污水处理工艺中的厌氧工艺

合集下载

解析污水处理中的厌氧工艺

解析污水处理中的厌氧工艺

解析污水处理中的厌氧工艺小众环保2018-01-03 10:39:35厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。

高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。

(1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。

(2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。

(3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。

(4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。

酸化池中的反应是厌氧反应中的一段。

厌氧池是指没有溶解氧,也没有硝酸盐的反应池。

缺氧池是指没有溶解氧但有硝酸盐的反应池。

酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。

工艺简单,易控制操作,可去除部分COD。

目的提高可生化性;厌氧池---水解、酸化、产乙酸、甲烷化同步进行。

需要调节pH,不易操作控制,去除大部分COD。

目的是去除COD。

缺氧池---有水解反应,在脱氮工艺中,其pH值升高。

在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。

也有水解反应提高可生化性的作用。

水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。

缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。

厌氧处理工艺

厌氧处理工艺

pH值
• pH值是厌氧处理工艺的关键参数 之一。厌氧微生物对pH值的变化 非常敏感,适宜的pH值范围为 6.5-7.5。在酸性条件下,厌氧微 生物的活性受到抑制,导致有机 物降解速率降低。在碱性条件下 ,虽然某些厌氧微生物能够适应 较高的pH值,但过高的pH值会 导致沼气产量减少。因此,需要 控制好厌氧反应器的pH值,使其 保持在一个适宜的范围内。
产甲烷菌
产甲烷菌是厌氧处理工艺中的另一类重 要微生物,主要负责将简单有机物转化 为甲烷气体。
产甲烷菌通过一系列生物反应将VFAs等简单 有机物转化为甲烷,同时释放能量。
产甲烷菌的生长和代谢受到多种因 素的影响,如温度、pH值、氧化还 原电位等,因此在实际应用中需要 精细控制这些参数以确保产甲烷菌 的正常活动。
06
厌氧处理工艺的发展趋势和未来展望
提高能源回收效率
厌氧反应器的优化设计
通过改进反应器的结构和操作方式,提高甲烷产率,降低能耗,提高能源回收 效率。
高效分离技术
采用高效的气体分离技术,将沼气中的甲烷进行提纯,提高甲烷的品质和回收 率。
高效器,如升流式厌氧污泥床(UASB) 、膨胀颗粒污泥床(EGSB)等,以提高反应器的处理效 率和容积负荷。
厌氧处理工艺是一种生物处理技术, 利用厌氧微生物的代谢作用,将废水 中的有机物转化为甲烷和二氧化碳等 气体,实现废水的减量化和稳定化。
厌氧处理工艺的原理
厌氧微生物
厌氧处理工艺的核心是厌氧微生物, 它们在无氧或低氧环境中生存,通过 发酵和产酸等代谢过程将有机物转化 为甲烷和二氧化碳等气体。
发酵过程
产甲烷过程
厌氧-膜分离联合处理
将厌氧处理工艺与膜分离技术相结合,通过膜分离技术对厌氧反应后的出水进行深度处 理,提高出水水质。

