y ⎡⎤--⎣⎦A B ,s ()s ()(), 由22=A Bs s ,得228+8=1x y --()(). ② …………………………………………4分由①②解得89x y =⎧⎨=⎩,,或98.x y =⎧⎨=⎩,因为x y <, 所以8,x y ==. ………………………………………6分(Ⅱ) 记被检测的5件B 种元件分别为12345,,,,B B B B B ,其中2345,,,B B B B 为正品, 从中任取2件,共有10个基本事件,列举如下:()12,B B ,()13,B B ,()14,B B ,()15,B B ,()23,B B , ()24,B B ,()25,B B ,()34,B B ,()35,B B ,()45,B B , ………………………………………8分记“2件都为正品”为事件C ,则事件C 包含以下6个基本事件:()23,B B ,()24,B B ,()25,B B ,()34,B B ,()35,B B ,()45,B B .……………………………10分所以63()105P C ==,即2件都为正品的概率为35. ………………………………………12分 18.本小题主要考查三角函数的图象与性质、两角和与差三角公式、二倍角公式、三角函数的恒等变换等基础知识,考查运算求解能力,考查化归与转化思想等.满分12分.解法一:(Ⅰ)因为())4f x x π=+,………………………………………3分所以121243f ππππ⎛⎫⎛⎫=+==⎪ ⎪⎝⎭⎝⎭……………………………6分 (Ⅱ)()cos sin g x x x =-. …………………………………………………………7分 下面给出证明:因为()()22(cos sin )(sin cos )cos sin cos 2,g x f x x x x x x x x =-+=-=所以()cos sin g x x x =-符合要求.……………………………………………………9分又因为()cos sin 4g x x x x π⎛⎫=-=+ ⎪⎝⎭,…………………………………………10分由222,4k x k πππππ+<+<+得3722,44k x k ππππ+<<+ 所以()g x 的单调递增区间为372244k k ππππ⎛⎫++ ⎪⎝⎭,k ∈Z .………………………………11分又由224k x k ππππ<+<+,得32244k x k ππππ-<<+, 所以()g x 的单调递减区间为32244k k ππππ⎛⎫-+⎪⎝⎭,,k ∈Z .………………………………12分 解法二:(Ⅰ)因为()21sin 2,f x x =+⎡⎤⎣⎦所以231sin 1262f ππ⎡⎤⎛⎫=+= ⎪⎢⎥⎝⎭⎣⎦,………………………………3分又因为0,12f π⎛⎫>⎪⎝⎭所以12f π⎛⎫=⎪⎝⎭.………………………………6分 (Ⅱ)同解法一. 解法三:(Ⅰ)sin cos sin cos 1212123434f πππππππ⎛⎫⎛⎫⎛⎫=+=-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭sincoscossincoscossinsin34343434ππππππππ=-++…………………3分=++=………………………………6分 (Ⅱ)同解法一.注:若通过()()cos 2xg x f x =得到()g x 或由()()(cos sin )(cos sin )g x f x x x x x =+-两边同时约去()f x 得到()g x 不扣分.19.本小题主要考查三视图、直线与直线、直线与平面、平面与平面的位置关系,几何体的体积等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查函数与方程思想、数形结合思想、化归与转化思想.满分12分.解法一:(Ⅰ)由三视图可知,几何体111C B A ABC -为三棱柱,侧棱1111C B A AA 底面⊥,1111C A C B ⊥,且41==AC AA ,2=BC .………………………………………2分 1111C B A AA 平面⊥ ,11111111,C B AA C B A C B ⊥∴⊂平面, …………………3分 11111111,A C A AA C A C B =⊥ ,1111ACC A C B 平面⊥∴.……………………5分又1111C AB C B 平面⊂ , C C AA C AB 1111平面平面⊥∴.………………………6分 (Ⅱ)过点E 作11//C B EF 交1AC 于F ,由(Ⅰ)知,11ACC A EF 平面⊥,即EF 为C AA E 1-三棱锥的高. ………7分1111191C B A ABC C AA E V V --= ,,9131111AA S EF S ABC C AA ⋅=⋅∴∆∆ ……………………8分1111442443292EF ⎛⎫⎛⎫∴⨯⨯⨯⨯=⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭,解得32=EF .……………………9分在Rt ABC ∆中,AB ===,在1Rt ABB ∆中,16AB ===,……………………10分由111C B EFAB AE =, ……………………11分 得22326C B EFAB AE 111=⨯=⋅=. ……………………12分解法二:(Ⅰ)同解法一.