七(下)第二章《平行线与相交线》综合检测题(3)
2023年北师大七年级数学下册第二章《相交线与平行线》综合测评卷附答案解析

2023年七年级数学下册第二章《相交线与平行线》综合测评卷(试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 在数学课上,老师让同学们画对顶角∠1与∠2,下列画法正确的是()A B C D2. 如图1,三条直线交于点O,若∠1=30°,∠2=60°,则直线AB与CD的位置关系是()A. 平行B. 垂直C. 重合D. 以上均有可能图1 图2 图33. 如图2,已知a∠b,直线a,b被直线c所截,若∠1=∠60°,则∠2的度数为()A. 130°B. 120°C. 110°D. 100°4. 一副三角尺按图3所示放置,点C在FD的延长线上,若AB∠CF,则∠DBC的度数为()A. 10°B. 15°C. 30°D. 45°5. 如图4,在三角形ABC中,AB∠AC,AD∠BC,垂足分别为点A,D,则点B到直线AD的距离为()A. 线段AB的长B. 线段BD的长C. 线段AC的长D. 线段DC的长图4 图5 图6 图7 图86. 如图5,与∠α构成同位角的角有()A. 1个B. 2个C. 3个D. 4个7. 有下列说法:∠两条直线被第三条直线所截,内错角相等;∠互补的两个角就是平角;∠过一点有且只有一条直线与已知直线平行;∠平行于同一条直线的两直线平行;∠在同一平面内,垂直于同一条直线的两条直线平行. 其中正确的有()A. 0个B. 1个C. 2个D. 3个8.如图6,∠AOB与∠AOC互余,∠AOD与∠AOC互补,OC平分∠BOD,则∠AOB的度数是()A.20°B.22.5°C.25°D.30°9.如图7,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,∠ODE=∠ADC.若反射光DC恰好与OB平行,则∠DEB的度数是()A. 74°B. 63°C. 64°D. 73°10. 如图8,已知AF平分∠BAC,D在AB上,DE平分∠BDF,∠1=∠2,有下列结论:∠DF∠AC;∠DE∠AF;∠∠1=∠DF A;∠∠C+∠DEC=180°.其中成立的有()A. ∠∠∠B. ∠∠∠C. ∠∠∠D. ∠∠∠二、填空题(本大题共6小题,每小题3分,共18分)11. 图9是苗苗同学在体育课上跳远后留下的脚印,她的跳远成绩是线段(选填“AM”“BN”或“CN”)的长度,这样测量的依据是.图9 图10 图1112. 如图10,已知直线AB与CD相交于E点,FE∠AB,垂足为点E,若∠1=120°,则∠2=°.13. 如图11,已知DE∠BF,AC平分∠BAE,∠DAB=70°,那么∠ACF=°.14. 如图12,点E是AD延长线上一点,∠B=30°,∠C=120°,如果添加一个条件,使BC∠AD,则可添加的条件为.(只填一个即可)图12 图13 图1415. 如图13,把一张长方形纸片沿AB折叠,已知∠1=75°,则∠2的度数为________°.16. 如图14,已知DH∠EG∠BC,DC∠EF,DC与EG交于点M,那么在图中与∠EFB相等的角(不包括∠EFB)有.(填上所有符合条件的角)三、解答题(本大题共6小题,共52分)17.(6分)如图15,已知∠α,∠β,求作∠AOB,使∠AOB=2∠α-∠β.(要求:尺规作图,不写作法,保留作图痕迹)图1518.(7分)如图16,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°,求∠COF的度数.图1619.(8分)如图17,已知∠1+∠2=180°,∠3=∠B,直线AB与DE是否平行?并说明理由.图1720.(9分)如图18,已知∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?请说明理由.图1821.(10分)如图19,已知直线AB,CD相交于点O,OF平分∠AOE,∠COF=∠DOF=90°.(1)写出图中所有与∠AOD互补的角.(2)若∠AOE=120°,求∠BOD的度数.图1922.(12分)如图20,已知BC∠EG,AF∠DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠F AC,交BC于点Q,且∠Q=15°,求∠ACB的度数.图20附加题(共20分,不计入总分)1.(6分)如图1,已知点D是射线AB上一动点,连接CD,过点D作DE∠BC交直线AC于点E.若∠ABC=84°,∠CDE=20°,则∠ADC的度数为()A. 104°B. 64°C. 104°或64°D. 104°或76°2.(14分)如图2,已知直线l1∠l2,直线l3与l1,l2分别交于点C,D,在C,D之间有一点P,当P点在C,D之间运动时,∠P AC,∠APB,∠PBD之间的数量关系是否发生变化?若点P在C,D两点的外侧运动时(与点C,D不重合),试探索∠P AC,∠APB,∠PBD之间的数量关系.图2参考答案一、1. C 2. B 3. B 4. B 5. B 6. C 7. C 8. B 9. A 10. A二、11. BN垂线段最短12. 30 13. 125 14. 答案不唯一,如∠1=30°15. 30 16. ∠DCB,∠GMC,∠DME,∠HDC,∠FEG三、17. 解:如图1所示,∠AOB即为所求.图118.∠COF=110°.19.解:AB∥DE.理由如下:因为∠1+∠ADC=180°,∠1+∠2=180°,所以∠ADC=∠2.根据“同位角相等,两直线平行”,可得EF∥DC.根据“两直线平行,内错角相等”,可得∠3=∠EDC.因为∠3=∠B,所以∠EDC=∠B.根据“同位角相等,两直线平行”,可得AB∥DE.20. 解:(1)AD∠BC.理由如下:因为∠ADE+∠BCF=180°,∠ADE+∠ADF=180°,所以∠ADF=∠BCF.根据“同位角相等,两直线平行”,可得AD∠BC.(2)AB∠EF.理由如下:因为BE平分∠ABC,所以∠ABC=2∠ABE.因为∠ABC=2∠E,所以∠ABE=∠E.根据“内错角相等,两直线平行”,可得AB∠EF.21. 解:(1)因为直线AB,CD相交于点O,所以∠AOC,∠BOD分别与∠AOD互补.因为OF平分∠AOE,所以∠AOF=∠EOF.因为∠COF=∠AOF+∠AOC,∠DOF=∠EOF +∠EOD,且∠COF=∠DOF=90°,所以∠DOE=∠AOC,所以∠DOE也是∠AOD的补角.所以与∠AOD互补的角有∠AOC,∠BOD和∠DOE.(2)因为OF平分∠AOE,所以∠EOF=12∠AOE=12×120°=60°.因为∠DOF=90°,所以∠DOE=∠DOF-∠EOF=90°-60°=30°.因为∠DOE与∠BOD都是∠AOD的补角,所以∠BOD=∠DOE=30°.22. 解:(1)因为BC∠EG,所以∠E=∠1=50°.因为AF∠DE,所以∠AFG=∠E=50°.(2)如图2,过点A作AM∠BC.因为BC∠EG,所以AM∠EG,所以∠F AM=∠AFG=50°.因为AM∠BC,所以∠QAM=∠Q=15°. 所以∠F AQ=∠F AM+∠QAM=50°+15°=65°.因为AQ平分∠F AC,所以∠CAQ=∠F AQ=65°.所以∠MAC=∠CAQ+∠QAM=65°+15°=80°. 图2因为AM∠BC,所以∠ACB=∠MAC=80°.附加题1. C 提示:分两种情况讨论:∠点D在线段AB上;∠点D在线段AB的延长线上.2. 解:不变化,当P点在C,D之间运动时,∠APB=∠PAC+∠PBD. 理由如下:如图1,过点P作PE∠l1,则∠APE=∠PAC.因为l1∠l2,所以PE∠l2,所以∠BPE=∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.图1 图2 图3若点P在C,D两点的外侧运动时(与点C,D不重合),有两种情况:∠如图2,当点P在点C的上方时,∠APB=∠PBD-∠PAC. 理由如下:过点P作PE∠l1,则∠APE=∠PAC.因为l 1∠l2,所以PE∠l2,所以∠BPE=∠PBD,所以∠APB=∠BPE-∠APE =∠PBD-∠PAC.∠如图3,当点P在点D的下方时,∠APB=∠PAC-∠PBD. 理由如下:过点P作PE∠l2,则∠BPE=∠PBD.因为l1∠l2,所以PE∠l1,所以∠APE=∠PAC,所以∠APB=∠APE-∠BPE =∠PAC-∠PBD.。
北师大版七年级下册数学第二章相交线与平行线测试题(附答案)

北师大版七年级下册数学第二章相交线与平行线测试题(附答案)北师大版七年级下册数学第二章相交线与平行线测试题(附答案)一、单选题1.如图,已知直线l1∥l2,将一块直角三角板ABC按如图所示方式放置,若∠1=39°,则∠2等于()A。
39° B。
45° C。
50° D。
51°2.如图.直线a∥b,直线L与a、b分别交于点A,B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为()A。
130° B。
50° C。
40° D。
25°3.如图,三点共线A、B、C,D、E、F三点共线,且AD∥CF,BE∥CD,下列结论错误的是()A。
∠ABE=∠XXX∠ABE=∠CDEC。
∠ABE=∠XXX∠ABE=∠BDF4.如图,平行线AB∥CD,EF⊥CD,垂足为G,图中∠AGE=()A。
90° B。
45° C。
30° D。
60°5.如图,互余的角有()A。
1个 B。
2个 C。
3个 D。
4个6.如图,AB∥CD,EF∥GH,则下列等式正确的是()A。
∠AEF=∠GHF B。
∠AEF=∠HGFC。
∠XXX∠GHF D。
∠XXX∠HGF7.已知同一平面内的三条直线AB,CD,EF,AB∥CD,CD∥EF,则下列结论错误的是()A。
AB∥EF B。
AB∥CD C。
EF∥CD D。
AB∥EF8.如果a<b,且a+b=5c,如果c<a,b<c,比a与b 的和的3倍少2,那么a与b的位置关系是()A。
a<b B。
a>b C。
a=b D.无法确定9.如图,已知AB∥CD,AE=2cm,EC=3cm,则图中互相平行的线段是()A。
AB//CD B。
AE//DC C。
BE//CD D。
AB//EC10.如图,AB∥CD,点E在直线AD上,且∠AEC=34°,则∠BED的大小为()A。
北师大版七年级数学下册第二章相交线与平行线综合训练试卷(含答案解析)

北师大版七年级数学下册第二章相交线与平行线综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°2、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有()对.A.5 B.4 C.3 D.23、如图,∠1与∠2是同位角的是()① ② ③ ④A.①B.②C.③D.④4、如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是()A.线段AC的长度表示点C到AB的距离B.线段AD的长度表示点A到BC的距离C.线段CD的长度表示点C到AD的距离D.线段BD的长度表示点A到BD的距离5、若∠A与∠B互为补角,且∠A=28°,则∠B的度数是()A.152°B.28°C.52°D.90°6、下列语句中叙述正确的有()①画直线3AB cm;②连接点A与点B的线段,叫做A、B两点之间的距离;③等角的余角相等;④射线AB与射线BA是同一条射线.A.0个B.1个C.2个D.3个7、已知40A∠=︒,则A∠的余角的补角是()A.130︒B.120︒C.50︒D.60︒8、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A.77°B.64°C.26°D.87°9、如果两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角的度数分别是()A.48°,72°B.72°,108°C.48°,72°或72°,108°D.80°,120°10、若∠α=55°,则∠α的余角是()A.35°B.45°C.135°D.145°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线a b∥,三角尺(30°,60,90°)如图摆放,若∠1=52°,则∠2的度数为 _____.2、∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为 ___.3、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AEC=_____度.4、图中∠AOB的余角大小是_____°(精确到1°).5、判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角()(2)如果两个角相等,那么这两个角是对顶角()(3)有一条公共边的两个角是邻补角()(4)如果两个角是邻补角,那么它们一定互补( )(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )三、解答题(5小题,每小题10分,共计50分)1、已知AB ∥CD ,点E 在AB 上,点F 在DC 上,点G 为射线EF 上一点.