广西省梧州市2014届高三下学期4月联考数学(文)试题扫描版
2014年高考文科数学全国卷1(含详细答案)

数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N = ( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-2.若tan 0α>,则( )A . sin 0α>B .cos 0α>C . sin20α>D .cos20α> 3.设1i 1iz =++,则|z |=( )A .12B .22 C .32D .24.已知双曲线2221(0)3x y a a -=>的离心率为2,则a = ( )A .2B .62C .52D .1 5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()f x ()g x 是偶函数B .|()|f x ()g x 是奇函数C .()f x |()|g x 是奇函数D .|()()|f x g x 是奇函数6.设D ,E ,F 分别为ABC △的三边BC ,CA ,AB 的中点,则EB FC += ( )A .ADB .12AD C .BCD .12BC 7.在函数①cos |2|y x =,②|cos |y x =,③πcos(2)6y x =+,④πtan(2)4y x =-中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱 9.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M =( )A .203B .72C .165D .15810.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x = ( )A .1B .2C .4D .811.设x ,y 满足约束条件,1,x y a x y +⎧⎨--⎩≥≤且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 .15.设函数113e ,1,(),1,x x f x x x -⎧⎪=⎨⎪⎩<≥则使得()2f x ≤成立的x 的取值范围是 .16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=,C 点的仰角45CAB ∠=以及75MAC ∠=;从C 点测得60MCA ∠=.已知山高100BC = m ,则山高MN = m .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}2nn a 的前n 项和.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结(Ⅰ)在答题卡上作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(Ⅰ)证明:1B C AB ⊥;(Ⅱ)若1AC AB ⊥,160CBB ∠=,1BC =,求三棱柱111ABC A B C -的高.20.(本小题满分12分)已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;(Ⅱ)当||||OP OM =时,求l 的方程及POM △的面积.21.(本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE △为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C上任意一点P 作与l 夹角为30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4—5:不等式选讲若0a >,0b >,且11a b+=(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.3 / 132014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据集合的运算法则可得:{|11}MN x x =-<<,即选B .【提示】集合的运算用数轴或者Venn 图可直接计算。
广西来宾、玉林、梧州2021届高三数学下学期4月模拟联考试题 理(扫描版)

附:什么样的考试心态最好
大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
想要不出现太强的考试焦虑,那么最好的办法是,形成自己的掌控感。
1、首先,认真研究考试办法。
这一点对知识水平比较高的考生非常重要。
随着重复学习的次数增加,我们对知识的兴奋度会逐渐下降。
最后时刻,再去重复学习,对于很多学生已经意义不大,远不如多花些力气,来思考考试。
很多老师也会讲解考试的办法。
但是,老师给你的办法,不能很好地提高你对考试的掌控感,你要找到自己的一套明确的考试办法,才能最有效地提高你的掌控感。
有了这种掌控感,你不会再觉得,在如此关键性的考试面前,你是一只被检验、被考察甚至被宰割的绵羊。
2、其次,试着从考官的角度思考问题。
考官,是掌控考试的;考生,是被考试考验的。
如果你只把自己当成一个考生,你难免会惶惶不安,因为你觉得自己完全是个被摆布者。
如果从考官的角度去看考试,你就成了一名主动的参与者。
具体的做法就是,面对那些知识点,你想像你是一名考官,并考虑,你该用什么形式来考这个知识点。
高考前两个半月,我用这个办法梳理了一下所有课程,最后起到了匪夷所思的效果,令我在短短两个半月,从全班第19名升到了全班第一名。
当然,这有一个前提——考试范围内的知识点,我基本已完全掌握。
3、再次,适当思考一下考试后的事。
如觉得未来不可预测,我们必会焦虑。
那么,对未来做好预测,这种焦虑就会锐减。
这时要明白一点:考试是很重要,但只是人生的一个重要瞬间,所谓胜败也只是这一瞬间的胜败,它的确会带给我们很多,但它远不能决定我们一生的成败。
广西梧州市2024高三冲刺(高考数学)统编版(五四制)真题(评估卷)完整试卷

广西梧州市2024高三冲刺(高考数学)统编版(五四制)真题(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题点从(1,0)出发,沿单位圆按逆时针方向运动弧长到达点,则的坐标为()A.B.C.D.第(2)题如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是A.B.C.D.第(3)题甲乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别是:甲010*******乙2211121101,分别表示甲乙两组数据的平均数,,分别表示甲乙两组数据的方差,则下列选项正确的是().A.,B.,C.,D.,第(4)题棱长为1的正方体ABCD﹣A1B1C1D1中,P,Q分别为C1D1,BC的中点,现有下列结论:①PQ∥BD1;②PQ∥平面BB1D1D;③PQ⊥平面AB1C;④四面体D1﹣PQB的体积等于.其中正确的是()A.①③B.②③C.②④D.③④第(5)题某学生四次模拟考试时,其英语作文的减分情况如下表:考试次数x1234所减分数y 4.543 2.5显然所减分数y与模拟考试次数x之间有较好的线性相关关系,则其线性回归方程为()A.B.C.D.第(6)题已知函数,且在区间上单调递增,则的最小值为()A.0B.C.D.-1第(7)题蹴鞠,又名“蹴球”“蹴圆”等,“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的踢足球活动.如图所示,已知某“鞠”的表面上有四个点,,,,满足,,则该“鞠”的表面积为()A.B.C.D.第(8)题已知定义在上的函数满足,且,,现有下列4个结论:①;②的图象关于直线对称;③是周期函数;④.其中结论正确的个数为()A.1B.2C.3D.4二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,且,的最小正周期为,,则()A.B.C .为奇函数D.关于对称第(2)题下列说法中正确的是()A.函数的最小值为2B.若,则C .函数的值域为D.函数与函数为同一个函数第(3)题2020年前8个月各月社会消费品的零售总额增速如下图所示,则下列说法中正确的有()A.受疫情影响,1~2月份社会消费品的零售总额明显下降B.社会消费品的零售总额前期下降较快,后期下降放缓C.与6月份相比,7月份社会消费品的零售总额名义增速回升幅度有所扩大D.与4月份相比,5月份社会消费品的零售总额实际增速回升幅度有所扩大三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是_____________.第(2)题已知函数,若,,使得成立,则实数k的取值范围为_______.第(3)题已知椭圆为参数,,的焦点分别、,点为椭圆的上顶点,直线与椭圆的另一个交点为.若,则椭圆的普通方程为 __.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在多面体中,四边形为正方形,,且,M为中点.(1)过M作平面,使得平面与平面的平行(只需作图,无需证明)(2)试确定(1)中的平面与线段的交点所在的位置;(3)若平面,在线段是否存在点P,使得二面角的平面角为余弦值为,若存在求出的值,若不存在,请说明理由.第(2)题澳大利亚Argyle钻石矿石全球最重要的粉钻和红钻出产地,占全球供应的90%.该钻石矿曾发现一颗28.84ct的宝石级钻石原石——[ArgyleOctavia],为该矿区27年来发现最大的钻石原石之一.如图,这颗钻石拥有完整的正八面体晶形,其命名[ArgyleOctavia]特别强调钻石的正八面体特征——[Octavia]在拉丁语中是[第八]的意思.如图设为随机变量,从棱长为1的正八面体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,.(1)求概率;(2)求的分布列,并求其数学期望.第(3)题已知抛物线的焦点为,过点作抛物线的两条切线,切点分别为.(1)求抛物线的方程;(2)过点作两条倾斜角互补的直线,直线交抛物线于两点,直线交抛物线于两点,连接,设的斜率分别为,问:是否为定值?若是,求出定值;若不是,说明理由.第(4)题已知函数(1)当时,证明在恒成立;(2)若在处取得极大值,求的取值范围.第(5)题设是给定的正整数(),现有个外表相同的袋子,里面均装有个除颜色外其他无区别的小球,第个袋中有个红球,个白球.现将这些袋子混合后,任选其中一个袋子,并且从中连续取出三个球(每个取后不放回).(1)若,假设已知选中的恰为第2个袋子,求第三次取出为白球的概率;(2)若,求第三次取出为白球的概率;(3)对于任意的正整数,求第三次取出为白球的概率.。
广西梧州市蒙山县2014届高考数学模拟考试试题 文(考前演练)新人教A版