污水处理中的厌氧工艺与硝化反硝化

污水处理中的厌氧工艺与硝化反硝化

05
未来展望
技术改进与创新
开发新型厌氧反应器
针对现有厌氧反应器的不足,研究新型反应器以提高处理效率、 降低能耗和减少污泥产量。
强化生物脱氮技术
深入研究硝化反硝化机理,优化生物脱氮工艺,提高脱氮效率,降 低处理成本。
引入人工智能与自动化技术
利用人工智能和自动化技术对污水处理过程进行智能监控和优化控 制,提高处理效率。
反硝化原理
硝酸盐在反硝化细菌的作用下,被还 原成氮气。这个过程需要缺氧或厌氧 环境,并利用有机物作为电子供体。
硝化反硝化的种类
同步硝化反硝化
在同一反应器中同时进行硝化和反硝化过程 。
异步硝化反硝化
在两个不同的反应器中分别进行硝化和反硝 化过程。
反硝化除磷
在反硝化过程中同时去除磷元素。
03
厌氧工艺与硝化反硝 化的比较
硝化反硝化
适用于处理含有较高氨氮和磷的废水,如生活污水、工业废水等。
优缺点的比较
厌氧工艺的优点包括能够回收能源、 产生较少的剩余污泥等;缺点是处理 时间较长、产出的沼气需要妥善处理 。
硝化反硝化的优点包括能够去除高浓 度的氨氮和磷、减少水体富营养化风 险等;缺点是需要提供充足的氧气、 较高的能耗和较高的投资成本。
04
厌氧工艺与硝化反硝 化的应用实例
厌氧工艺的应用实例
厌氧消化池
用于处理高浓度有机废水,通过厌氧微生物的分解作用,将有机物转化为甲烷和二氧化 碳。
厌氧滤池
适用于处理低浓度有机废水,通过填充生物滤料,使厌氧微生物附着生长,对有机物进 行降解。
硝化反硝化的应用实例
活性污泥法
利用好氧微生物降解有机物,同时进行 硝化反应将氨氮转化为硝酸盐,再通过 反硝化作用将硝酸盐还原为氮气,实现 脱氮。

厌氧好氧工艺原理

厌氧好氧工艺原理

厌氧好氧工艺原理厌氧好氧工艺是一种常用的污水处理工艺,通过厌氧和好氧两个阶段的处理,可以有效地去除污水中的有机物和氮、磷等污染物。

这种工艺原理简单而有效,下面将对其原理进行详细介绍。

首先,厌氧阶段是指在缺氧或无氧的情况下进行生物降解,这种环境条件下,有机物质会被分解成小分子有机物和气体。

在厌氧条件下,一些厌氧菌和厌氧细菌会利用有机物质进行呼吸作用,产生甲烷、硫化氢等气体,同时也会产生一些有机酸和醇类物质。

这些产物会成为后续好氧阶段微生物的碳源,为后续的有机物降解提供了条件。

接下来是好氧阶段,好氧条件下是细菌和其他微生物进行生物降解的主要阶段。

在好氧条件下,细菌和其他微生物会利用厌氧阶段产生的有机物质,通过呼吸作用将其分解成水和二氧化碳。

同时,在好氧条件下,一些氮、磷等无机物质也会被氧化还原,从而去除污水中的氮、磷等污染物。

好氧菌和其他微生物在这一阶段发挥着重要作用,它们通过生物降解作用,将有机物质和无机物质转化为无害的物质,从而达到净化污水的目的。

总的来说,厌氧好氧工艺原理是通过两个阶段的生物降解作用,将污水中的有机物质、氮、磷等污染物去除。

在厌氧阶段,有机物质被分解成小分子有机物和气体,为后续好氧阶段提供了碳源;在好氧阶段,细菌和其他微生物利用这些有机物质和无机物质,通过生物降解作用将其转化为无害的物质。

这种工艺原理简单而有效,被广泛应用于城市污水处理厂和工业废水处理系统中。

除了上述的原理外,厌氧好氧工艺还有一些特点和优势。

首先,这种工艺可以有效地去除污水中的有机物质、氮、磷等污染物,处理效果好;其次,工艺流程简单,操作方便,运行成本低;再次,对于一些特殊的废水,如高浓度有机物质、高浓度氮、磷废水等,也有较好的适用性。