(基础问题)如图1,试说明:∠AGD =∠A +∠D .(完成图中的填空部分).证明:过点G 作直线MN∥AB ,又∵AB∥CD ,∴MN∥CD ( )∵MN∥AB ,∴∠A =( )( )∵MN∥CD ,∴∠D = ( )∴∠AGD =∠AGM +∠DGM =∠A +∠D .(类比探究)如图2,当点G 在线段EF 延长线上时,直接写出∠AGD 、∠A 、∠D 三者之间的数量关系.(应用拓展)如图3,AH 平分∠GAB ,DH 交AH 于点H ,且∠GDH =2∠HDC ,∠HDC =22°,∠H =32°,直接写出∠DGA 的度数.2、已知:如图,AB ∥CD ∥EF ,点G 、H 、M 分别在AB 、CD 、EF 上.求证:GHM AGH EMH ∠∠∠=+.3、如图,①过点Q作QD⊥AB,垂足为点D;②过点P作PE⊥AB,垂足为点E;③过点Q作QF⊥AC,垂足为点F;④连P,Q两点;⑤P,Q两点间的距离是线段______的长度;⑥点Q到直线AB的距离是线段______的长度;⑦点Q到直线AC的距离是线段______的长度;⑧点P到直线AB的距离是线段______的长度.4、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF 开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.5、如图,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE比它的补角大100°,将一直角三角板AOB的直角点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕点O按每秒10°的速度逆时针旋转一周.设旋转时间为t秒.(1)求∠COE的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得∠BOC=∠BOE?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒10°的速度顺时针旋转一周.从旋转开始多长时间.射线OC平分∠BOE.直接写出t的值.(本题中的角均为大0°且小180°的角)-参考答案-一、单选题1、C【分析】如图,过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据AB∥EF可得CG∥DH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.【详解】如图,过点C作CG∥AB,过点D作DH∥EF,∴∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),∴∠A﹣∠ACD+∠CDE+∠E=180°.故选:C.【点睛】本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.2、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE平分∠AOB,∴∠AOE=∠BOE=90°,∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,故选:B.【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.3、B【分析】同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角.【详解】根据同位角的定义可知②中的∠1与∠2是同位角;故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.4、D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A. 线段AC的长度表示点C到AB的距离,说法正确,不符合题意;B. 线段AD的长度表示点A到BC的距离,说法正确,不符合题意;C. 线段CD的长度表示点C到AD的距离,说法正确,不符合题意;D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.5、A【分析】根据两个角互为补角,它们的和为180°,即可解答.【详解】解:∵∠A与∠B互为补角,∴∠A+∠B=180°,∵∠A=28°,∴∠B=152°.故选:A【点睛】本题考查了补角,解决本题的关键是熟记补角的定义.6、B【分析】根据直线的性质判断①,根据两点间距离的定义判断②,根据余角的性质判断③,根据射线的表示方法判断④.【详解】解:因为直线是向两端无限延伸的,所以①不正确;因为连接两点间的线段的长度,叫做这两点间的距离,所以②不正确;③正确;因为射线AB和射线BA的端点不同,延伸方向也不同,所以④不正确.故选:B.【点睛】本题考查直线的性质,两点间的距离的定义(连接两点间的线段的长度,叫做这两点间的距离),余角的性质,射线的表示方法,熟练掌握这些知识点是解题关键.7、A【分析】根据余角和补角定义解答.解:A ∠的余角的补角是180(9040)130︒-︒-︒=︒,故选:A .【点睛】此题考查余角和补角的定义:和为90度的两个角互为余角,和为180度的两个角是互为补角.8、A【分析】本题首先根据∠BGD ′=26°,可以得出∠AEG =∠BGD ′=26°,由折叠可知∠α=∠FED ,由此即可求出∠α=77°.【详解】解:由图可知: AD∥BC∴∠AEG =∠BGD ′=26°,即:∠GED =154°,由折叠可知: ∠α=∠FED , ∴∠α=12GED ∠=77°故选:A .【点睛】本题主要考察的是根据平行得性质进行角度的转化.9、B【分析】根据题意可得这两个角互补,设其中一个角为x ,则另一个角为()180x ︒-,由两个角之间的数量关系列出一元一次方程,求解即可得.解:∵两个角的两边两两互相平行,∴这两个角可能相等或者两个角互补, ∵一个角的12等于另一个角的13,∴这两个角互补,设其中一个角为x ,则另一个角为()180x ︒-, 根据题意可得:()1118023x x =︒-,解得:72x =︒,180108x ︒-=︒,故选:B .【点睛】题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.10、A【分析】根据余角的定义即可得.【详解】由余角定义得∠α的余角为90°减去55°即可.解:由余角定义得∠α的余角等于90°﹣55°=35°.故选:A .【点睛】本题考查了余角的定义,熟记定义是解题关键.二、填空题【分析】如图,标注字母,过B 作,BC a ∥ 再证明,BC b ∥证明12,EBD从而可得答案.【详解】解:如图,标注字母,过B 作,BC a ∥1=,EBC,a b ∥,BC b ∥2=,DBC12,EBD∠1=52°,90,EBD ∠=︒2=905238.故答案为:38︒【点睛】本题考查的是平行公理的应用,平行线的性质,掌握“两直线平行,内错角相等”是解本题的关键.2、20°或125°或20°【分析】根据∠1,∠2的两边分别平行,所以∠1,∠2相等或互补列出方程求解则得到答案.【详解】解:∵∠1与∠2的两边分别平行,∴∠1,∠2相等或互补,①当∠1=∠2时,∵∠2=3∠1-40°,∴∠2=3∠2-40°,解得∠2=20°;②当∠1+∠2=180°时,∵∠2=3∠1-40°,∴∠1+3∠1-40°=180°,解得∠1=55°,∴∠2=180°-∠1=125°;故答案为:20°或125°.【点睛】本题考查了平行线的性质的运用,关键是注意:同一平面内两边分别平行的两角相等或互补.3、70【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,再根据平行线性质求出∠AEC的度数即可.【详解】解:∵AB//CD,∴∠C+∠CAB=180°,∵∠C=40°,∴∠CAB=180°-40°=140°,∵AE平分∠CAB,∴∠EAB=70°,∵AB//CD,∴∠AEC=∠EAB=70°,故答案为70.【点睛】本题考查角平分线的定义和平行线的性质,解题的关键是熟练掌握两条平行线被第三条直线所截,同旁内角互补.4、63【分析】根据余角的定义:如果两个角的度数和为90度,那么这两个角互为余角,进行求解即可.【详解】解:由量角器上的度数可知,∠AOB=27°,∴∠AOB的余角的度数=90°-∠AOB=63°,故答案为:63.【点睛】本题主要考查了量角器测量角的度数和求一个角的余角,熟知余角的定义是解题的关键.5、(1)×;(2)×;(3)×;(4)√;(5)×【分析】根据对顶角与邻补角的定义与性质分析判断即可求解.【详解】(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;(2)如果两个角相等,那么这两个角不一定是对顶角,错误;(3)有一条公共边的两个角不一定是邻补角,错误;(4)如果两个角是邻补角,那么它们一定互补,正确;(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.【点睛】本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.三、解答题1、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.【分析】基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A +∠D;类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG =∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.【详解】解:基础问题:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD(平行于同一条直线的两条直线平行),∵MN∥AB,∴∠A=∠AGM(两直线平行,内错角相等),∵MN∥CD,∴∠D=∠DGM(两直线平行,内错角相等),∴∠AGD=∠AGM+∠DGM=∠A+∠D.故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:如图所示,过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD,∵MN∥AB,∴∠A=∠AGM,∵MN∥CD,∴∠D=∠DGM,∴∠AGD=∠AGM-∠DGM=∠A-∠D.应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,又∵AB∥CD,∴MN∥CD,PQ∥CD∵MN∥AB,PQ∥AB,∴∠BAG=∠AGM,∠BAH=∠AHP,∵MN∥CD,PQ∥CD,∴∠CDG=∠DGM,∠CDH=∠DHP,∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,∴∠GDH=44°,∠DHP=22°,∴∠CDG=66°,∠AHP=54°,∴∠DGM=66°,∠BAH=54°,∵AH平分∠BAG,∴∠BAG=2∠BAH=108°,∴∠AGM=108°,∴∠AGD=∠AGM-∠DGM=42°.【点睛】本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.2、见解析【分析】由AB ∥CD ∥EF 可得,1AGH ∠=∠,2EMH ∠=∠,即可证明.