1 / 162014年蒙山县高考模拟考试试题文科数学一、选择题〔本大题共12个小题,每一小题5分,共60分.在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.〕1、集合{}{}{}1,2,1,2,3,2,3,4,()A B C A B C ===⋂⋃=则〔 〕A .{1,2,3}B .{1,2,4}C .{2,3,4}D .{1,2,3,4}2、不等式211x <+的解集是〔 〕 A.(,1)(1,)-∞-+∞ B.(1,)+∞ C.(,1)-∞- D.(1,1)- 3、函数25()log (1),[2)f x x x =+∈+∞的反函数是〔 〕A.()0)g x x =≥B.()1)g x x ≥C.()0)g x x =≥D.()1)g x x =≥4、在等差数列{n a }中,假设5,34321 a a a a ,如此87a a 的值为〔 〕A .7B .8C .9D .105、某班级要从4名男生、2名女生中选派4人参加某次社会活动,如果要求至少有1名女生.那么不同的选派方法共有〔 〕A .14种B .28种C .32种D .48种6、设向量a b 与的模分别为6和5,夹角为120,||a b ︒+则等于〔 〕A .23B .23- CD7、函数()1log (01)a f x x a a =+>≠且的图象恒过定点A ,假设点A 在直线20mx ny +-=上,其中110,mn m n >+则的最小值为〔 〕 A .1B .2C .3D .4 8、过原点作圆9)6(22=-+y x 的两条切线,如此该圆夹在两条切线间的劣弧长为2 / 16 〔 〕 A .π B .2π C .4π D .6π9、双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别是1F 、2F ,过2F 垂直x 轴的直线与双曲线C 的两渐近线的交点分别是M 、N ,假设1MF N ∆为正三角形,如此该双曲线的离心率为〔 〕A .213B .3C .13D .23+ 10、设函数()2cos(2)4f x x π=-,将()y f x =的图像向右平移(0)ϕϕ>个单位,使得到的 图像关于原点对称,如此ϕ的最小值为〔 〕A .34πB .38πC .4πD .8π 11、假设点21,F F 为椭圆1422=+y x 的焦点,P 为椭圆上一点,当△F 1PF 2的面积为时,21PF PF ⋅的值为〔 〕A .0B .C .1D .12、在矩形ABCD 中,3,1,DC AD ==在DC 上截取1DE =,沿AE 将AED ∆翻折得到1AED ∆,使点1D 在平面ABC 上的射影落在AC 上,如此二面角1D AE B --的平面角的余弦值为〔 〕3 / 16A .33B .32C .23-D .二、填空题〔本大题共4小题,每一小题5分,共20分,请把答案填在答题卷相应位置上.〕 13、设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,如此y x z 3-=的最小值▲14、54)6cos(=+πα〔α为锐角〕,如此=αsin ▲ 15、5(2)(1)a x x ++的展开式中一次项的系数为3-,如此a 的值为▲16、如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,如此球O 的外表积是___▲_______三、解答题〔本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.请把解答过程写在答题卷相应位置上.〕17. 〔本小题总分为10分〕在试题卷上作答无效.........设ABC ∆的内角A ,B ,C 所对的边分别为1,,,cos .2a b c a C c b +=且 〔1〕求角A 的大小;〔2〕假设1=a ,求ABC ∆的周长l 的取值范围.4 / 1618. 〔本小题总分为12分〕在试题卷上作答无效.........设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求数列{}n a ,{}n b 的通项公式.(2)求数列}{n n b a 的前n 项和.19.〔本小题总分为12分〕在试题卷上作答无效.........如图,四棱锥E- ABCD 的底面为菱形,且∠ABC =600,AB =EC =2,AE =BE =2. 〔1〕求证:平面EAB ⊥平面ABCD ;〔2〕求二面角A- EC- D 的余弦值.20.〔本小题总分为12分〕在试题卷上作答无效.........春节期间,某商场进展促销活动,方案是:顾客每买满200元可按以下方式摸球兑奖:箱内装有标着数字20,40,60,80,100的小球各两个,顾客从箱子里任取三个小球,5 / 16按三个小球中最大数字等额返还现金〔单位:元〕,每个小球被取到的可能性相等.〔1〕求每位顾客返奖不少于80元的概率;〔2〕假设有三位顾客各买了268元的商品,求至少有二位顾客返奖不少于80元的概率.21. 〔本小题总分为12分〕在试题卷上作答无效.........设323()(2)632f x ax a x x =-++-,,x R ∈a 是常数,且0a > 〔1〕求()f x 的单调递增区间;〔2〕假设()f x 在1x =时取得极大值,且直线1y =-与函数()f x 的图象有三个交点,求实数a 的取值范围.22.〔本小题总分为12分〕在试题卷上作答无效.........如图,设椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,上顶点为A ,在x 轴负半轴上有一点B ,满足211F F BF =,且.0.2=AF AB〔1〕假设过A 、B 、F 2三点的圆恰好与直线1:l x -3=0相切,求椭圆C 的方程;〔2〕在〔1〕的条件下,过右焦点F 2作斜率为k 的直线l 与椭圆C 交于M 、N 两点,在x 轴上是否存在点P 〔m ,0〕使得以PM 、PN 为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.6 / 162014年蒙山县高考模拟考试试题文科数学一、选择题〔本大题共12个小题,每一小题5分,共60分.在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.〕1、集合{}{}{}1,2,1,2,3,2,3,4,()A B C A B C ===⋂⋃=则〔 〕A .{1,2,3}B .{1,2,4}C .{2,3,4}D .{1,2,3,4}2、不等式211x <+的解集是〔 〕 A.(,1)(1,)-∞-+∞ B.(1,)+∞ C.(,1)-∞- D.(1,1)- 3、函数25()log (1),[2)f x x x =+∈+∞的反函数是〔 〕A.()0)g x x =≥B.()1)g x x ≥C.()0)g x x =≥D.()1)g x x =≥4、在等差数列{n a }中,假设5,34321 a a a a ,如此87a a 的值为〔 〕A .7B .8C .9D .10 5、某班级要从4名男生、2名女生中选派4人参加某次社会活动,如果要求至少有1名女生.那么不同的选派方法共有〔 〕A .14种B .28种C .32种D .48种6、设向量a b 与的模分别为6和5,夹角为120,||a b ︒+则等于〔 〕7 / 16 A .23 B .23- C .31 D .917、函数()1log (01)a f x x a a =+>≠且的图象恒过定点A ,假设点A 在直线20mx ny +-=上,其中110,mn m n >+则的最小值为〔 〕 A .1B .2C .3D .4 8、过原点作圆9)6(22=-+y x 的两条切线,如此该圆夹在两条切线间的劣弧长为〔 〕A .πB .2πC .4πD .6π9、双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别是1F 、2F ,过2F 垂直x 轴的直线与双曲线C 的两渐近线的交点分别是M 、N ,假设1MF N ∆为正三角形,如此该双曲线的离心率为〔 〕A .213B .3C .13D .23+ 10、设函数()2cos(2)4f x x π=-,将()y f x =的图像向右平移(0)ϕϕ>个单位,使得到的 图像关于原点对称,如此ϕ的最小值为〔 〕A .34πB .38πC .4πD .8π 11、假设点21,F F 为椭圆1422=+y x 的焦点,P 为椭圆上一点,当△F 1PF 2的面积为时,21PF PF ⋅的值为〔 〕8 / 16A .0B .C .1D .12、在矩形ABCD 中,3,1,DC AD ==在DC 上截取1DE =,沿AE 将AED ∆翻折得到 1AED ∆,使点1D 在平面ABC 上的射影落在AC 上,如此二面角1D AE B --的平面角的余弦值为〔 〕A .33B .32C .23-D .二、填空题〔本大题共4小题,每一小题5分,共20分,请把答案填在答题卷相应位置上.〕13、设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,如此y x z 3-=的最小值▲14、54)6cos(=+πα〔α为锐角〕, 如此=αsin ▲ 15、5(2)(1)a x x ++的展开式中一次项的系数为3-,如此a 的值为▲16、如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,如此球O 的外表积是___▲_______三、解答题〔本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 请把解答过程写在答题卷相应位置上.〕9 / 16设ABC ∆的内角A ,B ,C 所对的边分别为1,,,cos .2a b c a C c b +=且 〔1〕求角A 的大小;〔2〕假设1=a ,求ABC ∆的周长l 的取值范围.18. 〔本小题总分为12分〕在试题卷上作答无效.........设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求数列{}n a ,{}n b 的通项公式.(2)求数列}{n n b a 的前n 项和.19.〔本小题总分为12分〕在试题卷上作答无效.........如图,四棱锥E- ABCD 的底面为菱形,且∠ABC =600,AB =EC =2,AE =BE =2. 〔1〕求证:平面EAB ⊥平面ABCD ;〔2〕求二面角A- EC- D 的余弦值.10 / 16 春节期间,某商场进展促销活动,方案是:顾客每买满200元可按以下方式摸球兑奖:箱内装有标着数字20,40,60,80,100的小球各两个,顾客从箱子里任取三个小球,按三个小球中最大数字等额返还现金〔单位:元〕,每个小球被取到的可能性相等. 〔1〕求每位顾客返奖不少于80元的概率;〔2〕假设有三位顾客各买了268元的商品,求至少有二位顾客返奖不少于80元的概率.21. 〔本小题总分为12分〕在试题卷上作答无效.........