因此,厌氧好氧工艺在实际应用中得到了广泛的推广和应用。

总的来说,厌氧好氧工艺原理简单而有效,通过厌氧和好氧两个阶段的生物降解作用,可以有效地去除污水中的有机物质、氮、磷等污染物。

污水处理中的厌氧工艺优化与控制

污水处理中的厌氧工艺优化与控制

溶解氧控制
总结词
溶解氧是影响厌氧工艺的重要参数之一,过高的溶解氧会抑制厌氧菌的活性,进而影响厌氧反应的效率。
详细描述
在厌氧工艺中,应严格控制溶解氧的含量,将其保持在较低的水平(通常低于0.5mg/L)。过高的溶解氧会导致 厌氧菌的活性受到抑制,进而影响厌氧反应的效率。因此,需要定期监测溶解氧的含量,并及时采取措施进行调 整。
标排放。
工业废水处理应用
1
工业废水成分复杂,处理难度较大,厌氧工艺在 工业废水处理中具有广泛的应用前景。
2
厌氧工艺在工业废水处理中主要用于处理高浓度 有机废水、含重金属废水等,具有较好的处理效 果和经济效益。
3
工业废水处理中的厌氧工艺需要针对不同工业废 水的特点进行优化和控制,以提高处理效率和降 低运行成本。
详细描述
厌氧反应的最佳温度通常在30-35摄氏度之间,温度过低或过高都会导致厌氧菌活性降低,进而影响 厌氧反应的效率。因此,需要对温度进行严格的监控和控制,以保证厌氧反应的顺利进行。
pH值控制
总结词
pH值是影响厌氧微生物活性的另一个重要因素,过酸或过碱的环境都会抑制厌 氧菌的活性。
详细描述
厌氧反应的最佳pH值通常在6.5-7.5之间,偏离这个范围会导致厌氧菌的活性受 到抑制。因此,需要定期监测pH值,并通过添加酸或碱来调整pH值,以保证厌 氧反应的效率。
温室气体排放
监测和评估厌氧工艺过程中的温室气体(如CH4 、CO2)排放情况,降低环境影响。
有机物去除效果
评价不同厌氧工艺对有机物的去除效果,确保达 标排放。
剩余污泥处理
合理处置厌氧工艺产生的剩余污泥,减少对环境 的影响。
THANK YOU
1 2

污水处理中的厌氧处理

污水处理中的厌氧处理
02
厌氧处理技术广泛应用于污水处 理领域,主要用于处理高浓度的 有机废水。
厌氧处理原理
厌氧微生物通过分解有机物获取能量 ,同时产生甲烷和二氧化碳。
厌氧处理过程中,有机物首先被酸化 菌转化为挥发性脂肪酸,然后被产甲 烷菌转化为甲烷和二氧化碳。
厌氧处理的应用
厌氧处理技术适用于处理高浓度有机废水,如食品、造纸、 化工等行业的废水。
05
厌氧处理存在的问题与对 策
甲烷的生成与控制
甲烷生成
厌氧处理过程中,有机物在厌氧菌的 作用下发酵产生甲烷,甲烷排放到大 气中会导致温室效应。
控制方法
通过优化反应器设计,控制进料有机 物浓度和反应温度,以及采用生物气 回收技术,将甲烷收集并用于能源开 发,以减少温室气体排放。
污泥膨胀问题与对策
提高能源回收率的关键在于优 化厌氧反应器的设计和操作条 件,提高沼气的产量和纯度。
未来研究应关注新型厌氧反应 器的研发,以提高沼气的产量 和能源回收效率。
提高有机物去除效率
有机物去除是厌氧处理技术的核心目标,提高有机物去除效率有助于提高 污水处理效果。
通过改进厌氧反应器的结构和运行参数,可以促进厌氧微生物的生长和代 谢,从而提高有机物的去除效率。
厌氧膨胀颗粒污泥床反应器通过将污 泥在反应器内膨胀,增加污泥与有机 物的接触面积,提高反应效率。
厌氧序批式反应器
01
厌氧序批式反应器是一种将批次反应与连续流反应相结合的厌 氧反应装置。
02
厌氧序批式反应器将待处理的污水与循环的活性污泥混合后,
进入一个密闭的反应器内,经过充分的厌氧反应后排出。
厌氧序批式反应器具有操作简单、能耗低等优点,适用于处理
03
中低浓度的有机废水。