【详解】证明:∵AB ∥CD (已知)∴1AGH ∠=∠(两直线平行,内错角相等)又 ∵CD ∥EF (已知)∴2EMH ∠=∠,(两直线平行,内错角相等)∵12GHM ∠∠∠=+(已知)∴GHM AGH EMH ∠∠∠=+(等式性质)【点睛】本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.3、①②③④作图见解析;⑤PQ;⑥QD;⑦QF;⑧PE【分析】由题意①②③④根据题目要求即可作出图示,⑤⑥⑦⑧根据两点之间距离及点到直线的距离的定义即可得出答案.【详解】①②③④作图如图所示;⑤根据两点之间距离即可得出P,Q两点间的距离是线段PQ的长度;⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.【点睛】本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键.4、(1)60,75;(2)152秒;(3)3或12或21或30【分析】(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.(2)由题意先根据60α=︒,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF '运动的度数=150,列式解出即可;(3)根据题意分两种情况在直线OE 的左边和右边,进而根据其夹角列4个方程可得时间.【详解】解:(1)∵∠BOE =90°,∴∠AOE =90°,∵∠AOC=α=30°,∴∠EOC =90°-30°=60°,∠AOD =180°-30°=150°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =12×150°=75°;故答案为:60,75;(2)当60α=︒,9060150EOF ∠=︒+︒=︒.设当射线OE '与射线OF '重合时至少需要t 秒,可得128150t t +=,解得:152t =; 答:当射线OE '与射线OF '重合时至少需要152秒; (3)设射线OE '转动的时间为t 秒,由题意得:12815090t t +=-或12815090t t +=+或81236015090t t +=+-或12836015090t t +=++, 解得:3t =或12或21或30.答:射线OE '转动的时间为3或12或21或30秒.【点睛】本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.5、(1)140゜(2)存在,t=2秒或20秒;(3)533秒【分析】(1)设∠COE=x度,则其补角为(180−x)度,根据∠COE比它的补角大100°列方程即可求得结果;(2)存在两种情况:当OC在直线DE上方时;当OC在直线DE下方时;就这两种情况考虑即可;(3)画出图形,结合图形表示出∠COE与∠COB,根据角平分线的性质建立方程即可求得t值.【详解】(1)设∠COE=x度,则其补角为(180−x)度,由题意得:x−(180−x)=100解得:x=140即∠COE=140゜(2)存在当OC在直线DE上方时,此时OB平分∠BOC∵∠COE=140゜∴1702BOC COE∠=∠=︒当OB没有旋转时,∠BOC=50゜所以OB旋转了70゜−50゜=20゜则旋转的时间为:t=20÷10=2(秒)当OC在直线DE下方时,如图由图知:∠BOE+∠BOC+∠COE=360゜即:2∠BOE+∠COE=360゜∵OB旋转了10t度∴∠BOE=(10t−90)度∴2(10t−90)+140=360解得:t=20综上所述,当t=2秒或20秒时,∠BOC=∠BOE(3)OB、OC同时旋转10t度如图所示,∠COE=(180゜+40゜)−(10t)゜=(220−10t)゜∵2×(10t)゜−∠COB+50゜=360゜∴∠COB=2× (10t)゜−310゜∵∠COB=∠COE∴2× 10t−310=220-10t解得:533 t即当t的值为533秒时,满足条件.【点睛】本题考查了角平分线的性质,角的和差运算,补角的概念,解一元一次方程等知识,注意数形结合及分类讨论.。
北师大版七年级数学下册第二章《相交线与平行线》单元同步练习题(含答案)

北师大版七年级数学下册第二章《相交线与平行线》同步练习题(含答案)一、选择题1、如图,将一张长方形纸条折叠,如果∠2比∠1大6°,则∠2的度数为( ) A .108°B .114°C .118°D .122°2、如图,将一块长方形纸条折成如图的形状,若已知∠1=α,则∠2的度数为( ) A .90°-αB .90°+αC .90°-α2D .90°+α23、如图,在长方形纸片ABCD 中,在AD 边上取一点E ,沿BE 折叠,使点C ,D 分别落在点C 1,D 1处,且点A 刚好落在C 1D 1上.若∠ABC 1=45°,则∠BED =( ) A .112.5°B .135°C .125°D .100.5°4、如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若CD ∥BE ,∠1=40°,则∠2的度数是( ) A .90°B .100°C .105°D .110°5、如图,已知AB ∥DE ,∠1=30°,∠2=35°,则∠BCE 的度数为( ) A .70°B .65°C .35°D .5°6、如图,直线AB ∥CD ,AE ⊥CE 于点E.若∠EAB =120°,则∠ECD 的度数是( ) A .120°B .100°C .150°D .160°二、填空题7、如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处.若∠AEH =30°,则∠EFC等于______.8、如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG=______.度,再沿BF折叠成图c.则图中的∠CFE=______度.9、已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=______度.10、如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=______.11、如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=______.12、如图是我们生活中经常接触的小刀,刀片的外壳是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=______.三、解答题13、如图,在Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°.点D 在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,当旋转了多少秒时,边CD恰好与边AB平行?14、问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为______度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P 在B,D两点之间运动时,问∠APC与α,β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B,D两点外侧运动时(点P与点O,B,D三点不重合),请直接写出∠APC与α,β之间的数量关系.15、已知AM∥CN,点B为平面内一点,AB⊥BC于点B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由;(3)如图3,在(2)问的条件下,点E,F在DM上,连接BE,BF,CF,BF平分∠DBC,BE平分∠ABD.若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度数.参考答案一、选择题1、如图,将一张长方形纸条折叠,如果∠2比∠1大6°,则∠2的度数为(D) A .108°B .114°C .118°D .122°2、如图,将一块长方形纸条折成如图的形状,若已知∠1=α,则∠2的度数为(C) A .90°-αB .90°+αC .90°-α2D .90°+α23、如图,在长方形纸片ABCD 中,在AD 边上取一点E ,沿BE 折叠,使点C ,D 分别落在点C 1,D 1处,且点A 刚好落在C 1D 1上.若∠ABC 1=45°,则∠BED =(A) A .112.5°B .135°C .125°D .100.5°4、如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若CD ∥BE ,∠1=40°,则∠2的度数是(B) A .90°B .100°C .105°D .110°5、如图,已知AB ∥DE ,∠1=30°,∠2=35°,则∠BCE 的度数为(B) A .70°B .65°C .35°D .5°6、如图,直线AB ∥CD ,AE ⊥CE 于点E.若∠EAB =120°,则∠ECD 的度数是(C) A .120°B .100°C .150°D .160°二、填空题7、如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处.若∠AEH =30°,则∠EFC等于105°.8、如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG=150度,再沿BF折叠成图c.则图中的∠CFE=135度.9、已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=30度.10、如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°.11、如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=125°.12、如图是我们生活中经常接触的小刀,刀片的外壳是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=90°.三、解答题13、如图,在Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°.点D 在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,当旋转了多少秒时,边CD恰好与边AB平行?解:分两种情况:当两三角形在点O的同侧时,如图1,设CD与OB相交于点E.∵AB∥CD,∴∠CEO=∠B=40°.∵∠C=60°,∴∠OOE=180°-60°-40°-80°.∴∠DOE=∠COD-∠COE=10°.∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°.∵每秒旋转10°,∴旋转的时间为100÷10=10(秒).当两三角形在点O的异侧时,如图2,延长BO与CD相交于点E.∵AB∥CD,∴∠CEO=∠B=40°.∵∠C=60°,∴∠COE=180°-60°-40°=80°.∴旋转角为360°-∠COE=360°-80°=280°.∵每秒旋转10°,∴旋转的时间为280÷10=28(秒).综上所述,当旋转了10秒或28秒时,边CD恰好与边AB平行.14、问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为110度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P 在B,D两点之间运动时,问∠APC与α,β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B,D两点外侧运动时(点P与点O,B,D三点不重合),请直接写出∠APC与α,β之间的数量关系.图1 图2解:∠APC=α+β.理由:过点P作PE∥AB交AC于点E,∵AB∥CD,∴AB∥PE∥CD.∴α=∠APE,β=∠CPE.∴∠APC=∠APE+∠CPE=α+β.(3)如图3,当P在BD延长线上时,∠CPA=α-β;如图4,当P在DB延长线上时,∠CPA=β-α.图3 图415、已知AM∥CN,点B为平面内一点,AB⊥BC于点B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由;(3)如图3,在(2)问的条件下,点E,F在DM上,连接BE,BF,CF,BF平分∠DBC,BE平分∠ABD.若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度数.解:(1)∠A+∠C=90°(2)过点B作BG∥DM,∵BD⊥AM,∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°.又∵AB⊥BC,∴∠CBG+∠ABG=90°.∴∠ABD=∠CBG.∵AM∥CN,BG∥AM,∴CN∥BG.∴∠C=∠CBG.∴∠ABD=∠C.∴∠C+∠BAD=90°.(3)过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG.∴∠ABF=∠GBF.设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC =5∠DBE=5α,∴∠AFC=5α+β.∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5α+β.在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°.①由AB⊥BC,可得β+β+2α=90°.②由①②联立方程组,解得α=9°.∴∠ABE=9°.∴∠EBC=∠ABE+∠ABC=9°+90°=99°.。