(Ⅱ)过点E 作11//C B EF 交1AC 于F ,由(Ⅰ)知,11ACC A EF 平面⊥,即EF 为C AA E 1-三棱锥的高. ………7分11111111133C AA B C B A A C B A ABC V V V ---== ,111111113191C AA B C B A ABC C AA E V V V ---==∴ ………8分,313131111111C B S EF S C AA C AA ⋅⨯=⋅∴∆∆,3111C B EF =∴ ………9分 在ABC Rt ∆中,5224AB 2222=+=+=BC AC ,在1ABB Rt ∆中,()6452AB 222121=+=+=BB AB ,……………………10分由111C B EFAB AE =, ……………………11分 得2AB 31AE 1==. ……………………12分 20.本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力和应用意识,考查函数与方程思想.满分12分.解:(Ⅰ)设“十二五”期间,该城市共排放SO 2约y 万吨,依题意,2011年至2015年SO 2的年排放量构成首项为9.3,公差为0.3-的等差数列,……………3分 所以()55159.3(0.3)=43.52y ⨯-=⨯+⨯-(万吨). 所以按计划“十二五”期间该城市共排放SO 2约43.5万吨.……………………6分 (2)由已知得, 2012年的SO 2年排放量9.60.32=9-⨯(万吨),……………………7分所以2012年至2020年SO 2的年排放量构成首项为9,公比为1p -的等比数列,…………………9分由题意得891p ⨯-()<6,即1p -<832, 所以10.9505p -<,解得 4.95%p >.所以SO 2的年排放量每年减少的百分率p 的取值范围4.95%1p <<<……………………12分21.本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查分类与整合思想、数形结合思想、化归与转化思想.满分12分.解:(Ⅰ)当0,1a b ==-时,()e x f x x =-,()e 1xf x '=-,……………………1分所以,当(,0)x ∈-∞时,()0f x '<;当(0,)x ∈+∞时,()0f x '>;……………………3分所以函数()f x 的单调递减区间为(),0-∞,单调递增区间为(0,)+∞.……………………4分(Ⅱ)因为()2xf x e ax b '=++,所以()(),P t f t 处切线的斜率()2tk f t e at b '==++,所以切线l 的方程为()()()22t t y e at bt e at bx t -++=++-,令0x =,得()21ty t e at =-- ()01t <<.………………………………………………5分当01t <<时,要使得点Q 的纵坐标恒小于1,只需()211tt e at --<,即()2110tt e at -++>()01t <<.……………… 6分令()()211tg t t e at =-++,则()()2t g t t e a '=+,………………………………………………………… 7分 因为01t <<,所以1t e e <<, ①若21a ≥-即12a ≥-时,20t e a +>, 所以,当()0,1t ∈时,()0g t '>,即()g t 在()0,1上单调递增, 所以()(0)0g t g >=恒成立,所以12a ≥-满足题意.………………………………8分 ②若2a e ≤-即2ea ≤-时,20t e a +<,所以,当()0,1t ∈时,()0g t '<,即()g t 在()0,1上单调递减,所以()(0)0g t g <=,所以2ea ≤-不满足题意.………………………………………9分 ③若21e a -<<-即122e a -<<-时,0ln(2)1a <-<.则t 、()g t '、()g t 的关系如下表:所以()()ln(2)00g a g -<=,所以22a -<<-不满足题意.………………………………11分 综合①②③,可得,当12a ≥-时,()0g t >()01t <<时,此时点Q 的纵坐标恒小于1.…………12分22.本小题主要考查抛物线的标准方程、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、数形结合思想等.满分14分.解法一:(Ⅰ)把4S x =,4S y =代入22y px =,得248p =,……………………2分所以2p =,………………………………………………………………………3分 因此,抛物线E 的方程24y x =.