污水处理工艺流程揭秘厌氧处理与反硝化

污水处理工艺流程揭秘厌氧处理与反硝化

污水处理工艺流程揭秘厌氧处理与反硝化污水处理工艺流程揭秘:厌氧处理与反硝化污水处理是保护环境、维护公共卫生的重要环节。

在污水处理工艺中,厌氧处理与反硝化是常用的两个步骤。

本文将揭秘污水处理中的厌氧处理与反硝化工艺流程,帮助您深入了解并掌握相关知识。

一、厌氧处理1. 厌氧处理的意义厌氧处理是污水处理过程中的一种生化处理方法。

它主要通过造成厌氧环境,利用厌氧微生物降解有机物质,将有机物质转化为可稳定沉降的污泥和产生可再利用的沼气。

厌氧处理能有效去除有机物质,并减少化学耗氧量。

2. 厌氧处理工艺流程厌氧处理主要包括预处理、厌氧消化和厌氧反流三个步骤。

(1)预处理:首先要对污水进行预处理,包括除砂、除油、除渣等步骤,以保证厌氧处理系统的正常运行。

(2)厌氧消化:经过预处理的污水进入厌氧消化池,与厌氧微生物接触并分解。

在这一过程中,有机物质被厌氧微生物分解成沉积性有机物质和可溶性有机物质。

沉积性有机物质可稳定沉降形成厌氧污泥。

(3)厌氧反流:厌氧消化池不断进行进水与流出水的循环,以保持良好的厌氧环境。

同时,通过厌氧反流的操作,污泥与水进行分离,厌氧污泥可继续沉降和消化,而清洁水则进入下一步骤。

二、反硝化1. 反硝化的意义反硝化是指在缺氧或厌氧条件下,一些强还原性的有机物质作为电子供体,通过微生物的代谢作用,将硝酸盐和亚硝酸盐还原为氮气的过程。

反硝化处理可以有效地去除废水中的硝酸盐,减少对环境的污染。

2. 反硝化工艺流程反硝化主要包括预处理、反硝化和后处理三个步骤。

(1)预处理:类似于厌氧处理过程中的预处理,对污水进行除砂、除油等步骤,以确保反硝化系统的正常运行。

(2)反硝化:经过预处理的污水进入反硝化反应池,与反硝化微生物接触。

在缺氧或厌氧条件下,反硝化微生物利用污水中的有机物质作为电子供体,将硝酸盐和亚硝酸盐还原为氮气。

(3)后处理:通过后处理步骤,将反硝化处理后的水中的氮气充分释放,并将水质进一步提升。

厌氧工艺流程

厌氧工艺流程

厌氧工艺流程
《厌氧工艺流程》
厌氧工艺流程是一种生物处理废水的方法,其特点是在缺氧状态下进行反应。

厌氧工艺流程通常用于处理高浓度有机废水,如污水处理厂、食品加工厂等场所。

厌氧工艺流程包括四个主要阶段:前处理、厌氧反应、后处理和气体处理。

在前处理阶段,废水经过预处理,去除大颗粒物和杂质。

接下来是厌氧反应阶段,废水被引入厌氧反应器,利用厌氧微生物将有机废物转化为甲烷气和二氧化碳。

在后处理阶段,产生的废渣通过沉降或过滤等工艺进行处理。

最后是气体处理阶段,对产生的甲烷气和二氧化碳进行处理,以达到环保要求。

厌氧工艺流程与传统的好氧工艺相比,具有更高的有机废物去除率和产生的废泥量更少的优点。

此外,由于厌氧微生物活动产生的甲烷气具有较高的能量价值,可以用作发电或加热,具有经济效益。

总的来说,厌氧工艺流程是一种高效、低能耗、低排放的废水处理方法,对于处理高浓度有机废水有着独特的优势。

随着环保意识的提升和能源利用的重视,厌氧工艺流程在废水处理领域有着广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厌氧处理工艺的选择及介绍1 厌氧处理工艺的选择厌氧反应器既有传统的反应器又有现代高效反应器,这些工艺又可分为厌氧悬浮生长和厌氧接触生长工艺。