北师大版七年级下《第二章相交线与平行线》单元测试含答案.doc

第二章相交线与平行线单元测试卷(含答案)(时间:45分钟总分100分)一、选择题:(四个选项中只有一个是正确的,每题3分,共30分)1.下面各图中∠1和∠2是对顶角的是()2.下列说法正确的是()A.相等的角是对顶角 B.两条直线的位置关系有相交和平行C.两直线平行,同旁内角相等D.同角的补角相等3. 如图,CD⊥AB,垂足为D,则点A到直线CD的距离是()A.线段CA的长 B.线段CD的长 C.线段AD的长 D.线段AB的长4.如图,下列说法正确的是()A.∠1和∠B是同旁内角B.∠1和∠C是内错角C.∠2和∠B是同位角D.∠3和∠C同旁内角5.如图,下列条件中不能判断直线a∥b的是()A.∠1=∠2 B.∠3=∠4 C.∠2=∠3 D.∠5+∠6=180°6.如图,AB∥CD,CE⊥BD,则图中与∠1互余的角有()A.1个B.2个 C.3个 D.4个7.如图,下列判断错误的是()A.∵∠1=∠2,∴AE∥BD B.∵∠3=∠4,∴AB∥CDC.∵∠1=∠2,∴AB∥DE D.∵∠5=∠BDC,∴AE∥BD8.如图,AB∥CD∥EF,BC∥DE,则∠B与∠E的关系是()A.相等 B.互余 C.互补 D.不能确定9.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122° B.151° C.116° D.97°10.如图,直线a∥b,直角三角形ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为()A.15° B.25° C.35° D.55°二.填空题:(将答案填在题目的横线上,每空3分,共18分)11.如图,∠1=∠2,∠4=58°,则∠3=度;12.如图,AB∥CD,EF⊥CD于点F,射线FN交AB于点M,∠NMB=57°,则∠EFN=;13.若一个角的余角是它的3倍,则这个角的度数为;14.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=;15.如图,把矩形(长方形)ABCD沿EF对折,若∠1=40°,则∠AEF=;16.老师在黑板上随便画了两条直线AB,CD相交于点0,还作了∠BOC的平分线OE和CD的垂线OF (如图),若∠DOE被OB分成2:3两部分,则∠AOF等于度;三、解答题:(写出必要的说明过程、解答步骤,共52分)17.尺规作图:已知∠ABC,求作一个角等于∠ABC;(保留作图痕迹)(6分)18.已知:如图,BE∥DF,∠B=∠D;试说明AD∥BC;(8分)19.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF;若∠AOE=40°,求∠BOD的度数;(9分)20.推理填空:(9分)如图,已知DG⊥BC,BC⊥AC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系;解:∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠=90°()∴DG∥,∴∠2=∠,∵∠1=∠2(已知)∴∠1=∠()∴EF∥,∴∠AEF=∠()∵EF⊥AB,∴∠AEF=90° ∴∠ADC=90° 即:CD⊥AB.21.如图,BE平分∠ABD,DE平分∠BDC,DG平分∠CDF,且∠1+∠2=90°,试说明BE∥DG;(9分)22.已知一个角的两边与另一个角的两边分别平行,请结合图①②探索这两个角之间的关系;(11分)(1) 如图①,AB∥CD,BE∥DF,则∠1与∠2的关系是;(2) 如图②,AB∥CD,BE∥DF,则∠1与∠2的关系是;并说明理由;(3) 由此得出结论,如果两个角的两边分别平行,那么这两个角;(4) 若两个角的两边分别平行,且一个角比另一个角的3倍少60°,则这两个角分别为多少度?参考答案:1~10 CDCDB ACBBA11.58;12.33°;13.22.5°;14.40°;15.110°;16.45°或907度; 17.略;(参考课本P56步骤5的图)18.方法一:(利用同旁内角互补,两直线平行)∵ BE∥DF(已知),∴ ∠B +∠BCD =180°(两直线平行,同旁内角互补)∵ ∠B=∠D(已知)∴ ∠D+∠BCD =180°(等量代换)∴ AD ∥BC (同旁内角互补,两直线平行)方法二:(利用三角形内角和等于180°)(略)19. ∵OA⊥OB(已知)∴ ∠AOB=90°(垂直的定义)∵∠AOE=40°(已知)∴ ∠BOE=∠AOB-∠AOE=90°-40°=50°∵OC 平分∠AOF (已知)∴ 000111()(18040)70222AOC =AOF EOF AOE ∠∠=∠-∠=-= ∴ 0000180709020BOD =COD AOC AOB ∠∠-∠-∠=--=∴∠BOD=20°20.按顺序分别填:BCA ,垂直的定义,AC ,ACD ,ACD ,等量代换,CD ,ADC ,两直线平行,同位角相等;21.方法一:通过证明∠E=∠EDG 得到;∵∠1+∠2=90°(已知)∴ △BDE 中,∠E=180°-(∠1+∠2)=90°∵ DE 平分∠BDC,DG 平分∠CDF (已知)∴ ∠EDG=∠EDC+∠CDG=001111+180902222BDC CDF BDF ∠∠=∠=⨯= ∴ ∠E=∠EDG(等量代换)∴ BE∥DG (内错角相等,两直线平行)方法二:通过证明∠1=∠3得到;(略)22.(1)相等;(2)互补;∵ AB∥CD(已知) ∴∠1=∠3(两直线平行,内错角相等)∵ BE∥DF(已知) ∴∠2+∠3=180°(两直线平行,同旁内角互补)∴ ∠1+∠2=180°(等量代换)(3)相等或互补;(4)30°,30°;或60°,120°;解:设一个角为x,则另一个角为3x-60°,①由x=3x-60°得:x=30°,3x-60°=30°②由x+3x-60°=180°得:x=60°,3x-60°=120°∴这两个角分别30°,30°或60°,120°;。
七年级数学(下)《相交线与平行线》复习测试题 含答案

七年级数学(下)《相交线与平行线》复习测试题一、选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠__________=∠__________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________.选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223×70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8 复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12×∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13×90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,∴EF∥CD,∠PAB+∠APF=180°.∴∠PCD+∠CPF=180°.∴∠PAB+∠APC+∠PCD=360°.。
北师大版七年级下册第二章-平行线与相交线同步练习题(含答案)
第二章 平行线与相交线同步练习题2.1两条直线的位置关系一、选择题(共18小题) 1 .下列说法正确的是( )A .两条不相交的线段叫平行线B .过一点有且只有一条直线与已知直线平行 C. 线段与直线不平行就相交D. 与同一条直线相交的两条直线有可能平行2 .如果线段AB 与线段CD 没有交点,则( A .线段AB 与线段CD 一定平行 C .线段AB 与线段CD 可能平行3.如图,在方格纸上给出的线中,平行的有( )4.已知Z1 + Z 2=90° Z3+)B .线段AB 与线段CD 一定不平行 D .以上说法都不正确0=180 °下列说法正确的是()A. Z1是余角C. Z1是的余角 D . Z3和也都是补角5. 下列说法错误的是()题(含答案)6. 下列说法正确的是()A.两个互补的角中必有一个是钝角B . 一个锐角的余角一定小于这个角的补角C. 一个角的补角一定比这个角大D. 一个角的余角一定比这个角小7. 如果Z aZ =90°,而/与/互余,那么/o与/Y勺关系为()A.互余 B .互补C.相等9.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B .有公共顶点并且相等的两个角是对顶角C.如果两个角不相等,那么这两个角不是对顶角D .以上说法都不对A •两个互余的角相加等于90°C.互为补角的两个角不可能都是钝角B .钝角的平分线把钝角分为两个锐角D .两个锐角的和必定是直角或钝角D .不能确定A. 60 ° B . 45 C. 30° D . 90°8—个角的余角是它的补角的11.(2007?济南)已知:如图,AB J CD ,垂足为O,EF 为过点O 的一条直线,则J 与的关系一定成立的是 ( )12. (2003?杭州)如图所示立方体中,过棱 BB 1和平面CD 1垂直的平面有(C . 3个15. 如图,已知 0A J m , OB J m ,所以OA 与OB 重合,其理由是□EmC .互补D .互为对顶角ZPQR 等于 138° SQ J QR , QTZPQ .贝U zSQT 等于(B . 64 °C . 48°D . 24°14. (2005?哈尔滨)过一个钝角的顶点作这个角两边的垂线,若这两条垂线的夹角为 40°则此钝角为( 140° B . 160° C . 120° D . 110°A •相等A . 1个B •过一点只能作一条垂线C. 经过一点只有一条直线垂直于已知直线D. 垂线段最短16. 如图,ZBAC=90 ° AD ZBC,则下列的结论中正确的个数是()①点B到AC的垂线段是线段AB ;②线段AC是点C到AB的垂线段;③线段AD是点D到BC的垂线段;④线段BD是点B到AD的垂线段.C. 3个17. 如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,A.垂线最短B .过一点确定一条直线与已知直线垂盲C. 垂线段最短D. 以上说法都不对18 .已知线段AB=10cm,点A , B至煩线I的距离分别为6cm, 4cm .符合条件的直线I有()C. 3条、填空题(共12小题)19.已知Z1=43°7',则Z1的余角是_____________ ,补角是20.若一个角的余角是30°则这个角的补角为_________________21•两个角互余或互补,与它们的位置 ________________ (填有”或无”)关.22. 一个角的补角是它的余角的4倍,则这个角等于_______________ 度.23•若/o和/匝为余角,并且/a匕/大20° /和/互为补角,贝y Z = _______________________ , Z= _____________ ,那么,/ 丫 / = ______________ .24.如图,已知ZCOE= ZBOD= zAOC=90 °则图中与ZBOC相等的角为_________________ ,与ZBOC互补的角为—___________ ,与ZBOC互余的角为______________ .O,左OC=6O ° OA平分zEOC,那么ZBOD的度数是26. (2006?宁波)如图,直线azb, Z=50° 则/2= _ _ 度.27.如图,点 A ,B ,C 在一条直线上,已知 21=53° Z2=37°贝U CD 与CE 的位置关系是 ____________________28 .老师在黑板上随便画了两条直线 AB , CD 相交于点0,还作/BOC 的平分线0E 和CD 的垂线OF (如图),量得zDOE 被一直线分成2: 3两部分,小颖同学马上就知道 2AOF 等于 __ .30. 如图,已知 BA zBD , CB 2CD , AD=8 , BC=6,则线段 BD长的取值范围是29 .如图,2ADB=90 ° 贝^ AD ____________ B D ;用 匕”连接AB , AC , AD ,结果是三、解答题(共9小题)31. 已知一个角的补角加上 10。