设323()(2)632f x ax a x x =-++-,,x R ∈a 是常数,且0a > 〔1〕求()f x 的单调递增区间;〔2〕假设()f x 在1x =时取得极大值,且直线1y =-与函数()f x 的图象有三个交点,求实数a 的取值范围.22.〔本小题总分为12分〕在试题卷上作答无效.........如图,设椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,上顶点为A ,在x 轴负半轴上有一点B ,满足211F F BF =,且.0.2=AF AB〔1〕假设过A 、B 、F 2三点的圆恰好与直线1:l x -3=0相切,求椭圆C 的方程; 〔2〕在〔1〕的条件下,过右焦点F 2作斜率为k 的直线l 与椭圆C 交于M 、N 两点,在x 轴11 / 16上是否存在点P 〔m ,0〕使得以PM 、PN 为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.2014年蒙山县高考模拟考试试题文科数学参考答案一、选择题 1 2 3 4 5 6 7 8 9 10 11 12 DABCACBBADBC二、填空题13、 -8 14、 15、 -1 16、 16三、解答题12 / 1618、解:〔1〕设{}n a 的公差为d ,{}n b 的公比为q ,如此依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==. ……………………6分〔2〕由〔1〕知:①13 / 16②①-②得:……………………12分19、解法1:〔1〕证明:取AB 的中点O ,连接EO ,CO∵2==EB AE ,AB =2 ∴△ABC 为等腰三角形∴AB EO ⊥,EO =1 又∵AB =BC ,∠ABC =600∴△ABC 为等边三角形 ∴3=CO ,又EC =2∴222CO EO EC +=即CO EO ⊥,⊥EO 平面ABCD ,且⊂EO 平面EAB∴平面EAB ⊥平面ABCD , …………6 分 〔2〕过A 作AH ⊥CE 于H 点,过H 作HM//CD,又R t△EDO 解得DE=22, 所以222DE EC DC =+即EC DC ⊥,所以MH ⊥CE,因此∠AHM 为二面角A EC D --的平面角, 通过计算知27=AH ,21=MH ,1=AM ,所以7722127214147cos =⨯⨯-+=∠AHM OHM14 / 16所以二面角D EC A --的余弦值为772……………12分 解法2.〔1〕设AC ∩BD=O ,如图,以O 为原点,OC,OB 为x,y 轴建立空间直角坐标系O-xyz 设E(m,n,t ),如此 A(-1,0,0),C(1,0,0), B(0,3,0), D(0,-3,0),∴),,1(t n m AE +=, ,),,1(t n m CE -=所以⎪⎪⎩⎪⎪⎨⎧=++-==+-+==+++=4)1(23(2)1(222222222222t n m CE t n m BE t n m AE 解得:1,23,21==-=t n m 所以)1,23,21(-E ,因为AB 的中点)0,33,21(-M ,所以)1,0,0(=ME 即ME ⊥平面ABCD ,又⊂ME 平面EAB ,所以平面EAB ⊥平面ABCD ……6分〔2〕)1,23,23(-=CE ,)0,0,2(=AC ,)0,3,1(=DC , 分别设平面AEC,平面ECD 的法向量为),,(),,,(z y x m z y x n '''==如此⎪⎩⎪⎨⎧==⋅=+⋅+⋅-=⋅0202323x n AC z y x n CE 令y= -2,得)3,2,0(-=n ⎪⎩⎪⎨⎧='+'=⋅='+'⋅+'⋅-=⋅0302323y x n DC z y x n CE令1-='y ,)32,1,3(-=m 7724762||||,cos =⨯+=⋅⋅>=<m n m n m n所以二面角D EC A --的余弦值为772……………12分 20、〔1〕设“返奖80元〞为事件A ,“返奖100元〞为事件B ,如此OMxyz15 / 16,故每位顾客返奖不少于80元的概率为 …………6分〔2〕至少有二位顾客返奖不少于80元的概率为 (12)分21、解:〔Ⅰ〕∵323()(2)632f x ax a x x =-++-, ∴'2()33(2)63(2)(1)f x ax a x ax x =-++=--①当02a <<时,有21a >,由'()3(2)(1)0f x ax x =-->得1x <或2x a >,∴()f x 的单调递增区间是(,1)-∞和2(,)a +∞②当2a =时,'2()6(1)0f x x =-≥恒成立,且只有'(1)0f =,∴()f x 的单调递增区间是(,)-∞+∞③当2a >时, 有21a<,由'()3(2)(1)0f x ax x =-->得2x a<或1x >,∴()f x 的单调递增区间是2(,)a-∞和(1,)+∞…………6分〔Ⅱ〕∵()f x 在1x =时取得极大值,由〔Ⅰ〕知,02a <<,∴()(1)2a f x f ==-极大,2246()()3f x f a a a==-+-极小,∵直线1y =-与函数()f x 的图象有三个交点,∴246312aa a -+-<-<-,解得01a <<…………12分22.解:12分16 / 16。
广西2024届高三下学期4月模拟考试数学试卷(解析版)

广西2024届高三下学期4月模拟考试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知椭圆的长轴长等于焦距的4倍,则该椭圆的离心率为( )A.B.C.D.【答案】C 【解析】【分析】根据离心率定义与基本量关系求解即可.【详解】设椭圆长轴长,焦距,则,即.故选:C2. 的共轭复数为( )A. B. C. D. 【答案】B 【解析】【分析】利用复数的乘法化简复数,再利用共轭复数的定义可得出结果.【详解】因为,故复数的共轭复数为.故选:B.3. 把函数的图象向左平移个单位长度后,所得图象对应的函数为( )12142a 2c 242a c =⨯14c a =()i 67i -76i +76i -67i +67i--()i 67i -()2i 67i 6i 7i 76i -=-=+()i 67i -76i -()cos5f x x =15A. B. C D. 【答案】A 【解析】【分析】由图象平移变换写出解析式后判断.【详解】由题意新函数解析式为.故选:A .4. 已知是两条不同的直线,是两个不同的平面,且,下列命题为真命题的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】B 【解析】【分析】考查线与面,面与面之间位置关系,关键是掌握线面、面面等的位置关系及其性质,再结合图形分析.【详解】如图,当时,与可相交也可平行, 故A 错;当时,由平行性质可知,必有,故B 对;如图,当时,或,故C 错;当时,可相交、平行,故D 错.故选:B..()cos 51y x =+1cos 55y x ⎛⎫=+⎪⎝⎭()cos 51y x =-1cos 55y x ⎛⎫=-⎪⎝⎭1cos5(cos(51)5y x x =+=+,l m ,αβ;l m αβ⊂⊂l m αβα βl βl m ⊥l β⊥αβ⊥l m//l m αβ//αβ//l βl m ⊥//l βl ⊆βαβ⊥,l m5. 下列函数中,在上单调递增的是( )A. B. C. D. 【答案】D 【解析】【分析】根据题意,依次分析选项中函数的单调性,综合即可得答案.【详解】对于A ,,其定义域为,不符合题意;对于B ,,在上为减函数,不符合题意;对于C ,,在上单调递减,不符合题意;对于D ,,在上单调递增,符合题意;故选:D .6. 已知轴截面为正方形的圆柱的体积与球的体积之比为,则圆柱的表面积与球的表面积之比为( )A. 1 B.C. 2D.【答案】B 【解析】【分析】根据已知,结合圆柱和球的体积公式,可得圆柱底面圆半径和球的半径相等,再利用圆柱和球的表面积公式可解.【详解】设圆柱底面圆半径为,球的半径为,则圆柱的高为,由,可得,所以圆柱的表面积与球的表面积之比为.故选:B7. 已知是函数的极小值点,则的取值范围为()A. B. C. D. ()0,2()f x =()22f x x x=-()1f x x=()14f x x=()f x =[1,)+∞()22f x x x =-(01),()1f x x=()0,2()14f x x ==()0,2MM 'O 32MM 'O 3252MM 'r O R MM 'r O R MM '2r 2333π2334π223r r r R R ⋅==1r R=MM 'O 222222π4π334π22r r r R R +==0x =()()2f x x x a =-a (),0∞-3,2⎛⎫-∞ ⎪⎝⎭()0,∞+3,2⎛⎫+∞⎪⎝⎭【答案】A 【解析】【分析】根据极小值的定义,在的左侧函数递减,右侧函数递增可得.【详解】由已知,,令得或,由题意是极小值点,则,若,则时,,单调递减,时,,单调递增,则是函数的极小值点,若,则时,,单调递减,时,,单调递增,则是函数的极大值点,不合题意,综上,,即.故选:A .8. 在研究变量与之间的关系时,进行实验后得到了一组样本数据,,利用此样本数据求得的经验回归方程为,现发现数据和误差较大,剔除这两对数据后,求得的经验回归方程为,且则( )A. 8 B. 12C. 16D. 20【答案】C 【解析】【分析】由回归方程的性质求出即可.【详解】设未剔除这两对数据前的的平均数分别为,剔除这两对数据前的的平均数分别为,因为所以,则,0x =32()f x x ax =-2()32f x x ax '=-23()3a x x =-()0f x '=0x =23a x =0x =203a≠203a<203a x <<()0f x '<()f x 0x >()0f x '>()f x 0x =203a >203a x <<()0f x '<()f x 0x <()0f x '>()f x 0x =203a<a<0x y ()()1122,,,,x y x y ()()()55,,6,28,0,28x y 7ˆ101667yx =+()6,28()0,28ˆ4yx m =+51140i i y ==∑m =,x y ,x y ,x y ,x y ''51140ii y==∑140285y ¢==2844y m mx '--'==又这两对数据为,所以,所以,所以故选:C.【点睛】关键点点睛:本题关键在于找到剔除前后的平均数.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若集合和关系的Venn 图如图所示,则可能是( )A. B. C. D. 【答案】ACD 【解析】【分析】根据Venn 图可知 ,依次判定选项即可.【详解】根据Venn 图可知 ,对于A ,显然 ,故A 正确;对于B ,,则,故B 错误;对于C ,,则 ,故C 正确;对于D ,,或,则 ,故D 正确.