…………………………………………………4分 (Ⅱ)因为抛物线E 的焦点为()1,0F ,设()()1122,,,S x y T x y , 依题意可设直线:1l my x =-,由241y x my x ⎧=⎨=-⎩,得2440y my --=,则121244.y y m y y +=⎧⎨⋅=-⎩, ①……………………6分又因为11:AS y l y x x =,22:AT yl y x x =,所以111,y M x ⎛⎫-- ⎪⎝⎭,221,y N x ⎛⎫-- ⎪⎝⎭,所以12211,y MT x y x ⎛⎫=++⎪⎝⎭,21121,y NS x y x ⎛⎫=++ ⎪⎝⎭, ……………………7分 又因为()()1221121211y y y x y x x x ⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭……………………………………8分 2221121241411144y y y y y y ⎛⎫⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22122112*********4y y y y y y y y y y ⎛⎫⎛⎫=+++-+++ ⎪ ⎪⎝⎭⎝⎭()21121212144y y y y y y y y -=-+()22121212164y y y y y y ⎛⎫-=- ⎪⎝⎭, ②把①代入②,得()221212121604y y y y y y ⎛⎫--= ⎪⎝⎭, (10)分即()()12211212110y y y x y x x x ⎛⎫⎛⎫++-++= ⎪ ⎪⎝⎭⎝⎭,所以//MT NS ,又因为M 、T 、N 、S 四点不共线,所以MT //NS .……………………………………………11分(Ⅲ)设抛物线2:4E y x =的顶点为A ,定点()(),00G g g ≠,过点G 的直线l 与抛物线E 相交于S 、T 两点,直线AS 、AT 分别交直线x g =-于M 、N 两点,则MT //NS .……………………14分解法二:(Ⅰ)同解法一.(Ⅱ)因为抛物线E 的焦点为()1,0F ,设()()221122,2,,2S t t T t t ,……………………5分依题意,可设直线:1ST l my x =-,由241y x my x ⎧=⎨=-⎩得2440y my --=, 则1212224,224,t t m t t +=⎧⎨⋅=-⎩所以12124,1.t t m t t +=⎧⎨⋅=-⎩ (7)分又因为2:2AS l y t x =-,1:2AT l y t x =-, 所以()21,2M t -,()11,2N t -,………………………………………………………………………10分所以MT k =,0NS k =,………………………………………………………………………………10分又因为M 、T 、N、S四点不共线,所以MT //NS .…………………………………………………11分(Ⅲ)同解法一. 解法三:(Ⅰ)同解法一.(Ⅱ)因为抛物线E 的焦点为()1,0F ,设()()1122,,,S x y T x y , 依题意,设直线:1l my x =-,由241y xmy x ⎧=⎨=-⎩得2440y my --=,则121244y y my y +=⎧⎨⋅=-⎩,…………………………………………6分 又因为11:AS y l y x x =,22:AT yl y x x =,所以111,y M x ⎛⎫-- ⎪⎝⎭,221,y N x ⎛⎫-- ⎪⎝⎭,又因为212y y x ⎛⎫-- ⎪⎝⎭2212111222224404yy y y y y y y x y y +=+=+=+==,……………………………………9分 所以212y y x =-,所以NS 平行于x 轴; 同理可证MT 平行于x 轴;又因为M、T、N、S四点不共线,所以MT//NS.…………………………………………………11分(Ⅲ)同解法一.…………………………………………………14分。
2013年普通高等学校招生全国统一考试(福建卷)数学试题 (文科) word解析版
2013年普通高等学校招生全国统一考试(福建卷)数学试题(文史类)第Ⅰ卷(选择题 共60分)一.选择题1.复数i z 21--=(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】本题考查的知识点是复数的几何意义.由几何意义可知复数在第三象限.2.设点),(y x P ,则“2=x 且1-=y ”是“点P 在直线01:=++y x l 上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】本题考查的知识点是逻辑中充要条件的判定.因为)1,2(点代入直线方程,符合方程,即“2=x 且1-=y ”可推出“点P 在直线01:=++y x l 上”;而点P 在直线上,不一定就是)1,2(点,即“点P 在直线01:=++y x l 上”推不出“2=x 且1-=y ”.故“2=x 且1-=y ”是“点P 在直线01:=++y x l 上”的充分而不必要条件.3.若集合}4,3,1{},3,2,1{==B A ,则B A 的子集个数为( )A .2B .3C .4D .16 【答案】C【解析】本题考查的是集合的交集和子集.因为}3,1{=B A ,有2个元素,所以子集个数为422=个.4.双曲线122=-y x 的顶点到其渐近线的距离等于( )A .21B .22C .1D .2【答案】B【解析】本题考查的是双曲线的性质.因为双曲线的两个顶点到两条渐近线的距离都相等,故可取双曲线的一个顶点为)0,1(,取一条渐近线为x y =,所以点)0,1(到直线x y =的距离为22.5.函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D . 【答案】A【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B,D .6.