北师大版七年级数学下册第二章《相交线与平行线》单元检测练习及答案
七年级数学下册第二章《相交线与平行线》单元检测练习命题人:家长签名:班级:______________ 姓名:________________ 座位号:________ 总分一. 选择题(每小题3分,共10小题,答案写在表格内,否则答案无效)题号 1 2 3 4 5 6 7 8 9 10 答案1.已知∠α=35°,那么∠α的余角等于( )A.35°B.55°C.65°D.145°2.下面四个图形中,∠1与∠2是对顶角的图形()A.B.C.D.3.下列四幅图中,∠1和∠2是同位角的是()A.⑴⑵B.⑶⑷C.⑴⑵⑶D.⑵⑶⑷4.下列说法:①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.正确的个数有()个.A.1 B.2 C.3 D.45.如图,已知直线a∥b,直线c与a,b相交,∠1=110°,则∠2的度数为( )(第5题图)(第6题图)A.60°B.70°C.80°D.110°6.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°7.如图所示,直线l 1,l 2被直线l 所截形成八个角.由下列哪一个选项中的条件可判定l 1∥l 2 ( )(第7题图) (第8题图) A .∠2+∠4=180° B .∠3+∠8=180° C .∠5+∠6=180° D .∠7+∠8=180° 8.如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是 ( )A .∠1+∠2+∠3=180°B .∠1+∠2+∠3=360°C .∠1+∠3=2∠2D .∠1+∠3=∠29.如图,A B∥CD,∠1=58°,FG 平分∠EFD,则∠FGB 的度数等于( )(第9题图) (第10题图) A .122°B .151°C .116°D .97°10.如图,已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( ) A .50︒B .65︒C .60︒D .70︒二.填空题(每小题4分,共7小题)11.一个角的度数为20°,则它的补角的度数为_____________12.如图,图①是装修工人装修的一部分,图②是一活动角工具(∠1的度数可大可小),利用活动角工具,装修工人能检测出a 与b 是否平行,其中的依据是_______________________________________________________13.如图,已知AB∥CD,∠1=130°,则∠2=_____________14.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=_______(第14题图)(第15题图)15.如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是16.如图,∠1=80°,∠2=100°,∠3=76°,则∠4的度数是___________(第16题图)(第17题图)17.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是_______________________________ (填序号)三.解答题(18-20每题6分,21-23每题8分,24-25每题10分)18.如图,∠1=∠2,DE⊥BC,AB⊥BC,试说明:∠A=∠3.解:因为DE⊥BC,AB⊥BC(已知),所以∠DEC=∠ABC=90°(____________________________________),所以DE∥AB(____________________________________________),所以∠2=________ (____________________________________),∠1=________ (____________________________________).因为∠1=∠2(已知),所以∠A=∠3(等量代换).19.如图,已知AC∥DF,直线AF分别与直线BD、CE相交于点G,H,∠1=∠2.求证:∠C=∠D解:∵∠1=∠2(已知)∠1=∠DGH(),∴∠2=_______(等量代换)∴_______∥_______(同位角相等,两直线平行)∴∠C=_______(两直线平行,同位角相等)又∵AC∥DF()∴∠D=∠ABG ()∴∠C=∠D ()20.已知:如图:∠1=∠2,∠3+∠4= 180°;确定直线a,c的位置关系,并说明理由;解:a c;理由:∵∠1=∠2(),∴ a // ( );∵ ∠3+∠4= 180°(),∴ c // ( );∵ a // , c // ,∴ // ( );21.如图,E 点为DF 上的点,B 为AC 上的点,12∠=∠,C D ∠=∠,求证:DF∥AC.证明:∵ 12∠=∠(已知),∠1=∠3,∠2=∠4( ),∴∠3=∠4(等量代换).∴ // ( );∴∠C=∠ABD( )∵∠C=∠D( )∴∠D=__________( )∴AC∥DF ( )22.已知:如图,DE∥BC,∠ADE=64°,BE 平分∠DBC,求∠DEB 的度数.23.如图,直线EF∥GH,点A 在EF 上,AC 交GH 于点B ,若∠FAC=72°,∠ACD=58°,点D 在GH 上,求∠BDC 的度数.24.按要求作图(不写作法,但要保留作图痕迹)已知点P、Q分别在∠AOB的边OA,OB上(如图所示)①作直线PQ;②过点P作OB的垂线;③过点Q作OA的平行线.25.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点.(1)如图1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为________;(3)如图3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为________.七年级数学下册第二章《相交线与平行线》单元检测练习参考答案一. 选择题(每小题3分,共10小题)二.填空题(每小题4分,共7小题)11. 160°12. 同位角相等,两直线平行. 13. 50°14.60° 15.110°16. 76°17. ①③④⑤三.解答题(共8小题)18. 垂直的定义同位角相等,两直线平行∠3两直线平行,内错角相等∠A两直线平行,同位角相等19. 对顶角相等,∠DGH,BD∥CE ,∠ABG,已知,两直线平行,内错角相等,等量代换,20. 解:a // c;理由:∵∠1=∠2(已知),∴ a // b ( 内错角相等,两直线平行);∵ ∠3+∠4= 180°(已知),∴ c // b ( 同旁内角互补,两直线平行);∵ a // b ,c // b ,∴ a // c ( 平行于同一条直线的两条直线平行);21. 对顶角相等;DB;CE;内错角相等,两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行.22.解:因为DE∥BC,所以∠DBC=∠ADE=64°.因为BE平分∠DBC,所以∠CBE=12∠DBC=12×64°=32°.因为DE∥BC,所以∠DEB=∠CBE=32°.23.解:∵EF∥GH,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.24.解:如图所示:25. (1)解:如图1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2;(2)解:如图2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠3+∠EPD,即∠1=∠2+∠3.故答案为∠1=∠2+∠3;(3)解:如图3,设直线AC与DP交于点F,∵∠PFA是△PC F的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,即∠2=∠1+∠3.故答案为∠2=∠1+∠3.。
(必考题)初中数学七年级数学下册第二单元《相交线与平行线》检测题(答案解析)(3)
一、选择题1.已知3619'COD ∠=︒,则下列说法正确的是( )A .COD ∠等于36.19︒B .COD ∠的补角为14441'︒C .COD ∠的余角为5319'︒D .COD ∠的余角为5341'︒2.下列说法正确的是( )A .锐角的补角一定是钝角B .一个角的补角一定大于这个角C .锐角和钝角一定互补D .两个锐角一定互为余角3.已知∠1=43°27′,则∠1的余角为( )A .136°33′B .136°73′C .46°73′D .46°33′ 4.如图,直线,a b 与直线,c d 相交,已知341100∠=∠∠=︒,,则2∠的度数为( )A .110︒B .100︒C .80︒D .70︒5.如图,某地域的江水经过B 、C 、D 三点处拐弯后,水流的方向与原来相同,若∠ABC =125°,∠BCD =75°,则∠CDE 的度数为( )A .20°B .25°C .35°D .50°6.已知直线12l l //,一块含60°角的直角三角板如图所示放置,125∠=︒,则2∠等于( )A .30°B .35°C .40°D .45°7.已知点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4 cm ,PB =5 cm ,PC =2 cm ,则点P 到直线m 的距离为( )A .4 cmB .5 cmC .小于2 cmD .不大于2 cm 8.在同一平面内,a 、b 、c 是直线,下列说法正确的是( )A .若a ∥b ,b ∥c 则 a ∥cB .若a ⊥b ,b ⊥c ,则a ⊥cC .若a ∥b ,b ⊥c ,则a ∥cD .若a ∥b ,b ∥c ,则a ⊥c9.如图,直线a ,b 被直线c 所截,则下列说法中错误的是( )A .∠1与∠2是邻补角B .∠1与∠3是对顶角C .∠2与∠4是同位角D .∠3与∠4是内错角 10.如图,在△ABC 中,∠ABC =60°,点C 在直线b 上,若直线a ∥b ,∠2=26°,则∠1的度数为( )A .26°B .28°C .34°D .36°11.如图,直线AB ,CD 相交于点O ,下列条件中:①∠AOD =90° ;②∠AOD =∠AOC ;③∠AOC+∠BOC =180°;④∠AOC+∠BOD =180°,能说明AB ⊥CD 的有( )A .1个B .2个C .3个D .4个 12.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数是( )A .35°B .45°C .50°D .65° 二、填空题13.已知n (3n ≥,且n 为整数)条直线中只有两条直线平行,且任何三条直线都不交于..........同一个点.....如图,当3n =时,共有2个交点;当4n =时,共有5个交点;当5n =时,共有9个交点;…依此规律,当图中有n 条直线时,共有交点________个.14.