()()6,28,0,28()114056287y =⨯+=()17166310x y =⨯-=760281654x mx m ---'==⇒=M N ,M N {}{}0,2,4,6,4M N =={}21,{1}M xx N x x =<=>-∣∣{}{}lg ,e 5xM xy x N y y ====+∣∣(){}(){}22,,,M x y x y N x y y x ====∣∣N M N M N M {}11,{1}M xx N x x =-<<=>-∣∣M N ⊆{}{}0,5M xx N y y =>=>∣∣N M (){,M x y y x ==∣}y x =-(){},,N x y y x ==∣N M故选:ACD10. 已知内角的对边分别为为的重心,,则( )A. B. C. 的面积的最大值为 D. 的最小值为【答案】BC 【解析】【分析】利用重心性质及向量线性运算得,即可判断A ,此式平方后结合基本不等式,向量的数量积的定义可求得,的最大值,直接判断B ,再结合三角形面积公式、余弦定理判断CD .【详解】是的重心,延长交于点,则是中点,,A 错;由得,所以,又,即所以,所以,当且仅当时等号成立,B 正确;,当且仅当时等号成立,,C 正确;由得,所以,,当且仅当时等号成立,所以的最小值是,D 错.故选:BC .ABC ,,A B C ,,,a b c O ABC 1cos ,25A AO ==1144AO AB AC=+ 3AB AC ⋅≤ABC a 1133AO AB AC =+AB AC ⋅u u u r u u u rAB AC O ABC AO BC D D BC 22111()33233AO AD AB AC AB AC ==⨯+=+1133AO AB AC =+ 3AB AC AO +=22229()222AO AB AC AB AC AB AC AB AC AB AC =+=++⋅≥+⋅1cos 5AB AC AB AC A AB AC ⋅==5AB AC AB AC=⋅ 225292AB AC AB AC ⨯⋅+⋅≤⨯ 3AB AC ⋅≤ AB AC = 15cos AB AC AB AC A ⋅⋅=≤ AB AC = sin A ==11sin 1522ABC S AB AC A =≤⨯= 22229()2AO AB AC AB AC AB AC =+=++⋅ 222362365AB AC AB AC AB AC +=-⋅=-22222442cos 2cos 3636152455a b c bc A AB AC AB AC A AB AC =+-=+-⋅==-≥-⨯= a ≥AB AC =a11. 已知定义在上的函数满足.若的图象关于点对称,且,则( )A. 的图象关于点对称B. 函数的图象关于直线对称C. 函数的周期为2D. 【答案】ABD 【解析】【分析】对A ,根据函数图象的变换性质判断即可;对B ,由题意计算即可判断;对C ,由A 可得,由B 可得,进而可判断C ;对D ,由结合与的对称性可得,进而,结合C 中的周期为4求得,进而可得.【详解】对A ,因为的图象关于点对称,则的图象关于点对称,故的图象关于点对称,故A 正确;对B ,,,又,故.即,故图象关于直线对称,故B 正确;对C ,由A ,,且,的R ()f x ()()224f x f x x +--=()23f x -()2,1()00f =()f x ()1,1()()2g x f x x =-2x =()()2g x f x x =-()()()12502499f f f +++= ()()220g x g x +--=()()g x g x =-()()4g x g x -=+()()224f x f x x +--=()00f =()f x ()()()()0,1,2,3f f f f ()()()()0,1,2,3g g g g ()g x ()()()1250g g g +++ ()()()1250f f f +++L ()23f x -()2,1()3f x -()4,1()f x ()1,1()()()()2222224g x f x x f x x -=---=-+-()()()()2222242g x f x x f x x +=+-+=+--()()224f x f x x +--=()()()()222240g x g x f x f x x +--=+---=()()22g x g x +=-()()2g x f x x =-2x =()()22f x f x +=--()()22f x f x -=-又因为,故,即,故,即.由B ,,故,故的周期为4,故C 错误;对D ,由,的图象关于点对称,且定义域为R ,则,,又,代入可得,则,又,故,,,,又的周期为4,.则.即,则,故D 正确.故选:ABD【点睛】关键点点睛:判断D 选项的关键是得出,结合周期性以及的定义即可顺利得解.三、填空题:本题共3小题,每小题5分,共15分.12. 智慧农机是指配备先进的信息技术,传感器、自动化和机器学习等技术,对农业机械进行数字化和智能化改造的农业装备,例如:自动育秧机和自动插秧机.正值春耕备耕时节,某智慧农场计划新购2台自动育秧机和3台自动插秧机,现有6台不同的自动育秧机和5台不同的自动插秧机可供选择,则共有__________种不同的选择方案.【答案】200【解析】【分析】利用乘法原理,结合组合知识求解.【详解】第一步从6台不同的自动育秧机选2台,第二步从5台不同的自动插秧机选3台,由乘法原理可得选择方案数为,故答案为:200.()()224f x f x x +--=()()224f x f x x ----=⎡⎤⎡⎤⎣⎦⎣⎦()()4fx f x x --=()()()22f x x f x x -=---()()g x g x =-()()4g x g x -=+()()()4g x g x g x =-=+()()2g x f x x =-()00f =()f x ()1,1()11f =()22f =()()224f x f x x +--=1x =()()134-=f f ()35f =()()2g x f x x =-()()000g f ==()()1112g f ==--()()2224g f ==--()()3361g f =-=-()g x ()()400g f ==()()()()()()()()()125012123412g g g g g g g g g ⎡⎤+++=⨯+++++⎣⎦ ()1241251=⨯---=-()()()12245010051f f f -+-++-=- ()()()()502100125024..100515124992f f f ⨯++++=+++-=-= ()()()()1,2,3,4g g g g ()g x 2356C C 200=13. 已知,则__________.【答案】1或-3【解析】【分析】由已知可得或,从而可求出的值.【详解】由 可得,所以 或,即 或,当时,当 时,,故答案为:1或-3.14. 已知分别是双曲线的左、右焦点,是的左支上一点,过作角平分线的垂线,垂足为为坐标原点,则______.【答案】2【解析】【分析】根据双曲线的定义求解.【详解】双曲线的实半轴长为,延长交直线于点,由题意有,,又是中点,所以,故答案为:2.2sin sin2αα=πtan 4α⎛⎫+= ⎪⎝⎭sin 0α=sin 2cos αα=πtan 4α⎛⎫+⎪⎝⎭2sin sin2αα=2sin 2sin cos ααα=sin 0α=sin 2cos αα=tan 0α=tan 2α=tan 0α=πtan 1tan 141tan ααα+⎛⎫+== ⎪-⎝⎭tan 2α=πtan 1tan 341tan ααα+⎛⎫+==- ⎪-⎝⎭12,F F 22:1412x y E -=M E 2F 12F MF ∠,N O ON =221412x y -=2a =2F N 1MF H 2MH MF =2NH NF =O 12F F 1121111()()2222ON F H MH MF MF MF a ==-=-==四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在等差数列中,,且等差数列的公差为4.(1)求;(2)若,数列的前项和为,证明:.【答案】(1); (2)证明见解析.【解析】【分析】(1)利用等差数列的求出公差,再求得首项后可得通项公式;(2)由裂项相消法及等差数列的前项和公式求得和后可证结论.【小问1详解】设的公差为,则,,又,所以,所以,.小问2详解】由(1)得,所以.16. 为提升基层综合文化服务中心服务效能,广泛开展群众性文化活动,某村干部在本村的村民中进行问卷调查,将他们的成绩(满分:100分)分成7组:.整理得到如下频率分布直方图.【{}n a 26a ={}1n n a a ++10a 2111n n n n b a a a -+=+{}n b n n S 21228n S n n <++1022a =d 1a n n S {}n a d 1212()()24n n n n n n a a a a a a d +++++-+=-==2d =26a =1624a =-=42(1)22n a n n =+-=+1022a =11114(44(1)(2)412n b n n n n n n =+=-+++++2212111(1)111()42222422284(2)8n n n n S b b b n n n n n n +=+++=-+⨯=++-<++++ [30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](1)求的值并估计该村村民成绩的平均数(同一组中的数据用该组区间的中点值代表);(2)从成绩在内的村民中用分层抽样的方法选取6人,再从这6人中任选3人,记这3人中成绩在内的村民人数为,求的分布列与期望.【答案】(1); (2)分布列见详解;【解析】【分析】(1)由频率和为1,可求的值,再由平均数计算公式求解;(2)根据分层抽样可确定的取值,再分别求出概率,最后利用期望公式求解.【小问1详解】由图可知,,解得,该村村民成绩的平均数约为;【小问2详解】从成绩在内的村民中用分层抽样的方法选取6人,其中成绩在的村民有人,成绩在的村民有4人,从中任选3人,的取值可能为1,2,3,,,,则的分布列为123故17. 如图,在四棱锥中,平面平面,底面为菱形,,是的中点.a [)[)30,40,80,90[)80,90X X 0.00564.5()2E X =a X 10(30.010.0150.032)1a +⨯++=0.005a =(354595)0.05(5565)0.3750.15850.164.5⨯+++++=⨯⨯⨯+[)[)30,40,80,90[)30,400.05620.050.1⨯=+[)80,90X ()212436C C 11C 5P X ===()122436C C 32C 5P X ===()632436C C 13C 5P X ===X XP 153515()131123 2.555E X =⨯+⨯+⨯=P ABCD -PAB ⊥ABCD ABCD 60ABC ∠= 2,AB E ===CD(1)证明:平面平面.(2)求二面角的余弦值.