厌氧工艺经百余年的发展已从最初的第一代的厌氧消化池发展到第二代的厌氧滤器(AF)、厌氧流化床反应器(AFB)、上流式厌氧污泥床(UASB)以及第三代的膨胀颗粒污泥床反应器(EGSB和IC)这几种反应器形式。

在已开发的厌氧反应器中,第三代的EGSB和IC反应器是一种研究最为深入、技术最为先进的厌氧反应器。

它是在第二代UASB反应器的基础上发展起来的高效反应器,尤其适用于中等浓度(COD在10000mg/l以下)的有机废水的处理,并成功地应用于各种废水的处理。

相对于其它类型的反应器,EGSB/IC反应器具有一些突出的优点:具有较高的有机负荷,水力负荷能满足要求。

污泥颗粒化后使反应器耐不利条件的冲击能力增强。

具有较高的上升流速,尤其是颗粒污泥IC反应器,由于颗粒污泥的密度较小,在适度的水力负荷范围内,可以靠反应器内产生的气体来实现污泥与基质的充分混合及接触,大大提高反应器的效率。

在反应器上部设置了气—固—液三相分离器,对沉降良好的污泥或颗粒污泥可以自行分离沉降并返回反应器主体,不须附设沉淀分离装置、辅助脱气装置及回流污泥设备,简化了工艺,节约了投资和运行费用。

1.2 高强好氧处理工艺的选择1.2.1复合式生物反应器为了在原有活性污泥工艺基础上,提高曝气池内生物量,增强废水处理能力,克服活性污泥膨胀,提高运行稳定性,人们发明了在曝气池中投加载体的方法,即在曝气池中投加各种能提供微生物附着生长表面的载体,利用载体容易截留和附着生物量大的特点,使曝气池中同时存在附着相和悬浮相生物,充分发挥两者的优越性,使之扬长避短,相互补充,将这种反应器称为复合生物反应器HBR (Hybrid Biological Reactor)。

复合式生物反应系统是将生物膜反应系统和活性污泥系统结合起来。

虽然这种方法保留了原有工艺的主体构造,但是由于填料的加入,使污水处理机理和效能都大为改变[7]。

在这个系统中,微生物生存的基础环境由原来的气、液两相转变成气、液、固三相,这种转变为微生物创造了更丰富的存在形式,形成一个更为复杂的复合式生态系统。

1.2.2好氧生物流化床好氧生物流化床反应器是将普通活性污泥法和生物膜法的优点有机地结合,是七十年代开始应用于污水处理的一种高效的生物处理工艺,并引入流化技术处理有机废水的反应装置,因而具有容积负荷高、生物降解速度快、占地面积小、基建投资和运行费用低等优点。

生物流化床处理技术是借助流体(液体、气体)使表面生长着微生物的固体颗粒(生物颗粒)呈流态化,同时进行去除和降解有机污染物的生物膜法处理技术。

微生物生长在载体表面,载体则在反应器中流动,是悬浮生长型和附着生长型的复合。

它可以保持高浓度的微生物量,传质效率高,体积负荷可以比传统活性污泥法高6-10倍。

在已开发的厌氧反应器中,第三代的EGSB和IC反应器是一种研究最为深入、技术最为先进的厌氧反应器。

它是在第二代UASB反应器的基础上发展起来的高效反应器,尤其适用于中等浓度(COD在10000mg/l以下)的有机废水的处理,并成功地应用于各种废水的处理。

相对于其它类型的反应器,EGSB/IC反应器具有一些突出的优点:图1是一种三相生物流化床结构示意图,可应用于石化、制药、食品和印染等废水的处理,并且该三相生物流化床对各种有机废水都具有很好的处理效果,其COD去除率都在70%以上,流化床容积负荷也在5.0 Kg [COD]/m3·d以上;此外,实验及实际运行中发现,与其他生物处理工艺相比,三相生物流化床工艺的剩余污泥产生量很少,尤其是对于COD浓度较低的废水,如印染废水,剩余污泥量更少;流化床的流化区内,活性污泥浓度达到10-20 g/L,加上生物载体表面的微生物,流化床具有很高的微生物浓度。