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤+012y x y x ,则y x z +=2的最大值和最小值分别为( )A .4和3B .4和2C .3和2D .2和【解析】本题考查的简单线性规划.如图,可知目标函数最大值和最小值分别为4和2.7.若122=+yx ,则y x +的取值范围是( )A .]2,0[B .]0,2[-C .),2[+∞-D .]2,(--∞ 【答案】D【解析】本题考查的是均值不等式.因为yx y x 222221⋅≥+=,即222-+≤y x ,所以2-≤+y x ,当且仅当yx 22=,即y x =时取等号.8.阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n 后,输出的)20,10(∈S ,那么n 的值为( )A .3B .4C .5D .6 【答案】B【解析】本题考查的是程序框图.循环前:2,1==k S ;第1次判断后循环:3,3==k S ;第2次判断后循环:4,7==k S ;第3次判断后循环:5,15==k S .故4=n .9.将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是( ) A .35π B .65π C .2π D .6π 【答案】B【解析】本题考查的三角函数的图像的平移.把)23,0(P 代入)22)(2sin()(πθπθ<<-+=x x f ,解得3πθ=,所以)232sin()(ϕπ-+=x x g ,把)23,0(P 代入得,πϕk =或6ππϕ-=k ,观察选项,故选B10.在四边形ABCD 中,)2,4(),2,1(-==,则该四边形的面积为( ) A .5 B .52 C .5 D .10 【答案】C【解析】本题考查的是向量垂直的判断以及向量的模长.因为022)4(1=⨯+-⨯=⋅,所以⊥,所以四边形的面积为522)4(212||||2222=+-⋅+=⋅BD AC ,故选C11.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b yˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A .a a b b'>'>ˆ,ˆ B .a a b b '<'>ˆ,ˆ C .a a b b '>'<ˆ,ˆ D .a a b b '<'<ˆ,ˆ【解析】本题考查的是线性回归方程.画出散点图,可大致的画出两条直线(如下图),由两条直线的相对位置关系可判断a a b b '>'<ˆ,ˆ.故选C12.设函数)(x f 的定义域为R ,)0(00≠x x 是)(x f 的极大值点,以下结论一定正确的是( )A .)()(,0x f x f R x ≤∈∀B .0x -是)(x f -的极小值点C .0x -是)(x f -的极小值点D .0x -是)(x f --的极小值点【答案】D【解析】本题考查的是函数的极值.函数的极值不是最值,A 错误;因为)(x f --和)(x f 关于原点对称,故0x -是)(x f --的极小值点,D 正确.二.填空题13.已知函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,则=))4((πf f 【答案】2-【解析】本题考查的是分段函数求值.2)1(2)1()4tan())4((3-=-=-=-=f f f f ππ.14.利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为【答案】31【解析】本题考查的是几何概型求概率.013<-a ,即31<a ,所以31131==P .15.椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于【答案】13-【解析】本题考查的是圆锥曲线的离心率.由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a ce ,故答案为13-.16.设T S ,是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足;(i )}|)({S x x f T ∈=;(ii )对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <.那么称这两个集合“保序同构”.现给出以下3对集合: ①*,N B N A==;②}108|{},31|{≤≤-=≤≤-=x x B x x A ; ③R B x x A =<<=},10|{.其中,“保序同构”的集合对的序号是 (写出所有“保序同构”的集合对的序号) 【答案】①②③【解析】本题考查的函数的性质.由题意可知S 为函数的一个定义域,T 为其所对应的值域,且函数)(x f y =为单调递增函数.对于集合对①,可取函数)(2)(N x x f x ∈=,是“保序同构”;对于集合对②,可取函数)31(2729≤≤--=x x y ,是“保序同构”;对于集合对③,可取函数)10)(2tan(<<-=x x y ππ,是“保序同构”.故答案为①②③.三.解答题 17.