【答案】(1)证明见解析. (2【解析】【分析】(1)取中点,连接,证明平面,分别以为轴建立空间直角坐标系,用空间向量法证明面面垂直;(2)用空间向量法求二面角.【小问1详解】取中点,连接,如图,因为四边形是菱形且,所以和都是正三角形,又是中点,所以,,从而有,又,所以是矩形.又,所以,所以,即是等腰直角三角形,所以,,又因平面平面,平面平面,平面,所以平面,分别以为轴建立空间直角坐标系,如图,则,,,,,,,设平面的一个法向量是,则为PBC ⊥PAE D AP E --AB O ,OP OC PO ⊥ABCD ,,OA OC OP ,,x y z AB O ,OP OC ABCD 60ABC ∠=︒ABC ADC △E CD ,OC AB AE CD ⊥⊥OC AB ==//OC AE //CE AOAOCE AB ==222PA PB AB+=PA PB ⊥PAB112PO AB ==PO AB ⊥PAB ⊥ABCD PAB ⋂ABCD AB =PO ⊂PAB PO ⊥ABCD ,,OA OC OP ,,x y z (1,0,0)B (0,0,1)P C (1,0,0)A -(E -(D -(1,0,1),1),(1,0,1),(1),(1)PB PC PA PE PD =-=-=--=--=--PBC (,,)m x y z =,取得,设平面的一个法向量是,则,取得,,所以,所以平面平面;【小问2详解】设平面的一个法向量是,则,取得,设二面角的大小为,由图知为锐角,所以18. 设抛物线的焦点为,已知点到圆上一点的距离的最大值为6.(1)求抛物线的方程.(2)设是坐标原点,点是抛物线上异于点的两点,直线与轴分别相交于两点(异于点),且是线段的中点,试判断直线是否经过定点.若是,求出该定点坐标;若不是,说明理由.【答案】(1) (2)过定点,定点坐标为【解析】PB m x z PC m z ⎧⋅=-=⎪⎨⋅=-=⎪⎩1y =m = PAE 000(,,)n x y z =r0000000PA n x z PE n x z ⎧⋅=--=⎪⎨⋅=-+-=⎪⎩ 0=x n = 3030m n ⋅=+-= m n ⊥ PBC⊥PAE PAD (,,c)t a b =200PD t a c PA t a c ⎧⋅=--=⎪⎨⋅=--=⎪⎩ 1b =t = D AP E --θθcos cos t θ= 2:2(0)C y px p =>F F 22:(3)1E x y ++=C O ()2,4,,P A B C P ,PA PB y ,M N O O MN AB 28y x =(0,2)-【分析】(1)点到圆上点的最大距离为,即,计算即可;(2)由已知设,求得则,方程,联立与抛物线的方程求得点坐标,同理可得点坐标,进而求得直线的方程得出结果.【小问1详解】点到圆上点的最大距离为,即,得,故抛物线的方程为.【小问2详解】设,则方程为,方程为,联立与抛物线的方程可得,即,因此点纵坐标为,代入抛物线方程可得点横坐标为,则点坐标为,同理可得点坐标为,因此直线的斜率为,代入点坐标可以得到方程为,整理可以得到,因此经过定点.19. 定义:若函数图象上恰好存在相异的两点满足曲线在和处的切线重合,则称为曲线的“双重切点”,直线为曲线的“双重切线”.F E 1EF +3162p ⎛⎫++=⎪⎝⎭(0,),(0,)M m N m -PA PB PA C A B AB F E 1EF +3162p ⎛⎫++= ⎪⎝⎭4p =C 28y x =(0,),(0,)M m N m -PA 42m y x m -=+PB 42my x m +=-PA C 21616044m y y m m -+=--()4404m y y m ⎛⎫--= ⎪-⎝⎭A 44A m y m =-A ()222284A A y m x m ==-A ()2224,44m m m m ⎛⎫⎪ ⎪--⎝⎭B ()2224,44m m m m ⎛⎫⎪- ⎪++⎝⎭AB 2216A B A B y y m k x x m --==-B AB ()2222416244m m m y x m m m ⎛⎫- ⎪+=- ⎪++⎝⎭22162m y x m-=-AB (0,2)-()f x ,P Q ()y f x =P Q ,P Q ()y f x =PQ ()y f x =(1)直线是否为曲线的“双重切线”,请说明理由;(2)已知函数求曲线的“双重切线”的方程;(3)已知函数,直线为曲线的“双重切线”,记直线的斜率所有可能的取值为,若,证明:.【答案】(1)不是,理由见解析; (2); (3)证明见解析.【解析】【分析】(1)求出导数为1的切点坐标,写出过两切点的切线方程,比较可得;(2)求出导数,利用其单调性可设切点为,且,写出两切线方程后由斜率相等,纵截距相等联立,求得切点坐标后可得切线方程;(3)设对应切点为,,对应的切点为,,由导数几何意义得,,由周期性,只需研究的情形,由余弦函数的性质,只需考虑,情形,在此条件下求得,满足,即,构造函数(),则,由导数确定单调性,从而得出缩小的范围,所以,证明则,再由不等式的性质可证结论.【小问1详解】不是,理由如下:的52y x =-()2122ln 2f x x x x =-+()1e ,0,46,0,x x g x x x +⎧≤⎪=⎨->⎪⎩()y g x =()cos h x x =PQ ()y h x =PQ 12,,,n k k k ()123,4,5,,i k k k i n >>= 12158k k <2y x =+()g x '1122(,),(,)P x y Q x y 120x x ≤<1k 1111(,cos ),(,cos )x x x x ''11x x '<2k 2222(,cos ),(.cos )x x x x ''22x x '<111sin sin k x x '=-=-22sin sin k x x '=-=-21ππ2x x -<<<-11πx x '+=223πx x '+=2112213πcos 2πcos 2x k x k x x-=⋅-1x 11112cos sin π2x k x x -==--111πcos ()sin 2x x x =-cos π()sin 2x F x x x =+-ππ2x -<<-1()0F x =1x 15ππ6x -<<-215ππ6x x -<<<-12cos 01cos x x <<由已知,由解得,,又,,不妨设切点为,,在点处的切线的方程为,即,在点的切线方程为,即与直线不重合,所以直线不是曲线的“双重切线”.【小问2详解】由题意,函数和都是单调函数,则可设切点为,且,所以在点处的切线的方程为,在点的切线方程为,所以,消去得,设(),则,所以是减函数,又,所以在时只有一解,所以方程的解是,从而,在点处切线方程为,即,在点处的切线方程为,即,所以“双重切线”方程为;【小问3详解】证明:设对应的切点为,,对应的切点为,2()2f x x x '=-+2()21f x x x'=-+=11x =22x =3(1)2f =-(2)2ln 22f =-3(1,2P -(2,2ln 22)Q -P 312y x +=-52y x =-Q 2ln 222y x -+=-42ln 2y x =-+52y x =-52y x =-()2122ln 2f x x x x =-+12e ,0()4,0x x g x x x+⎧≤>'⎪=⎨⎪⎩1e (0)x y x +=≤24(0)y x x =>1122(,),(,)P x y Q x y 120x x ≤<P 11111e e ()x x y x x ++-=-Q 222244(6)()y x x x x --=-1112211224e 44e (1)6x x x x x x ++⎧=⎪⎪⎨⎪-=--⎪⎩2x 111(1)121e (1)4e 60x x x ++--+=1(1)12()e(1)4e6x x t x x ++=--+0x ≤111(1(1)1)1222()e 2e e [e 2]0x x x x t x x x ++++'=-=-<)()t x (1)0t -=()0t x =0x ≤=1x -111(1)121e(1)4e60x x x ++--+=11x =-22x =(1,1)P -11y x -=+2y x =+(2,4)Q 42y x -=-2y x =+2y x =+1k 1111(,cos ),(,cos )x x x x ''11x x '<2k 2222(,cos ),(.cos )x x x x '',由于,所以,,由余弦函数的周期性,只要考虑的情形,又由余弦函数的图象,只需考虑,情形,则,,其中,所以,又,,即,,时,,,令(),则,,在上单调递减,又,所以,所以,此时,则,所以.【点睛】方法点睛:本题考查新定义,考查导数的几何意义.解题关键是正确理解新定义,并利用新定义进行问题的转化,转化为求函数图象的导数.新定义实际上函数图象在两个不同点处的切线重合,这种问题常常设出切点为,由导数几何意义,应用求出切点坐标或者分别写出过两点的切线方程,由斜率相等和纵截距相等求切点坐标.从而合问题获得解决.22x x '<(cos )sin x x '=-111sin sin k x x '=-=-22sin sin k x x '=-=-21ππ2x x -<<<-11πx x '+=223πx x '+=11111111111cos cos cos(π)cos 2cos (π)π2x x x x x k x x x x x '----===---'-22222222222cos cos cos(3π)cos 2cos (3π)3π2x x x x x k x x x x x '----===---'-21ππ2x x -<<<-2112213πcos 2πcos 2x k x k x x-=⋅-11112cos sin π2x k x x -==--22222cos sin 3π2x k x x -==--111πcos ()sin 2x x x =-2223πcos ()sin 2x x x =-ππ2x -<<-sin 0x <cos 0x <cos π()sin 2x F x x x =+-ππ2x -<<-1()0F x =222222sin cos 1cos ()110sin sin sin x x xF x x x x--'=+=-+=-<()F x π(π,)2--5π5ππ(0662F -=--<15ππ6x -<<-215ππ6x x -<<<-211cos cos 0x x -<<<12cos 01cos x x <<221122113π3π3π(π)cos 15222πππ5πcos 8()2226x x k x k x x x ----=⋅<<=----1122(,),(,)x y x y 121212()()y y f x f x x x -''==-。