1.2.3 HCR反应器HCR工艺(High Performance Compact Reactor)是德国克劳斯塔尔(Clausthal)工业大学物相传递研究所于80年代发明的,是第三代生物反应器。

由于该反应器采用高速射流曝气,具有深井曝气和流化床的特点。

HCR通过提高传质速率,以高充氧能力和高污泥活性来满足短时间内快速降解有机物的要求,从而实现高效的目的;其氧的转移率高,反应器的容积负荷大,水力停留时间短,是一种高效好氧生物处理方法。

该工艺的主要特点是的高径比较大,由于HCR为完全混合型反应器,加上高浓度污泥的协同作用,使进水量和浓度的大幅度波动得以充分缓和,毒害性物质也得到稀释,从而有效提高了HCR系统的抗冲击负荷能力。

HCR系统的反应效率较常规活性污泥法大大提高,接近到纯氧曝气的水平,根据挪威“克瓦纳”公司提供的数据,HCR的容积负荷可达50-70 kg[COD]/m3·d,是常规活性污泥法的10-30倍,反应时间为1-2小时,是常规活性污泥法1/2-1/4,污泥负荷可达5-10 kg[COD]/kg[MLSS],是常规活性污泥法的2-3倍,因此HCR 系统的反应体积仅为常规活性污泥法的1/50-1/30。

一般HCR工艺所产生的剩余污泥量为0.15-0.2 kg[SS]/ kg[BOD],比其他好氧方法平均减少40%左右,从而大大减少了污泥处理量。

目前,HCR工艺已在德国、挪威、法国和加拿大等国家应用于造纸废水、酵母生产废水、屠宰废水、化工废水的处理,并取得了较好的效果。

拉维克市雀斯科夫锐兹公司(Treschow-Fritze, Larvik)的半化学纸浆废液,COD浓度高达20000 mg/L,采用HCR工艺处理,容积负荷为80 kg[COD]/(m3·d),COD去除率达到70%,废水中含有过氧漂白污水,但它对于水处理效果没有任何不良影响,其剩余污泥产率约为0.2 kg[SS]/kg[COD]。