(本小题满分12分)已知等差数列{}n a 的公差1d =,前n 项和为n S . (1)若131,,a a 成等比数列,求1a ; (2)若519S a a >,求1a 的取值范围.本小题主要考查等比等差数列、等比数列和不等式等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想.满分12分. 解:(1)因为数列{}n a 的公差1d =,且131,,a a 成等比数列,所以2111(2)a a =⨯+,即21120a a --=,解得11a =-或12a =.(2)因为数列{}n a 的公差1d =,且519S a a >,所以21115108a a a +>+;即2113100a a +-<,解得152a -<< 18.(本小题满分12分)如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=.(1)当正视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程);(2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积.本小题主要考查直线与直线、直线与平面的位置关系及几何体的三视图和体积等基础知识,考查空间想象能力,推理论证能力.运算求解能力,考查数形结合能力、化归与转化思想,满分12分. 解法一:(Ⅰ)在梯形ABCD 中,过点C 作CE AB ⊥,垂足为E ,由已知得,四边形ADCE 为矩形,3AE CD == 在Rt BEC ∆中,由5BC =,4CE =,依勾股定理得: 3BE =,从而6AB =又由PD ⊥平面ABCD 得,PD AD ⊥从而在Rt PDA ∆中,由4AD =,60PAD ∠=︒,得PD = 正视图如右图所示:(Ⅱ)取PB 中点N ,连结MN ,CN 在PAB ∆中,M 是PA 中点,∴MN AB ,132MN AB ==,又CD AB ,3CD = ∴MN CD ,MN CD =∴四边形MNCD 为平行四边形,∴DM CN 又DM ⊄平面PBC ,CN ⊂平面PBC ∴DM 平面PBC(Ⅲ)1D PBC P DBC DBC V V S PD --∆==⋅又6PBC s ∆=,PD =,所以D PBC V -=解法二:(Ⅰ)同解法一(Ⅱ)取AB 的中点E ,连结ME ,DE在梯形ABCD 中,BE CD ,且BE CD = ∴四边形BCDE 为平行四边形∴DE BC ,又DE ⊄平面PBC ,BC ⊂平面PBC ∴DE 平面PBC ,又在PAB ∆中,ME PB ME ⊄平面PBC ,PB ⊂平面PBC ∴ME 平面PBC .又DE ME E =,∴平面DME 平面PBC ,又DM ⊂平面DME ∴DM 平面PBC (Ⅲ)同解法一 19.(本小题满分12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附表:本小题主要考查古典概型、抽样方法、独立性检验等基础知识,考查运算求解能力、应用意识,考查必然和或然思想、化归与转化思想等,满分12分. 解:(Ⅰ)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=(人), 记为1A ,2A ,3A ;25周岁以下组工人有400.052⨯=(人),记为1B ,2B从中随机抽取2名工人,所有可能的结果共有10种,他们是:12(,)A A ,13(,)A A ,23(,)A A ,11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B 其中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =(Ⅱ)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手600.2515⨯=所以得:2()100(15251545)25 1.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯ 因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”20.(本小题满分12分)如图,在抛物线2:4E y x=的焦点为F ,准线l与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心OC 为半径作圆,设圆C 与准线l 的交于不同的两点,M N .(1)若点C 的纵坐标为2,求MN ; (2)若2AFAM AN =⋅,求圆C 的半径.本小题主要考查抛物线的方程、圆的方程与性质、直线与圆的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.满分12分. 解:(Ⅰ)抛物线24y x =的准线l 的方程为1x =-, 由点C 的纵坐标为2,得点C 的坐标为(1,2) 所以点C 到准线l 的距离2d =,又||CO = 所以||2MN =.(Ⅱ)设200(,)4y C y ,则圆C 的方程为242220000()()416y y x y y y -+-=+, 即22200202yx x y y y -+-=.