2014年高考广西文科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(广西卷)数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年广西,文1,5分】设集合{12468}{123567}M N ==,,,,,,,,,,,则M N 中元素的个数为( )(A )2 (B )3 (C )5 (D )7 【答案】B【解析】{}1,2,6M N =,所以M N 中元素的个数为3,故选B .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. (2)【2014年广西,文2,5分】已知角α的终边经过点(43)-,,则cos α=( )(A )45 (B )35 (C )35- (D )45-【答案】D【解析】由三角函数定义知4cos 5==-,故选D .【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.(3)【2014年广西,文3,5分】不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )(A ){|21}x x -<<- (B ){|10}x x -<< (C ){|01}x x << (D ){|1}x x > 【答案】C【解析】由()20x x +>得0x >或2x <-;由1x <得11x -<<,所以不等式组的解集为{}01x x <<,故选C . 【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题. (4)【2014年广西,文4,5分】已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )(A )16 (B (C )13(D【答案】B【解析】如图,取AD 的中点F ,连接EF 、CF .因为E 、F 分别是AB 、AD 的中点,所以=1//2EF BD ,故CEF ∠或其补角是异面直线CE 、BD 所成的角.设正四面体ABCD 的棱长为a ,易知CE CF ==,12EF a =.在CEF △中,由余弦定理可得22212cos a CEF ⎫⎫⎛⎫+-⎪⎪ ⎪⎪⎪∠==B . 【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.(5)【2014年广西,文5,5分】函数)()ln11y x =>-的反函数是( )(A )()()311x y e x =->-(B )()()311x y e x =->-(C )()()31x y e x =-∈R (D )()()31x y e x =-∈R【答案】D 【解析】由)ln1y=1e y =,即()3e 1y x =-,又由1x >-可知y ∈R ,所以原函数的反函数为()()3e 1y y y =-∈R ,故选D .【点评】本题考查反函数解析式的求解,属基础题. (6)【2014年广西,文6,5分】已知,a b 为单位向量,其夹角为60,则(2)-⋅=a b b ( )FE DBA【解析】()2222211cos6010-⋅=⋅-=⨯⨯⨯-=a b b a b b ,故选B .【点评】本题主要考查两个向量的数量积的定义,属于基础题. (7)【2014年广西,文7,5分】有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )(A )60种 (B )70种 (C )75种 (D )150种 【答案】C【解析】根据题意,先从6名男医生中选2人,有2615C =种选法,再从5名女医生中选出1人,有155C =种选法,则不同的选法共有15×5=75种,故选C .【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同. (8)【2014年广西,文8,5分】设等比数列{}n a 的前n 项和为n S ,若24315S S ==,,则6S =( )(A )31 (B )32 (C )63 (D )64 【答案】C【解析】由等比数列的性质得()()242264S S S S S -=⋅-,即()2612315S =⨯-,解得663S =,故选C . 【点评】本题考查等比数列的性质,得出2S ,42S S -,64S S -成等比数列是解决问题的关键,属基础题.(9)【2014年广西,文9,5分】已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( ) (A )22132x y += (B )2213x y += (C )221128x y += (D )221124x y +=【答案】A【解析】∵1AF B ∆的周长为,∴4a =a =,∴1c =,∴b ==∴椭圆C 的方程为22132x y +=,故选A .【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题. (10)【2014年广西,文10,5分】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )(A )814π (B )16π (C )9π (D )274π【答案】A【解析】设球的半径为R ,则∵棱锥的高为4,底面边长为2,∴()2224R R =-+,∴94R =,∴球的表面积为2981444ππ⎛⎫⋅= ⎪⎝⎭,故选A .【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.(11)【2014年广西,文11,5分】双曲线C :22221(00)x y a b a b-=>>,的离心率为2,则C 的焦距等于( )(A )2 (B ) (C )4 (D )【答案】C【解析】由已知得2c e a ==,所以12a c =,故b =,从而双曲线的渐进线方程为by x a=±=,=2c =,故24c =,故选C .【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.(12)【2014年广西,文12,5分】奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )【解析】由()2f x +是偶函数可得()()22f x f x -+=+,又由()f x 是奇函数得()()22f x f x -+=-,所以()()22f x f x +=-,()()4f x f x +=,故()f x 是以4为周期的周期函数, 所以()()()924111f f f =⨯+==,又()f x 是定义在R 上的奇函数,所以()00f =, 所以()()800f f ==,故()()891f f +=,故选D .【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.第II 卷(共100分)二、填空题:本大题共4小题,每小题5分. (13)【2014年广西,文13,5分】6(2)x -的展开式中3x 的系数为 (用数字作答). 【答案】160【解析】通项()()66166C 22C rrr r r r r T x x --+=⋅⋅-=-⋅,令63r -=,得3r =,所以3x 的系数为()3362C 160-=-.【点评】本题考查二项式定理的应用,关键要得到()62x -的展开式的通项.(14)【2014年广西,文14,5分】函数cos22sin y x x =+的最大值为 .【答案】32【解析】221312sin 2sin 2sin 22y x x x ⎛⎫=-+=--+ ⎪⎝⎭,因为1sin 1x -剟,所以当1sin 2x =时,max 32y =.【点评】本题主要考查二倍角的余弦公式,二次函数的性质应用,正弦函数的值域,属于基础题.(15)【2014年广西,文15,5分】设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .【答案】5【解析】由约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩作出可行域如图,联立023x y x y -=⎧⎨+=⎩,解得()1,1C .化目标函数4z x y =+为直线方程的斜截式,得144zy x =-+.由图可知,当直线144zy x =-+过C 点时,直线在y 轴上的截距最大,z 最大.此时max 1415z =+⨯=.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题. (16)【2014年广西,文16,5分】直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l的夹角的正切值等于____________. 【答案】43【解析】设1l 与2l 的夹角为2θ,由于1l 与2l 的交点()1,3A 在圆的外部,且点A 与圆心O 之间的距离为:OA =r =sin r OA θ==,cos θ=,sin 1tan cos 2θθθ==, 22tan 14tan 211tan 314θθθ===--.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题:本大题共6题,共75分. (17)【2014年广西,文17,10分】数列{}n a 满足12211222n n n a a a a a ++===-+,,.(1)设1n n n b a a +=-,证明{}n b 是等差数列;(2)求{}n a 的通项公式.解:(1)由2122n n n a a a ++=-+得,2112n n n n a a a a +++-=-+,即12n n b b +=+.又1211b a a =-=.所以{}n b 是首项为1,公差为2的等差数列.(2)由(1)得()121n b n =+-,即121n n a a n +-=-.于是()()11121nnk k k k a a k +==-=-∑∑,所以211n a a n +-=,211n a n a +=+.又11a =,所以{}n a 的通项公式为2122n a n n +=-+.【点评】本题考查了等差数列的定义、通项公式、前n 项和公式,及累加法求数列的通项公式和转化思想,属于中档题.(18)【2014年广西,文18,12分】ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a C c A =,1tan 3A =,求B .解:根据正弦定理,由3cos 2cos 3sin cos 2sin cos a C c A A C C A =⇒=sin sin 323tan 2tan cos cos A CA C A C⇒⨯=⨯⇒=因为1tan 3A =,所以1132tan tan 32C C ⨯=⇒=,所以11tan tan 32tan()1111tan tan 132A C A C A C +++===--⨯ 因为0A C π<+<,所以4A C π+=,由三角形的内角和可得344B πππ=-=.【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.(19)【2014年广西,文19,12分】如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B1A AB C --的大小. 