1.2.4 深井曝气法深井曝气首先由英国帝国化学工业有限公司于1968年发明。

他们在进行利用好氧菌生产单细胞蛋白的研究中,设计出了充氧能力很高的深井培养槽,并把这项技术应用于废水处理中。

其后,日本、美国、加拿大、法国等相继进行了研究,并相继建成了一批生产处理装置。

目前,此工艺已用于处理化工废水、制药废水、食品加工废水、造纸废水和混合废水等。

深井被分隔为上升管和下降管两部分,污水和活性污泥沿下降管下降,再沿上升管上升,并形成循环。

深井曝气运行有水泵循环和气体循环两种方式。

水泵循环为自吸进气方式,有设备少,运行控制稳定,处理后的微气泡易脱除等优点,气体循环法应用于大井时较水泵循环方式节省能耗,在国外普遍采用气体循环方式。

在国内气体循环法尚不完善。

但中国沈阳等地己建成了气体循环深井曝气装置。

深井曝气法存在的主要缺点是处理过程容易遭受变化,比普通活性污泥法要求更高、更熟练的技术人员对它进行运行管理,否则很难正常的运行。

目前,深井曝气技术在净化理论、应用范围、运行方式等方面都得到了很大的发展。

深井曝气具有效率高、投资及运行维护费用低及占地面积小等优点,较适合我国使用。

它的耐低温特点,特别适合我国北方地区使用。

由上述可知,深井曝气法和HCR曝气法通过改变曝气方式,提高氧的利用效率,从而提高好氧生物反应器中微生物的活性;生物流化床是将化工过程的流态化技术应用于污水处理,综合了活性污泥法和生物膜法两者的优点并加以发展,提高了传质效率和生物粒子沉降性能,从而提高好氧生物反应器中微生物的浓度;复合生物反应器则是在原有活性污泥法工艺基础上,在曝气池中投加各种能提供微生物附着生长表面的载体,利用载体容易截留和附着生物量大的特点,使曝气池中同时存在附着相和悬浮相生物,充分发挥两者的优越性,从而提高曝气池内微生物量,增强废水处理能力。

1.2.3 HCR反应器HCR工艺(High Performance Compact Reactor)是德国克劳斯塔尔(Clausthal)工业大学物相传递研究所于80年代发明的,是第三代生物反应器。

由于该反应器采用高速射流曝气,具有深井曝气和流化床的特点。

HCR通过提高传质速率,以高充氧能力和高污泥活性来满足短时间内快速降解有机物的要求,从而实现高效的目的;其氧的转移率高,反应器的容积负荷大,水力停留时间短,是一种高效好氧生物处理方法。

该工艺的主要特点是的高径比较大,由于HCR为完全混合型反应器,加上高浓度污泥的协同作用,使进水量和浓度的大幅度波动得以充分缓和,毒害性物质也得到稀释,从而有效提高了HCR系统的抗冲击负荷能力。

HCR系统的反应效率较常规活性污泥法大大提高,接近到纯氧曝气的水平,根据挪威“克瓦纳”公司提供的数据,HCR的容积负荷可达50-70 kg[COD]/m3·d,是常规活性污泥法的10-30倍,反应时间为1-2小时,是常规活性污泥法1/2-1/4,污泥负荷可达5-10 kg[COD]/kg[MLSS],是常规活性污泥法的2-3倍,因此HCR 系统的反应体积仅为常规活性污泥法的1/50-1/30。

一般HCR工艺所产生的剩余污泥量为0.15-0.2 kg[SS]/ kg[BOD],比其他好氧方法平均减少40%左右,从而大大减少了污泥处理量。

1.2.5 射流曝气器法射流曝气是利用射流曝气器将气流或气液混合液导入曝气池,以增加液体中氧含量的系统。

它具有下列优点。

(1)有较高的氧吸收率和充氧能力,混合搅拌作用强;(2)污泥活性好,基质降解常数较高,提高了污泥的沉淀性能;(3)构造简单、运转灵活、便于调节、维修管理方便。

射流曝气器既不是一种气泡扩散装置,也不是一种机械曝气设备,而是介于这二者之间的一种设备,利用气泡扩散和水力剪切这两个作用达到曝气和混合的目的。

在射流曝气器混合部内,由于射流的紊动及能量交换作用,形成剧烈的混掺现象,不仅在瞬间完成了氧气从气相向液相中的转移,而且射流曝气工作水流为进水和回流污泥的混合液,因此在射流器混合部内迅速地进行着泥(微生物)、水(有机物)、气(溶解氧)三者间的传质与生化反应,这是一个在特定条件下发生的快速生物反应与传质的综合过程,是与其它任何活性污泥法不同的。

根据供气方式的不同,射流曝气可分为两大类。

(1)强制供气:即用鼓风机向射流器供给空气,其特点是:空气由鼓风机供给,空气量的控制比较方便,可以根据需要把射流器安装在曝气池的底部、顶部等不同的位置,射流器数量多,一般淹没在水中,安装与维修不方便。

(2)自吸(负压)供气:由射流器喷嘴喷出的高速射流,使吸气室形成负压,将空气吸人,这种射流器通常称为自吸式射流器,其特点是不需要鼓风设备。

根据结构分类: (1)单级:又分为单喷嘴和多喷嘴两种形式。

相关文档
最新文档