由1x=-,得22002102y y y y -++=设1(1,)M y -,2(1,)N y -,则: 222000201244(1)240212y y y y y y ⎧∆=-+=->⎪⎪⎨⎪=+⎪⎩由2||||||AF AMAN =⋅,得12||4y y =所以20142y +=,解得0y =0∆>所以圆心C 的坐标为3(2或3(,2从而233||4CO =,||CO =C21(本小题满分12分)如图,在等腰直角三角形OPQ ∆中,90OPQ ∠=,OP =M 在线段PQ 上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省南平市2013年普通高中毕业班质量检查 文科数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).本试卷共5页.满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚. 4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.参考公式:样本数据1x ,2x , …,nx 的标准差:s =其中x 为样本平均数; 柱体体积公式:Sh V =, 其中S 为底面面积,h 为高;锥体体积公式:ShV 31=, 其中S 为底面面积,h 为高; 球的表面积、体积公式:24S R =π,343V R=π,其中R 为球的半径.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24y x =的焦点坐标为A .(2,0)B .(1高☆考♂资♀源€网,0)C .(0,-4)D .(-2,0)2.命题“021R >⎪⎭⎫⎝⎛∈∀xx ,”的否定是 A .021R <⎪⎭⎫ ⎝⎛∈∃xx , B .xx ⎪⎭⎫⎝⎛∈∀21R ,≤0 C .021R <⎪⎭⎫ ⎝⎛∈∀xx , D .xx ⎪⎭⎫⎝⎛∈∃21R ,≤0 3.已知直线012:1=++y ax l 与直线0)3(:2=+--a y x a l ,若1l ⊥2l ,则a 的值为 A .1B .2C .6D .1或24.复数i 1i3++等于A .i 21+B .i 21-C .i 2-D .i 2+5.下列函数中,是奇函数且在区间(0,1)内单调递减的是A .12log y x=B .1y x =C .3y x = D .x y tan =6.方程04ln =-+x x 实根所在的区间为 A. (1,2)B. (2,3)C. (3,4)D. (4,5)7.已知向量a, b 均为单位向量,若它们的夹角是60°,则ba 3-等于A .2B .13C .7D .38.右图是某几何体的三视图,其中正视图是正方形,侧视图是 矩形,俯视图是半径为2的半圆,则该几何体的表面积等于 A .16+12π B .24π C .16+4π D .12π9.已知函数⎩⎨⎧>--=,,0),2(0),4(log )(5x x f x x x f 则)2013(f 的值为A .-1B .-2C .1D .210.将函数)2π2cos(-=x y 的图象向左平移4π个单位,再向上平移1个单位,所得图象的函数解析式是正视图侧视图≤A .x y 2cos 2= B .x y 2sin 2= C .)4π2cos(1-+=x y D .x y 2cos =11.函数()f x 的导函数)(x f '的图象如右图所示,则()f x 的图象可能是12.已知平面区域(){}22,4M x y x y =+≤≤){}22,4M x y x y =+≤,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧++=42),(22y x m mx y y x N ,,在区域M 上随机取一点A ,点A 落在区域N 内的概率为P(N),若P(N)∈132(),24p N ππ+⎡⎤∈⎢⎥⎣⎦,则实数m 的取值范围为A .[]0,1 B.⎡⎤⎢⎥⎣⎦ C .[]1,1- D .[]1,0-第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 13.已知集合{}11M x x =+≤≤}11M x x =+≤,{}1,0,1N =-,那么M N = .14.执行右边的程序框图,输出的S = .15.若函数()(0,1)x f x a a a =>≠在[-1,2]上的 最大值为4,最小值m),(310∈,则a = .≤ ≥-1-1-1DABCEC '16.已知数列{n a }满足1a =l ,n a +1n a +=n⎪⎭⎫ ⎝⎛41(n ∈*N ),记n T =1a +2a ·4+3a ·24+…+n a ·14-n ,类比课本中推导等比数列前n 项和公式的方法,可求得 5nT -4nna = .三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 为调查民营企业的经营状况,某统计机构用分层抽样的方法从A 、B 、C 三个城市中,(Ⅰ)求x 、y 的值;(Ⅱ)若从城市A 与C 抽取的民营企业中再随机选2个进行跟踪式调研,求这2个都来自城市C 的概率. 18.(本小题满分12分) 如图,菱形ABCD 的边长为2,△BCD 为正三角形,现将△BCD 沿BD 向上折起,折起后的点C 记为C ',且CC '=CC '.(Ⅰ)若E 为CC '的中点,证明://AC '平面BDE ; (Ⅱ)求三棱锥C ABD '-的体积. 19.