解:解法一: (1)因为1A D ⊥平面ABC ,1A D ⊆平面11AAC C ,故平面11AA C C ⊥平面ABC . 又BC AC ⊥,所以BC ⊥平面11AA C C .连结1A C .因为侧面11AA C C 为菱形,故11AC A C ⊥. 由三垂线定理得11AC A B ⊥.(2)BC ⊥平面11AA C C ,BC ⊆平面11BCC B ,故平面11AA C C ⊥平面11BCC B .作11A E CC ⊥,E 为垂足,则1A E ⊥平面11BCC B .又直线1//A A 平面11BCC B ,因而1A E 为直线1A A与平面11BCC B的距离,1A E =因为1A C 为11A CC ∠的平分线,故11A D A E ==.作DF AB ⊥, F 为垂足,连结1A F .由三垂线定理得1A F AB ⊥,故1A FD ∠为二面角1A AB C --的平面角.由1AD ==得D 为C A中点,1=2AC BC DF AB ⨯⨯=11tan A D A FD DF ∠==. 所以二面角1A AB C --的大小为arc 解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角 坐标系C xyz -,由题设知1A D 与x 轴平行,z 轴在平面11AA C C 内(1)设1(,0,)A a c ,由题设有2,(2,0,0),(0,1,0)a A B ≤,则(2,1,0),(2,0,0)AB AC =-=-,1(2,0,)AA a c =-,111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-………………2分由1||2(2AA a =⇒-,即2240a a c -+=①于是221140AC BA a a c ⋅=-+=,所以11AC A B ⊥. ……………………5分 (2)设平面11BCC B 的法向量(,,)m x y z =,则1,m CB m BB ⊥⊥,所以10,0m CB m BB ⋅=⋅=,因11(0,1,0),(2,0,)CB BB AA a c ===-,所以0(2)0y a x cz =⎧⎨-+=⎩,令x c =,则2z a =-,(,0,2)m c a ∴=-, 点A 到平面11BCC B 的距离为2|||cos ,|2||CA m cCA m CA c m c ⋅⋅<>=====,又依题设,A 到平面11BCC B3c =代入①解得3a =(舍去)或1a = ……8分 于是1(AA =-,设平面1ABA 的法向量(,,)n p q r =,则1,n AA n AB ⊥⊥所以10,0n AA n AB ⋅=⋅=,所以0202p r p p q q p⎧⎧-==⎪⎪⇒⎨⎨-+=⎪⎩⎪=⎩,令p =,则1,(3,23,1)q n ===,又(0,0,1)p =为平面ABC 的法向量,故1cos ,4||||(n p n p n p ⋅<>===⋅,所以二面角1A AB C --的大小为1arccos 4. ………………………………………………………12分【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题. (20)【2014年广西,文20,12分】设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记i A 表示事件:同一工作日乙、丙中恰有i 人需使用设备,0,1,2i =,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备(1)122D A B C A B A B C =⋅⋅+⋅+⋅⋅,22()0.6,()0.4,()0.5,0,1,2ii P B P C P A C i ====, 所以122()()P D P A B C A B A B C =⋅⋅+⋅+⋅⋅122()()()P A B C P A B P A B C =⋅⋅+⋅+⋅⋅122()()()()()()()()P A P B P C P A P B P A P B P C =++0.31=.(2)由(1)知,若2k =,则()0.310.1P F =>.又2E B C A =⋅⋅,()()()()()220.06P E P B C A P B P C P A =⋅⋅==.若3k =,则()0.60.1F =<.所以k 的最小值时为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题. (21)【2014年广西,文21,12分】函数32()+33(0)f x ax x x a =+≠.(1)讨论()f x 的单调性; (2)若()f x 在区间(12),是增函数,求a 的取值范围.解:(1)()363f x ax x '=++,()0f x '=的判别式()361a ∆=-.(i )若1a …,则()0f x '…,且当且仅当1a =,1x =-.故此时()f x 在R上是增函数. (ii )由于0a ≠,故当1a <时,()0f x '=有两个根:1x =,2x =.若01a <<,则当()2,x x ∈-∞或()1,x x ∈+∞时,()0f x '>,故()f x 在()2,x -∞,()1,x +∞上是增函数;当()21,x x x ∈时,()0f x '<,故()f x 在()21,x x 上是减函数;若0a <,则当()1,x x ∈-∞或()2,x +∞时,()0f x '<,故()f x 在()1,x -∞,()2,x +∞上是减函数; 当()21,x x x ∈时,()0f x '>,故()f x 在()12,x x 上是增函数.(2)当0a >,0x >时,()23630f x ax x '=++>,故当0a >时,()f x 在区间()1,2上是增函数.当0a <时,()f x 在区间()1,2上是增函数当且仅当()10f '…且()20f '…,解得504a -<….综上,a 的取值范围是()5,00,4⎡⎤-+∞⎢⎥⎣⎦.【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.(22)【2014年广西,文22,12分】已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.解:(1)设()0,4Q x ,代入22y px =得08x p =.所以8PQ P=,0822p p QF x p =+=+.由题设得85824p p p +=+,解得2p =-(舍去)或2p =.所以C 的方程为24y x =.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为()10x my m =+≠.代入24y x =得2440y my --=.设()11,A x y ,()22,B x y ,则124y y m +=,124y y =-.故AB 的中点为()221,2D m m +,()21241AB y m -=+.又l '的斜率为m -,所以l '的方程为2123x y m m=-++. 将上式代入24y x =,并整理得()2244230y y m m +-+=.设()33,M x y ,()44,N x y ,则344y y +=-,()234423y y m ⋅=-+.故MN 中点为222223,E m mm ⎛⎫++- ⎪⎝⎭,(234241m MN y m +-=.由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即()()()2222222244121224122m m m m m m m ++⎛⎫⎛⎫+++++=⎪ ⎪⎝⎭⎝⎭. 化简得210m -=,解得1m =或1m =-.所求直线l 的方程为10x y --=或10x y +-=.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了分类讨论的数学思想,属于中档题.。
2020-2021学年高三数学(文科)高三毕业4月份联考检测试题及答案解析
最新高三(下)4月联考数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(∁U A)∩B=()A.{2} B.{4,6} C.{l,3,5} D.{4,6,7,8}2.复数=()A.1+3i B.﹣1﹣3i C.﹣1+3i D.1﹣3i3.下列有关命题的说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:.则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若,则”的否命题是“若,则”4.若点(sin,cos)在角α的终边上,则sinα的值为()A.B. C.D.5.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()A.607 B.328 C.253 D.0076.若数列{a n}满足﹣=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10 B.20 C.30 D.407.已知函数图象过点,则f(x)图象的一个对称中心是()A.B.C.D.8.如图,网格纸上正方形小格的边长为1cm,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积为()A.20πcm3B.16πcm3C.12πcm3D.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.4810.△ABC的外接圆的圆心为O,半径为2,且,且||=||,则向量在方向上的投影为()A.B.3 C.D.﹣311.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)12.已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.B. C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数f(x)=,则f[f()]= .14.已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为.15.已知圆C:(x﹣1)2+(y﹣2)2=2,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为.16.已知△ABC中,角A,B,C所对的边分别是a,b,c,sinA+sinB﹣4sinC=0,且△ABC的周长L=5,面积S=﹣(a2+b2),则cosC= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}为等差数列,a2=3,a4=7;数列{b n}为公比为q(q>1)的等比数列,且满足集合{b1,b2,b3}={1,2,4}.