如图,点P 、Q 分别在一组平行直线AB 、CD 上,在两直线间取一点E 使得250BPE DQE ∠+∠=︒,点F 、G 分别在BPE ∠、CQE ∠的角平分线上,且点F 、G 均在平行直线AB 、CD 之间,则PFG FGQ ∠-∠=__________.15.如果一个角的补角是120°,那么这个角的余角的度数是________.16.若3240A '∠=︒,则A ∠的补角的度数为_________.17.如图,直线AB 与CD 相交于点O ,OM AB ⊥,若55DOM ∠=︒,则AOC ∠=______°.18.在同一平面内,直线AB 与直线CD 相交于点O ,40AOC ∠=︒,射线OE CD ⊥,则∠BOE 的度数为________︒.19.将一副直角三角板如图放置,点E 在AC 边上,且ED//BC ,∠C=30°,∠F=∠DEF=45°,则∠AEF=_____度.20.如图,直线AB 、CD 相交于点O ,OE AB ⊥,垂足为点O ,:2:3COE BOD ∠∠=,则AOD ∠=__________.三、解答题21.如图,O 是直线AB 上的一点,90BOD COE ∠=∠=︒.(1)图中与1∠互余的角有______;(2)写出图中相等的角______;(直角除外)(3)3∠的补角是______.22.如图,直线AB 和直线BC 相交于点B ,连接AC ,点,,D E H 分别在AB 、AC 、BC 上,连接DE 、DH ,F 是DH 上一点,已知13180︒∠+∠=(1)求证:CEF EAD ∠=∠;(2)若DH 平分BDE ∠,2α∠=∠,求3∠的度数.(用α表示)23.直线AB 、CD 相交于点O ,OE 平分AOD ∠,90FOC ,50BOF ∠=︒,求AOC ∠与AOE ∠的度数.24.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)∠ABN的度数是_____,∠CBD的度数是_______;(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是多少?25.如图,直线AB,CD相交于点O,OE平分∠BOC,FO⊥CD于点O,若∠BOD∶∠EOB=2∶3,求∠AOF的度数.26.已知:如图,∠BAP+∠APD=180°,∠1=∠2.试说明:∠E=∠F.(请在横线处填理由)解:∵∠BAP+∠APD=180°,∴AB∥CD.(),∴∠BAP=∠APC(),∵∠1=∠2(已知)由等式的性质得:∴∠BAP﹣∠1=∠APC﹣∠2,即,∴AE ∥FP ( ),∴∠E =∠F ( ).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据角的度量,余角和补角的定义计算即可.【详解】解:A 选项,COD ∠约等于36.32︒,故错误;B 选项,COD ∠的补角为14341'︒,故错误;C 选项,COD ∠的余角为5341'︒,故错误;D 选项,COD ∠的余角为5341'︒,故正确;故选:D .【点睛】本题考查了角的度量之间的转换,余角和补角的定义以及角的计算,解题关键是掌握角的度量是60进制,准确理解余角和补角的定义及角的单位转换.2.A解析:A【分析】根据余角和补角的概念判断.【详解】解:A 、锐角的补角一定是钝角,本选项说法正确;B 、一个角的补角一定大于这个角,本选项说法错误,例如:120°的补角是60°,而60°<120°;C 、锐角和钝角一定互补,本选项说法错误,例如20°+120°=140°,20°与120°不互补;D 、两个锐角一定互为余角,本选项说法错误,30°与30°不是互为余角;故选:A .【点睛】此题考查余角和补角的概念,熟记概念是解题的关键.3.D解析:D【分析】根据余角的定义进行计算即可得答案.【详解】∵∠1=43°27′,∴∠1的余角为90°-43°27′=46°33′,故选:D.【点睛】此题考查了余角的定义及角度的计算,如果两个角的和是90°,那么这两个角互余;熟练掌握余角的定义是解题关键.4.B解析:B【分析】根据平行线的性质定理和判定定理即可解答,由∠ 3=∠4可知a与b平行,从而推出∠2=∠1,即可得解;【详解】∵∠3=∠4,∴ a与b平行,∴∠1=∠2∴∠2=∠1=100°,故选:B.【点睛】本题考查了平行线的性质与判定,解决问题的关键是准确掌握平行线的判定与性质,并熟练运用;5.A解析:A【分析】由题意可得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,再由平行线的性质,即可得出∠CDE的度数.【详解】解:由题意得,AB∥DE,如图,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=180°-125°=55°,∴∠DCF=75°-55°=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.6.B解析:B【分析】过C作CM∥直线l1,求出CM∥直线l1∥直线l2,根据平行线的性质得出∠1=∠MCB=25°,∠2=∠ACM,即可求出答案.【详解】过C作CM∥直线l1,∵直线l1∥l2,∴CM∥直线l1∥直线l2,∵∠ACB=60°,∠1=25°,∴∠1=∠MCB=25°,∴∠2=∠ACM=∠ACB-∠MCB=60°-25°=35°,故选:B.【点睛】本题考查了平行线的性质,能正确作出辅助线是解此题的关键.7.D解析:D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.8.A解析:A【分析】根据线段垂直平分线上的定义,平行公理以及平行线的性质对各选项分析判断后利用排除【详解】解:A.在同一平面内,若a∥b,b∥c,则a∥c正确,故本选项正确;B.在同一平面内,若a⊥b,b⊥c,则a∥c,故本选项错误;C.在同一平面内,若a∥b,b⊥c,则a⊥c,故本选项错误;D.在同一平面内,若a∥b,b∥c,则a∥c,故本选项错误.故选:A.9.D解析:D【详解】解:∠3与∠4是同旁内角.故选:D10.C解析:C【分析】如图,过点B作BE∥a.想办法证明∠1+∠2=60°即可解决问题.【详解】如图,过点B作BE∥a.∵a∥b,a∥BE,∴b∥BE,∴∠1=∠ABE,∠2=∠CBE,∵∠ABC=∠ABE+∠CBE=60°,∴∠1+∠2=60°,∵∠2=26°,∴∠1=34°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是学会添加常用辅助线,构造平行线解决问题.11.C解析:C【分析】根据垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直进行判定即可.解:①∠AOD=90°,可以得出AB⊥CD;②∵∠AOD=∠AOC,∠AOC+∠AOD=180°,∴∠AOD=90°,∴AB⊥CD:③∠AOC+∠BOC=180°,不能得到AB⊥CD;④∵∠AOC+∠BOD=180°,∠AOC=∠BOD,∴∠AOC=90°,∴AB⊥CD;故能说明AB⊥CD的有①②④共3个.故选:C.【点睛】此题主要考查了垂直定义,关键是通过条件计算出其中一个角为90°.12.C解析:C【分析】根据两条直线平行,同位角相等得∠1的同位角是40°,再根据平角的定义和垂直定义即可求得∠2.【详解】解:∵a∥b,∴BC与b所夹锐角等于∠1=40°,又AB⊥BC,∴∠ABC=90°∴∠2=180°-90°-40°=50°故选:C.【点睛】本题考查了平行线的性质以及平角的概念,熟练应用两直线平行同位角相等是解题关键.二、填空题13.【分析】首先通过观察图形找到交点个数与直线条数之间的规律然后列出n条直线时交点个数关于n的代数式即可【详解】∵当n=3时每增加一条直线交点的个数就增加n−1即:当n=3时共有2个交点;当n=4时共有解析:222n n--【分析】首先通过观察图形,找到交点个数与直线条数之间的规律,然后列出n 条直线时,交点个数关于n 的代数式即可.【详解】∵当n=3时,每增加一条直线,交点的个数就增加n−1.即:当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;…,∴n 条直线共有交点2+3+4+…+(n−1)=222n n -- 个. 故答案为:222n n --. 【点睛】本题考查了相交线.解题的关键是,仔细观察图形,发现规律.14.35°【分析】过点F 作过点G 作利用平行线的性质和角平分线的定义即可求解【详解】过点F 作过点G 作∵平分平分设∵∴∴∵∴∴∴故【点睛】本题考查平行线的性质根据题意作出平行线是解题的关键解析:35°【分析】过点F 作//FK AB ,过点G 作//GH CD ,利用平行线的性质和角平分线的定义即可求解.【详解】过点F 作//FK AB ,过点G 作//GH CD ,∵PF 平分BPE ∠,QG 平分CQE ∠,设BPF EPF x ∠==,CQG EQG y ∠=∠=,∵250BPE DQE ∠+∠=︒∴21802250BPE DQE x y ∠+∠=+︒-=︒,∴35x y -=︒,∵//,//,//FK AB GH CD AB CD ,∴//////AB FK GH CD ,∴PFK BPF x ∠=∠=,HGQ CQG y ∠=∠=,KFG HGQ =∠,∴()PFG FGQ PFK KFG HGF HGQ ∠-∠=∠+∠-∠+∠35x KFG HGF y x y =+∠-∠-=-=︒故35PFG FGQ ∠-∠=︒.【点睛】本题考查平行线的性质,根据题意作出平行线是解题的关键.15.30°【分析】根据余角和补角的定义即可解答【详解】解:∵一个角的补角是120°∴这个角为:180°−120°=60°∴这个角的余角为:90°−60°=30°故答案为:30°【点睛】本题考查了余角和补解析:30°【分析】根据余角和补角的定义,即可解答.【详解】解:∵一个角的补角是120°,∴这个角为:180°−120°=60°,∴这个角的余角为:90°−60°=30°,故答案为:30°.【点睛】本题考查了余角和补角的定义,解决本题的关键是熟记余角和补角的定义.16.【分析】根据互补两角之和为180°解答即可【详解】解:∵该角度数为32°40′∴它的补角的度数=180°-32°40′=147°20′故答案为:【点睛】本题考查了补角的知识解答本题的关键在于熟练掌握解析:14720'︒【分析】根据互补两角之和为180°,解答即可.【详解】解:∵该角度数为32°40′,∴它的补角的度数=180°-32°40′=147°20′.故答案为:14720'︒.【点睛】本题考查了补角的知识,解答本题的关键在于熟练掌握互补两角之和为180°.17.35°【分析】先根据垂直的定义和角的和差求出∠BOD 的度数再根据对顶角相等的性质解答即可【详解】解:∵∴∠BOM=90°∵∴∠BOD=90°-55°=35°∴∠AOC=∠BOD=35°故答案为:35解析:35°【分析】先根据垂直的定义和角的和差求出∠BOD 的度数,再根据对顶角相等的性质解答即可.【详解】解:∵OM AB ⊥,∴∠BOM =90°,∵55DOM ∠=︒,∴∠BOD =90°-55°=35°,∴∠AOC =∠BOD =35°,故答案为:35.【点睛】本题考查了垂直的定义、对顶角的性质和角的和差计算,属于基础题目,熟练掌握基本知识是解题的关键.18.50°或130°【分析】先根据垂直的定义求出∠DOE=90°然后根据对顶角相等求出∠DOB 的度数再根据角的和差求出∠BOE 的度数【详解】解:如图1:∵OE ⊥CD ∴∠DOE=90°∵∴∠DOB=°∴∠解析:50°或130°【分析】先根据垂直的定义求出∠DOE=90°,然后根据对顶角相等求出∠DOB 的度数,再根据角的和差求出∠BOE 的度数.【详解】解:如图1:∵OE ⊥CD ,∴∠DOE=90°,∵40AOC ∠=︒,∴∠DOB=40AOC ∠=︒°,∴∠BOE=90°-40°=50°,如图2:∵OE ⊥CD ,∴∠DOE =90°,∵40AOC ∠=︒,∴∠DOB=40AOC ∠=︒°,∴∠BOE=90°+40°=130°,故答案为:50°或130°.【点睛】本题考查了垂线的定义,对顶角相等,要注意领会由垂直得直角这一要点.19.165【分析】根据两直线平行内错角相等求出∠DEC然后由角的和差关系求得∠CEF最后由邻补角的性质求得结果【详解】解:∵ED∥BC∠C=30°∴∠DEC=∠C=30°∵∠DEF=45°∴∠CEF=∠解析:165【分析】根据两直线平行,内错角相等求出∠DEC,然后由角的和差关系求得∠CEF,最后由邻补角的性质求得结果.