(本小题满分12分)已知函数x x f sin )(=2()sin (12sin cos sin (0)2f x x x x θθθπ=⋅-+<<=在π)在=x π处取最小值.(Ⅰ)求θ的值;(Ⅱ)在ABC ∆中,c b a ,,分别是角A ,B ,C的对边,已知1,()2a b f A ==求角C .20.(本小题满分12分) 已知等差数列{n a }的各项都不相等,前3项和为18,且1a 、3a 、7a 成等比数列.(Ⅰ)求数列{na }的通项公式;高☆考♂资♀源€网(Ⅱ)若数列{n b }满足)N (1*+∈=-n a b b n n n ,且12b =,求数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和n T .21.(本小题满分12分)已知函数6)(sin )(3x mx x g x x f -==,(m 为实数). (Ⅰ)求曲线)(x f y =在点⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛4π4πf P ,处的切线方程; (Ⅱ)求函数)(x g 的单调减区间;(Ⅲ)若1=m ,证明:当0>x 时,)()(x g x f x >>.22.(本小题满分14分)如图,设椭圆C:12222=+b y a x (0a b >>)的离心率2e =,顶点M 、NO 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点O 作两条互相垂直的射线,与椭圆C 分别交于A ,B 两点. (ⅰ)试判断点O 到直线AB 的距离是否为定值.若是请求出这个定值,若不是请说明理由; (ⅱ)求AB的最小值.DC 'ABCEO 2013年南平市普通高中毕业班质量检查 文科数学试题评分标准说明:1、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3、只给整数分数. 选择题和填空题不给中间分.一、选择题:本题考查基础知识和基本运算,每小题5分,满分60分.1. B ;2. D ;3. D ;4.C ;5. B ;6. B ;7. C ;8. A ;9. C ; 10. A ; 11. B ; 12. D. 二、填空题:本题考查基础知识和基本运算,每小题4分,满分16分.13.{}1,0-; 14.26; 15.41; 16.n.三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.解:(Ⅰ)由题意得23,1428x y ==所以1,42.x y ==………6分(Ⅱ)记从城市A 所抽取的民营企业分别为12,b b ,从城市C 抽取的民营企业分别为123,,c c c ,则从城市A 、C 抽取的5个中再随机选2个进行跟踪式调研的基本事件有()()()()()()()()()()12111213212223121323,,,,,,,,,,,,,,,,,,,b b b c b c b c b c b c b c c c c c c c共10种. ………9分设选中的2个都来自城市C 的事件为X,则X 包含的基本事件有()()()121323,,,,,c c c c c c3种,因此103)(=X P .故这2个都来自城市C 的概率为310.………12分18.解:(Ⅰ)连接AC ,交BD 于点O ,连接OE 、C O ', ∵ABCD 为菱形,∴O 为AC 中点………2分又∵E 为CC '的中点,∴//OE AC '………4分又AC '⊄平面BDE ,OE ⊂平面BDE ∴//AC '平面BDE .………6分 (Ⅱ)解法一:在菱形ABCD 中,BD CO ⊥,BD AO ⊥ ∵△BCD 沿BD 折起, ∴BD C O '⊥………7分 又AO C O O '⋂=,∴BD ⊥平面AC O '………8分∵CC OC OC ''===∴C OC '∠=3π,C O S C AO '='∆211sin 2AOCS AC AO AOC '''=⨯⨯∠= ………10分∴13C ABD B AOC D AOC AOC V V V S DB ''''---=+=⨯ DB S C AO ⨯'∆31=123=………12分解法二:在△C CO '内,过C '作C H OC '⊥于H , 在菱形ABCD 中,BD CO ⊥,又△BCD 沿BD 折起, ∴BD C O '⊥………7分∵CO C O O '⋂= ∴BD ⊥平面CC O ' ∴BD ⊥C H '………8分 又CO BD O ⋂=,∴C H '⊥平面BDC ………9分∵CC OC OC ''===32C H '=………10分∴13C ABD ABD V S C H '-'=⨯ H C S ABD'⨯∆31=213232⨯=………12分19.解:(Ⅰ)2()sin (12sin )cos sin sin cos cos sin 2f x x x x x θθθθ=-+=+=sin(x+θ).………3分因为f(x)在x =π时取最小值,所以sin(π+θ)=-1,故sin θ=1. ………5分又0<θ<π,所以θ=2π………6分(Ⅱ)由(Ⅰ)知f(x)=sin(x+2π)=cosx. ………7分因为f(A)=cosA=2,且A 为△ABC 的角,所以A =6π.