【详解】解:∵ED∥BC,∠C=30°∴∠DEC=∠C=30°,∵∠DEF=45°,∴∠CEF=∠DEF-∠DEC=45°-30°=15°.∴∠AEF=180°-∠CEF=165°,故答案为:165.【点睛】本题考查了角的和差,平行线的性质,邻补角的性质,熟记性质是解题的关键.20.【分析】利用垂直的定义结合∠COE:∠BOD=2:3可求∠BOD再根据邻补角的定义得出答案【详解】解:∵OE⊥AB∴∠BOE=90°∴∠COE+∠BOD=90°∵∠COE:∠BOD=2:3∴∠BOD解析:126【分析】利用垂直的定义结合∠COE:∠BOD=2:3可求∠BOD,再根据邻补角的定义得出答案.【详解】解:∵OE⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠COE:∠BOD=2:3,∴∠BOD=54°,∴∠AOD=126°.故答案为:126°【点睛】此题主要考查了垂线以及邻补角等知识,正确得出∠BOD的度数是解题关键.三、解答题21.(1)2∠,4∠;(2)13∠=∠,24∠∠=;(3)AOE ∠【分析】(1)由90BOD COE ∠=∠=︒推出∠1+∠2=∠1+∠4=90︒,即可得到答案;(2)由∠1+∠2=∠2+∠3=∠1+∠4=90︒,推出∠1=∠3,∠2=∠4;(3)由∠1+∠AOE=180︒,∠1=∠3,推出∠3+∠AOE=180︒得到答案.【详解】(1)∵90BOD COE ∠=∠=︒,∴∠1+∠2=∠1+∠4=90︒,故答案为:2∠,4∠;(2)∵∠1+∠2=∠2+∠3=∠1+∠4=90︒,∴∠1=∠3,∠2=∠4,故答案为:13∠=∠,24∠∠=;(3)∵∠1+∠AOE=180︒,∠1=∠3,∴∠3+∠AOE=180︒,故答案为:AOE ∠.【点睛】此题考查余角的定义,补角的定义,同角的余角相等,同角的补角相等,熟记定义是解题的关键.22.(1)见解析(2)90°+12α 【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】解:(1)∵∠3+∠DFE =180°,∠1+∠3=180°∴∠DFE =∠1,∴AB ∥EF ,∴∠CEF =∠EAD ;(2)∵AB ∥EF ,∴∠2+∠BDE =180°又∵∠2=α∴∠BDE =180°−α又∵DH 平分∠BDE∴∠1=12∠BDE =12(180°−α) ∴∠3=180°−12(180°−α)=90°+12α. 【点睛】本题考查了角平分线定义,平行线的性质和判定等知识点,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.23.40AOC ∠=︒;70AOE ∠=︒【分析】先利用平角定义与90FOC求出90FOD ∠=︒,再利用互余关系求=40BOD ∠︒,利用对顶角性质求40AOC ∠=︒,利用邻补角定义,求出140AOD ∠=︒,利用角平分线定义便可求出AOE ∠.【详解】 解:90FOC ∠=︒,∴1801809090FOD FOC ∠=︒-∠=︒-︒=︒, ∵50BOF ∠=︒,90-50=40BOD FOD BOF ∴∠=∠-∠=︒︒︒,AOC ∠与BOD ∠是对顶角,40AOC BOD ∴∠=∠=︒;COD ∠是一个平角,∴∠AOC+∠AOD=180º,∵40AOC ∠=︒,140AOD ∴∠=︒, OE 平分AOD ∠, 12AOE AOD ∴∠=∠, 70AOE ∴∠=︒.【点睛】本题考查的知识点是对顶角、邻补角、两角互余、角平分线的意义,解题关键是熟练利用角平分线定理.24.(1)116°;58°;(2)不变,∠APB=2∠ADB ,理由见解析;(3)29°【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出∠ABN ;由角平分线的定义可以证明∠CBD =12∠ABN ,即可求出结果; (2)证∠APB =∠PBN ,∠PBN =2∠DBN ,即可推出结论;(3)可先证明∠ABC =∠DBN ,由(1)∠ABN =116°,可推出∠CBD =58°,所以∠ABC+∠DBN =58°,则可求出∠ABC 的度数.【详解】(1)∵AM//BN ,∠A =64°,∴∠ABN =180°﹣∠A =116°,∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠CBP ,∠PBN =2∠DBP ,∴2∠CBP+2∠DBP =116°,∴∠CBD =∠CBP+∠DBP =58°;故答案为:116°;58°;(2)不变,∠APB=2∠ADB ,∵AM//BN ,∴∠APB =∠PBN ,∠ADB =∠DBN ,∵BD 平分∠PBN ,∴∠PBN =2∠DBN ,∴∠APB=2∠ADB ;(3)∵AM//BN ,∴∠ACB =∠CBN ,当∠ACB =∠ABD 时,则有∠CBN =∠ABD ,∴∠ABC+∠CBD =∠CBD+∠DBN∴∠ABC =∠DBN ,由(1)∠ABN =116°,∴∠CBD =58°,∴∠ABC+∠DBN =58°,∴∠ABC =29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.25.45︒.【分析】设2BOD x ∠=,从而可得3EOB x ∠=,先根据角平分线的定义3EOC EOB x ∠=∠=,再根据平角的定义可得求出x 的值,然后根据垂直的定义可得90DOF ∠=︒,最后根据平角的定义即可得.【详解】设2BOD x ∠=,则3EOB x ∠=,∵OE 平分BOC ∠,∴3EOC EOB x ∠=∠=,180BOD EOB EOC ∠+∠+∠=︒,233180x x x ∴++=︒,解得22.5x =︒,45BOD ∴∠=︒,FO CD ⊥,90DOF ∴∠=︒,又180BOD DOF AOF ∠+∠+∠=︒,4590180AOF ∴︒+︒+∠=︒,解得45AOF ∠=︒.【点睛】本题考查了角平分线的定义、平角的定义、垂直的定义等知识点,熟练掌握并理解各定义是解题关键.26.同旁内角互补,两直线平行;两直线平行,内错角相等;∠EAP =∠FPA ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定与性质即可说明理由.【详解】解:∵∠BAP+∠APD=180°,∵∠APD+∠APC=180°,∴∠BAP=∠APC (同角的补角相等),∵∠1=∠2(已知),由等式的性质得:∴∠BAP-∠1=∠APC-∠2,即∠EAP=∠FPA ,∴AE ∥FP (内错角相等,两直线平行),∴∠E=∠F (两直线平行,内错角相等).故答案为:同角的补角相等;∠EAP=∠FPA ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.。
2021-2022学年北师大版七年级数学下册《第2章相交线与平行线》单元综合测试题(附答案)
2021-2022学年北师大版七年级数学下册《第2章相交线与平行线》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.如图,∠1和∠2是同位角的是()A.B.C.D.2.下列作图语言叙述规范的是()A.过点P作线段AB的中垂线B.在线段AB的延长线上取一点C,使AB=ACC.过点P作线段AB的垂线D.过直线a,b外一点P作直线MN,使MN∥a∥b3.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥OE,且∠AOC:∠COF=2:3,则∠DOF的度数为()A.105°B.112.5°C.120°D.135°4.如图,BD⊥AC于点D,AE⊥BC于点E,CF⊥AB于点F,AE、BD、CF交于点O,则图中能表示点A到直线OC距离的是线段()的长.A.AO B.AE C.AC D.AF5.如图,AB∥CD,∠2=70°,PE平分∠BEF,则∠CPE的度数为()A.70°B.110°C.145°D.160°6.如图,下列条件中,不能判定AD∥BC的是()A.∠1=∠2B.∠BAD+∠ADC=180°C.∠3=∠4D.∠ADC+∠DCB=180°7.如图,AB∥CD,BF,DF分别平分∠ABE和∠CDE,BF∥DE,∠F与∠ABE互补,则∠F的度数为()A.30°B.35°C.36°D.45°8.已知:如图AB∥EF,BC⊥CD,则∠α,∠β,∠γ之间的关系是()A.∠β=∠α+∠γB.∠α+∠β+∠γ=180°C.∠α+∠β﹣∠γ=90°D.∠β+∠γ﹣∠α=90°二.填空题(共8小题,满分40分)9.如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠7;②∠3=∠6;③∠1=∠8;④∠5+∠8=180°,其中能判断a∥b的条件是:.10.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=30°,则∠2的大小为度.11.如图AB∥CD,∠B=72°,EF平分∠BEC,EG⊥EF,则∠DEG=°.12.如图,已知AE∥BD,∠1=3∠2,∠2=26°,求∠C=.13.如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为.14.如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=时,AB所在直线与CD所在直线互相垂直.15.已知∠A的两边与∠B的两边分别垂直,且∠A比∠B的3倍少40°,则∠A=.16.如图,已知∠ABD=∠PCE,AB∥CD,∠AEC的角平分线交直线CD于点H,∠AFD =86°,∠H=22°,∠PCE=°.三.解答题(共6小题,满分40分)17.如图,直线CD,AB相交于点O,∠BOD和∠AON互余,∠AON=∠COM.(1)求∠MOB的度数;(2)若∠COM=∠BOC,求∠BOD的度数.18.如图,已知∠A=∠EDF,∠C=∠F.求证:BC∥EF.19.“村村通”是国家的一个系统工程,其中包涵公路、电力、生活和饮用水、电话网、有线电视网、互联网等等,现计划在A,B,C周边修公路,公路从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村,那么要想从C村修路CE,沿什么方向修,可以保证CE与AB平行?20.如图,F是BC上一点,FG⊥AC于点G,H是AB上一点,HE⊥AC于点E,∠1=∠2,求证:DE∥BC.21.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证:①BD∥CE②DF∥AC.22.已知:AB∥CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.①若∠4=36°,求∠2的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图(2),EG平分∠MEF,EH平分∠AEM,试探究∠GEH与∠EFD的数量关系,并说明理由.参考答案一.选择题(共8小题,满分40分)1.解:根据同位角的定义,观察上图可知,A、∠1和∠2是同位角,故此选项符合题意;B、∠1和∠2不是同位角,故此选项不符合题意;C、∠1和∠2不是同位角,故此选项不符合题意;D、∠1和∠2不是同位角,故此选项不合题意;故选:A.2.解:A、过点P作线段AB的中垂线,叙述错误,故此选项错误;B、在线段AB的延长线上取一点C,使AB=AC,叙述错误,应为BC=AB,故此选项错误;C、过点P作线段AB的垂线,叙述正确;D、过直线a外一点P作直线MN,使MN∥a,不能同时作平行于两条直线的直线;故选:C.3.解:设∠AOC=2α,∠COF=3α,∵∠AOC=∠BOD=2α,∵OE平分∠BOD,∴∠DOE=α,∵OF⊥OE,∴∠EOF=90°,∴∠DOE+∠EOF+∠COF=180°,∴α+90°+3α=180°,∴α=22.5°,∴∠DOF=∠EOF+∠DOE=90°+22.5°=112.5,故选:B.4.解:点A到直线OC的距离的线段长是AF,故选:D.5.解:∵AB∥CD,∠2=70°,∴∠BEF=∠2=70°,∵PE平分∠BEF,∴∠BEP=∠BEF=35°,∵AB∥CD,∴∠CPE=180°﹣∠BEP=145°;故选:C.6.