………8分由正弦定理得 sinB =sin b A a=,所以π3B =或2π3B =………10分 当π3B =时,πππππ632C A B =--=--=; 当2π3B =时,π2ππππ.636C A B =--=--= 综上所述,26C C ππ==或………12分20. 解:(Ⅰ)设等差数列{}n a 的公差为d ,则()()1211132318,262,a d a a d a d ⨯⎧+=⎪⎨⎪+=+⎩………2分解得⎩⎨⎧==421a d 或⎩⎨⎧==601a d ………4分∵0d ≠ ∴⎩⎨⎧==421a d ∴22n a n =+.………5分(Ⅱ)由1n n nb b a +-=,∴11n n n b b a ---=()*2,n n ≥∈N………6分∴当n ≥2时,()()()112211n n n n n b b b b b b b b ---=-+-++-+ ………8分1211n n a a a b --=++++=1222)1(22⨯+⨯++-+ n n=)1(2)22(+=+n n n n ………10分又21=b 符合上式∴()111111n b n n n n ==-++………11分1111112231n T n n =-+-++-+ 111n =-+=1nn +.………12分21. (Ⅰ)解:由题意得所求切线的斜率224cos )4(=='=ππf k ………2分 切点),22,4(πP 则切线方程为)4(2222π-=-x y 即04π12=-+-y x ………4分 (Ⅱ)解:=')(x g 221xm -(1)当m ≤0时,)(x g '≤0,则)(x g 的单调减区间是),(+∞-∞;………6分(2)当0>m 时,令)(x g '<0,解得m x 2-<或m x 2>,则)(x g 的单调减区间是)2,(m --∞,).,2(+∞m ………8分(Ⅲ)证明:令),0[,sin )(+∞∈-=x x x x h ,0cos 1)(≥-='x x h ,则)(x h 是),0[+∞上的增函数,故当0>x 时,0)0()(=>h x h 所以0sin >-x x ,即)(x f x >………10分令),0[,6sin )(3+∞∈-+=x x x x x φ,12cos )(2-+='x x x φ,令)()(x x u φ'=,),0[+∞∈x ,0sin )(≥-='x x x u ,则)(x u 是),0[+∞上的增函数, 故当0≥x 时,0)0()(=≥u x u ,即0)(≥'x φ,因此)(x φ是),0[+∞上的增函数,则当0>x 时,0)0()(=>φφx ,即06sin 3>-+x x x ,)()(x g x f >综上若m =1时,得0>x 时,)()(x g x f x >>.……12分22. 解:(Ⅰ)由2e =得2c a =………1分由顶点M 、N225a b +=………2分又由222a b c =+,解得2,1a b ==所以椭圆C 的方程为2214xy +=………4分(Ⅱ)解法一:(ⅰ)点O 到直线AB 的距离为定值………5分 设),(),,(2211y x B y x A ,① 当直线AB 的斜率不存在时,则AOB ∆为等腰直角三角形,不妨设直线OA :x y =将x y =代入1422=+y x ,解得552±=x所以点O 到直线AB 的距离为552=d ;………6分② 当直线AB 的斜率存在时,设直线AB 的方程为m kx y +=与椭圆C :2214x y +=联立消去y 得222(14)8440k x kmx m +++-=………7分 122814km x x k +=-+,21224414m x x k -=+………8分 因为OB OA ⊥,所以02121=+y y x x ,1212()()0x x kx m kx m +++=即0)()1(221212=++++m x x km x x k ………10分 所以2222222448(1)01414m k m k m k k -+-+=++,整理得2254(1)m k =+, 所以点O 到直线AB的距离d ==综上可知点O 到直线AB 的距离为定值552………11分(ⅱ)在Rt AOB ∆中,因为OBOA AB d ⋅=⋅又因为OBOA ⋅2≤222ABOB OA =+,所以2AB≥ABd ⋅2………13分所以AB≥2AB d ≥=,当OB OA =时取等号,即AB 的最小值是554………14分解法二:(ⅰ)点O 到直线AB 的距离为定值………5分 设()00,y x A ,①当直线OA 的斜率为0时,2=OA ,1=OB ,此时552=⋅=ABOB OA d同理,当直线OA 的斜率不存在时,552=d ………6分②当直线OA 的斜率存在且不为0时,设直线OA 的方程为m kx y +=与椭圆C :2214x y +=联立,解得144220+=k x ………7分14)1(4)1(222202++=+=k k k x OA ………8分 同理,4)1(4222++=k k OB ………9分 所以451122=+OB OA………10分所以552=⋅ABOBOA ,即552=d综上可知点O 到直线AB 的距离为定值552………11分(ⅱ)4174)1(202422222+++=+=k k k OB OA AB ………12分 21942012942022242+++=+++=k k k k k ≥5164420=+………13分当且仅当221k k =,即1±=k 时,AB 的最小值是554………14分。