解:A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故选项不符合题意;B、∵∠BAD+∠ADC=180°,∴AB∥DC(同旁内角互补,两直线平行),故选项符合题意;C、∵∠3=∠4,∴AD∥BC(内错角相等,两直线平行),故选项不符合题意;D、∵∠ADC+∠DCB=180°,∴AD∥BC,(同旁内角互补,两直线平行),故选项不符合题意.故选:B.7.解:∵BF,DF分别平分∠ABE和∠CDE,∴∠1=∠2,∠FBA=∠FBE,∵AB∥CD,∴∠FBA=∠3,∵BF∥DE,∠F与∠ABE互补,∴∠3=∠EDC=2∠2,∠F=∠1,∠F+∠ABE=180°,设∠2=x,则∠3=2x,∠ABE=4x,∴x+4x=180°,解得,x=36°,即∠F的度数为36°,故选:C.8.解:如图,分别过C、D作AB的平行线CM和DN,∵AB∥EF,∴AB∥CM∥DN∥EF,∴∠α=∠BCM,∠MCD=∠NDC,∠NDE=∠γ,∴∠α+∠β=∠BCM+∠CDN+∠NDE=∠BCM+∠MCD+∠γ,又BC⊥CD,∴∠BCD=90°,∴∠α+∠β=90°+∠γ,即∠α+∠β﹣∠γ=90°,故选:C.二.填空题(共8小题,满分40分)9.解:①∠1=∠7,对顶角相等不能判定a∥b,故①不符合题意;②∠3=∠6,可根据内错角相等,两直线平行得到a∥b,故②符合题意;③∠1=∠8,则∠1=∠2,可根据同位角相等,两直线平行得到a∥b,故③符合题意;④∠5+∠8=180°,可得∠3+∠2=180°,可根据同旁内角互补,两直线平行得到a∥b,故④符合题意;故答案为:②③④.10.解:如图,延长F A,由折叠的性质,可得∠3=∠1=30°,∴∠4=180°﹣30°﹣30°=120°,∵CD∥BE,BE∥AF,∴∠ACD=∠4=120°,又∵AC∥BD,∴∠2=180°﹣∠ACD=180°﹣120°=60°.故答案为:60.11.解:∵AB∥CD,∠B=72°,∴∠BEC=108°,∵EF平分∠BEC,∴∠BEF=∠CEF=54°,∵∠GEF=90°,∴∠GED=90°﹣∠FEC=36°.故答案为:36.12.解:∵∠1=3∠2,∠2=26°,∴∠1=78°,∵AE∥BD,∴∠3=∠1=78°,∴∠C=78°﹣26°=52°.故答案为:52°.13.解:∵∠1=70°,∠1与∠3是对顶角,∴∠3=∠1=70°.∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣70°﹣90°=20°.故答案为:20°.14.解:当AB⊥直线CD时,AB,BO分别交DC的延长线于M,N点,如图,∴∠BMN=90°,∵∠B=45°,∴∠CNO=∠BNM=45°,∵∠DCO=60°,∠DCO=∠CNO+∠BOC,∴∠BOC=60°﹣45°=15°,∵∠AOB=90°,∴∠AOC=∠AOB+∠BOC=90°+15°=105°;当AB⊥CD时,AB,AO分别交CD于点E,F,∴∠AEC=90°,∵∠A=45°,∴∠CFO=∠AFE=90°﹣45°=45°,∵∠CFO=∠AOD+∠D,∠D=30°,∴∠AOD=45°﹣30°=15°,∵∠COD=90°,∴∠AOC=∠COD﹣∠AOD=90°﹣15°=75°.综上,∠AOC的度数为105°或75°.15.解:设∠B是x,根据题意,得①两个角相等时,如图1:∠B=∠A=x,x=3x﹣40,解得,x=20°,故∠A=20°,②两个角互补时,如图2:x+3x﹣40=180,所以x=55°,3×55°﹣40°=125°综上所述:∠A的度数为:20°或125°.故答案为:125°或20°16.解:∵AB∥CD,∴∠ABD=∠PDB,∵∠ABD=∠PCE,∴∠PDB=∠PCE,∴BD∥CE,∴∠CEG=∠DGH,∵EH平分∠AEC,∴∠CEH=∠AEH,∵∠DGH=∠EGF,∴∠EGF=∠GEF,∵∠AFD=∠AEG+∠EGF=2∠EGF=86°,∴∠EGF=43°,∴∠DGH=43°,∴∠PCE=∠PDG=∠H+∠DGH=65°,故答案为:65.三.解答题(共6小题,满分40分)17.解:(1)∵∠BOD和∠AON互余,∴∠BOD+∠AON=90°,∵∠AON=∠COM,∴∠BOD+∠COM=90°,∴∠MOB=180°﹣(∠BOD+∠COM)=90°;(2)设∠COM=x,则∠BOC=5x,∴∠BOM=4x,∵∠BOM=90°,∴4x=90°,解得x=22.5°,∴∠BOD=90°﹣22.5°=67.5°.18.证明:∵∠A=∠EDF(已知),∴AC∥DF(同位角相等,两直线平行),∴∠C=∠CGF(两直线平行,内错角相等).又∵∠C=∠F(已知),∴∠CGF=∠F(等量代换),∴BC∥EF(内错角相等,两直线平行).19.解:使CE沿北偏东65°方向(或使CE与CB垂直),即可保证CE与AB平行.理由如下:如图,由题意得,AD∥BF,∴∠ABF=180°﹣65°=115°,∴∠ABC=115°﹣25°=90°,要使CE∥AB,则∠ECB=∠CBD=90°,∴CE⊥CB,则CE应沿北偏东65°方向修.20.证明:∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°(垂线的定义),∴FG∥HE(同位角相等,两直线平行),∴∠3=∠4(两直线平行,内错角相等),又∵∠1=∠2,∴∠1+∠3=∠2+∠4,即∠DEF=∠EFC,∴DE∥BC(内错角相等,两直线平行).21.证明:∵∠1=∠4,∠1=∠2,∴∠2=∠4,∴BD∥CE,∴∠C=∠DBA,∵∠C=∠D,∴∠D=∠DBA,∴AC∥DF.22.解:(1)①∵AB∥CD,∴∠1=∠3,∵∠1=∠2,∠3=∠4,∴∠2=∠4=36°;②位置关系是:EM∥FN.理由:由①知,∠1=∠3=∠2=∠4,∴∠MEF=∠EFN=180°﹣2∠1,∴∠MEF=∠EFN∴EM∥FN(内错角相等,两直线平行)(2)关系是:∠EFD=2∠GEH.理由:∵EG平分∠MEF,∴∠MEG=∠GEH+∠HEF①∵EH平分∠AEM,∴∠MEG+∠GEH=∠AEF+∠HEF②由①②可得:∴∠AEF=2∠GEH,∵AB∥CD,∴∠AEF=∠EFD,∴∠EFD=2∠GEH.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章《平行线与相交线》综合检测题(3)
一、选择题(每小题2分,共20分) 1、下列说法中,正确的是( )
A 、锐角小于它的补角
B 、锐角大于它的补角
C 、钝角小于它的补角
D 、锐角小于的余角 2、如图1,若∠AOB =180º,∠1是锐角,则∠1的余角是( )
A 、21∠2-∠1
B 、21∠2-23∠1
C 、2
1(∠2-∠1) D 、31
(∠2+∠1)
3、如图2,是同位角位置关系的是( )
A 、∠3和∠4
B 、∠1和∠4
C 、∠2和∠4
D 、∠1和∠2 4、若两个角的一边在同一直线上,另一边互相平行,则这两个角( )
A 、相等
B 、互补
C 、相等或互补
D 、都是直角 5、若一个角等于它余角的2倍,则该角是它补角的( ) A 、
21 B 、31 C 、51
D 、6
1
6、如图3,四条直线相交,∠1和∠2互余,∠3是∠1的余角的补角,且∠3=116º,则∠4等于( ) A 、116º B 、126º C 、164º D 、154º
7、同一平面内有三条直线a 、b 、c ,满足a ∥b ,b 与c 垂直,那么a 与c 的位置关系是( ) A 、垂直 B 、平行 C 、相交但不垂直 D 、不能确定
图1
图2
图3
图4
8、如图4,AB ∥EF ∥DC ,EG ∥DB ,则图中与∠1相等的角(∠1除外)有( )
A 、6个
B 、5个
C 、4个
D 、3个 9、如图5,一只小猴顺着一根斜放的竹竿往上爬,眼睛一直盯着挂在上端的帽子。
在小猴爬行的过程中, 视线与水平方向所成角( )
A 、逐渐变大
B 、逐渐变小
C 、没有变化
D 、无法确定 10、下列判断正确的是( )
A 、相等的角是对顶角
B 、互为补角的两个角一定是一个锐角和一个钝角
C 、内错角相等
D 、等角的补角相等 二、填空题:(每小题2分,共20分)
11、一个角的补角与这个角的余角的度数比是3∶1,则这个角是 度。
12、如图6,点O 是直线AB 上一点,∠AOD =120º,∠AOC =90º,OE 平分∠BOD ,则图中互为补角的
角有 对。
图5
图6
图7
图8
13、如图7,将一张长方形纸片的一角斜折过去,顶点A 落在A ′处,BC 为折痕,再将BE 翻折过去与
BA ′重合,BD 为折痕,那么两条折痕的夹角∠CBD = 度。
14、如图8,与∠1成同位角的角有 ;与∠1成内错角的是 ;与∠1成
同旁内角的角是 。
15、如图9,∠1=∠2,∠DAB =85º,则∠B = 度。
16、如图10,已知∠1+∠2=180º,则图中与∠1相等的角共有 个。
17、如图11,直线a 、b 都与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠1=∠8;
④∠5+∠8=180º,其中能判断a ∥b 的条件是: (把你认为正确的序号填在空格内) 18、若要把一个平面恰好分成5个部分,需要 条直线,这些直线的位置关系是 。
图9
图10
图11
图12
19、如图12,已知直线AB 和CD 相交于O ,∠AOE =∠EOC ,且∠AOE =28º,则∠BOD=o
_______,
∠DOE=o
_________。
20、一个角的补角与它余角的2倍的差是平角的
3
1
,这个角的度数是 。
三、作图题(按要求作图,不写作法,但要保留作图痕迹)(6分) 21、已知点P 、Q 分别在∠AOB 的边OA ,OB 上(如图13)。
① 作直线PQ , ② 过点P 作OB 的垂线, ③ 过点Q 作OA 的平行线。
四、完成下列推理过程,并说明理由。
22、(6分)如图14,补全下面的思维过程,并说明这一步的理由。
·
· O
A
B
P
Q
图13
(1)∠B =∠1 (2)BC ∥EF ↓ ↓
∥ ∠2 =
理由: 。
理由: 。
23、(4分)已知:如图15,AB ⊥BC 于B ,CD ⊥BC 于C ,∠1=∠2。
求证:BE ∥CF 。
证明:∵ AB ⊥BC ,CD ⊥BC (已知)
∴ ∠1+∠3=90º,∠2+∠4=90º( ) ∴ ∠1与∠3互余,∠2与∠4互余
又∵ ∠1=∠2( )
∵ ∠3=∠4( ) ∴ BE ∥CF ( )
24、(9分)已知:如图16,AB ∥CD ,∠1=∠2,求证:∠B =∠D 。
证明:∵ ∠1=∠2(已知)
∴ ∥ ( ) ∴ ∠BAD +∠B = ( ) 又∵ AB ∥CD (已知)
∴ + =180º( ) ∴ ∠B =∠D ( ) 五、计算与说理。
25、(6分)已知:如图20,∠ABC =50º,∠ACB =60º,∠ABC 、
∠ACB 的平分线交于点O ,过点O 作EF ∥BC 交AB 于E ,交 AC 于F 。
求∠BOC 的度数。
26、(6分)如图21,AB ∥DE ,∠1=∠ACB ,∠CAB =
2
1
∠BAD , 试说明AD ∥BC 。
27、(6分)已知线段AB ,延长AB 到C ,使BC ∶AB=1∶3,D 为AC 中点,若DC=2cm ,求AB 的长。
图15
图16
28、(5分)如图12,已知AB ∥A′B′,BC ∥B′C′,那么∠B 与∠B′有何关系?
为什么?
29、(6分)如图13,a ∥b ,∠1=122°,∠3=50°,求∠2和∠4的度数。
30、(6分)已知:如图14,BE ∥DF ,∠B=∠D 。
求证:AD ∥BC 。
31、(6分)如图15,已知AB ∥CD ,∠1 = ∠2,求证:∠E =∠F 。
32、(6分)如图16,ABCD 是一块釉面砖,居室装修时需要一块梯形APCD 的釉面砖,且使∠APC =120º。
请
在长方形AB 边上找一点P ,使∠APC =120º。
然后把多余部分割下来,试着叙述怎样选取P 点及其选取P 点的理由。
A
B
C
D
图16
33、(8分)如图17,已知AB ∥CD ,∠ABE 和∠CDE 的平分线相交于F ,
∠E = 140º,求∠BFD 的度数。
A
B
C
'A
'B
'C
A
B
C D
E F
图14
A
B
C
D
E
F
图15
图17
A B E
F C D
图15 1
2。