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.18.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.1 0.2[30,60)0.2 0.2[60,90)0.3 0.3[90,120)0.2 0.2[120,150] 0.2 0.1优秀不优秀总计甲班乙班总计2.072 2.7063.841 5.024 6.635 7.879 10.828k00.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k0)(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过曲线C上的一点作两条直线分别交曲线于A,B两点,已知OA,OB的斜率互为相反数,求直线AB的斜率.21.已知函数f(x)=lnx﹣mx2,g(x)=mx2+x,m∈R,令F(x)=f(x)+g(x).(Ⅰ)当时,求函数f(x)的单调区间及极值;(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.(1)求证:AD•AB=AE•AC;(2)求线段BC的长度.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.[选修4-5:不等式选讲]24.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.高三(下)4月联考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(∁U A)∩B=()A.{2} B.{4,6} C.{l,3,5} D.{4,6,7,8}【考点】交、并、补集的混合运算.【分析】由全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},知C U A={4,6,7,8},由此能求出(C u A)∩B.【解答】解:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴C U A={4,6,7,8},∴(C u A)∩B={4,6}.故选B.2.复数=()A.1+3i B.﹣1﹣3i C.﹣1+3i D.1﹣3i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故选:B.3.下列有关命题的说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:.则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若,则”的否命题是“若,则”【考点】必要条件、充分条件与充要条件的判断.【分析】A.f(0)=0推不出函数f(x)是奇函数,例如f(x)=x2;函数f(x)是奇函数,例如f(x)=,则f(0)无意义,即可判断出结论;B.利用非命题的定义即可判断出真假;C.若p∧q为假命题,则p,q至少一个为假命题,即可判断出真假;D.利用否命题的定义即可判断出真假.【解答】解:A.f(0)=0推不出函数f(x)是奇函数,例如f(x)=x2;函数f(x)是奇函数,例如f(x)=,则f(0)无意义,因此.“f(0)=0”是“函数f(x)是奇函数”的既不充分也不必要条件,不正确;B.若p:.则¬p:∀x∈R,x2﹣x﹣1≤0,因此不正确;C.若p∧q为假命题,则p,q至少一个为假命题,因此不正确;D.“若,则”的否命题是“若,则”,正确.故选:D.4.若点(sin,cos)在角α的终边上,则sinα的值为()A.B. C.D.【考点】任意角的三角函数的定义.【分析】由条件利用任意角的三角函数的定义转化求解sinα的值.【解答】解:角α的终边上一点的坐标为(sin,cos)即(,),则由任意角的三角函数的定义,可得sinα=,故选:A.5.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()A.607 B.328 C.253 D.007【考点】系统抽样方法.【分析】从第5行第6个数2的数开始向右读,依次为253,313,457,860,736,253,007,其中860,736不符合条件故可得结论.【解答】解:从第5行第6个数2的数开始向右读,第一个数为253,符合条件,第二个数为313,符合条件,第三个数为457,符合条件,以下依次为:860,736,253,007,328,其中860,736不符合条件且253与第一个重复了不能取,这样007是第四数,第五个数应为328.故第五个数为328..故选:B.6.若数列{a n}满足﹣=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10 B.20 C.30 D.40【考点】数列的求和.【分析】由题意知道,本题是构造新等差数列的问题,经过推导可知{x n}是等差数列,运用等差数列的性质可求解答案.【解答】解:由题意知:∵数列{}为调和数列∴﹣=x n+1﹣x n=d∴{x n}是等差数列又∵x1+x2+…+x20=200=∴x1+x20=20又∵x1+x20=x5+x16∴x5+x16=20故选:B.7.已知函数图象过点,则f(x)图象的一个对称中心是()A.B.C.D.【考点】正弦函数的图象.【分析】由题意可得=2sinφ,结合(|φ|<)可得φ的值,由五点作图法令2x+=0,可解得:x=﹣,则可求f(x)的图象的一个对称中心.【解答】解:∵函数f(x)=2sin(2x+φ)(|φ|<)的图象过点(0,),∴=2sinφ,由(|φ|<),可得:φ=,∴f(x)=2sin(2x+),∴由五点作图法令2x+=0,可解得:x=﹣,则f(x)的图象的一个对称中心是(﹣,0).故选:B.8.如图,网格纸上正方形小格的边长为1cm,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积为()A.20πcm3B.16πcm3C.12πcm3D.【考点】由三视图求面积、体积.【分析】由三视图判断几何体的形状,通过三视图的数据求出几何体的体积,再计算原几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π;底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π;所以切削掉部分的体积为54π﹣34π=20πcm3.故选:A.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.10.△ABC的外接圆的圆心为O,半径为2,且,且||=||,则向量在方向上的投影为()A.B.3 C.D.﹣3【考点】平面向量数量积的运算.【分析】由题意可得,可得四边形OBAC是平行四边形,结合||=||可得四边形OBAC是边长为2的菱形,且∠ABO=∠AC0=60°,可得∠ACB=∠AC0=30°,由投影的定义可得.【解答】解:∵,∴,即,可得四边形OBAC是平行四边形,∵△ABC的外接圆的圆心为O,半径为2,∴||=||=||=2,∴四边形OBAC是边长为2的菱形,且∠ABO=∠AC0=60°,∴∠ACB=∠AC0=30°,∴向量在方向上的投影为:cos∠ACB=2cos30°=.故选:A11.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)【考点】椭圆的简单性质.【分析】作出图形,则易知|AF2|=a+c,|BF2|=,再由∠BAF2是直线的倾斜角,易得k=tan∠BAF2,然后通过0<k<,分子分母同除a2得0<<求解.【解答】解:如图所示:|AF2|=a+c,|BF2|=,∴k=tan∠BAF2=,又∵0<k<,∴0<<,∴0<<,∴<e<1.故选:D.12.已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.B. C.D.【考点】利用导数研究曲线上某点切线方程.【分析】分别求出函数f(x)的导数,函数g(x)的导数.由于两曲线y=f(x),y=g(x)有公共点,设为P(x0,y0),则有f(x0)=g(x0),且f′(x0)=g′(x0),解出x0=a,得到b关于a的函数,构造函数,运用导数求出单调区间和极值、最值,即可得到b的最大值.【解答】解:函数f(x)的导数为f'(x)=x+2a,函数g(x)的导数为,由于两曲线y=f(x),y=g(x)有公共点,设为P(x0,y0),则,由于x0>0,a>0则x0=a,因此构造函数,由h'(t)=2t(1﹣3lnt),当时,h'(t)>0即h(t)单调递增;当时,h'(t)<0即h(t)单调递减,则即为实数b的最大值.故选D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数f(x)=,则f[f()]= .【考点】函数的值.【分析】根据分段函数的表达式,直接代入进行求解即可.【解答】解:由分段函数可知,f()=log,f(﹣1)=,故答案为:.14.已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为12π.【考点】球的体积和表面积.【分析】由∠BAC=90°,AB=AC=2,得到BC,即为A、B、C三点所在圆的直径,取BC的中点M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=,则OA可求,再由球的表面积公式即可得到.【解答】解:如图所示:取BC的中点M,则球面上A、B、C三点所在的圆即为⊙M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=,∴OA==,即球的半径R为,∴球O的表面积为S=4πR2=12π.故答案为:12π.15.已知圆C:(x﹣1)2+(y﹣2)2=2,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为2.【考点】圆的标准方程.【分析】得到圆心坐标和半径.等边△PAB的一边AB为圆C的一条弦,可得|PC|的最大值为直径,即可得出结论.【解答】解:由圆C:(x﹣1)2+(y﹣2)2=2,∴圆心坐标C(1,2),半径r=.∵等边△PAB的一边AB为圆C的一条弦,∴|PC|的最大值为直径2.故答案为:2.16.已知△ABC中,角A,B,C所对的边分别是a,b,c,sinA+sinB﹣4sinC=0,且△ABC的周长L=5,面积S=﹣(a2+b2),则cosC= .【考点】余弦定理.【分析】利用正弦定理化简已知的第一个等式,得到a+b=4c,代入第二个等式中计算,即可求出c的长,利用三角形的面积公式表示出三角形ABC的面积S,代入已知的等式中,利用完全平方公式变形后,将a+b=4代入化简,即可求出cosC的值.【解答】解:△ABC中,∵sinA+sinB﹣4sinC=0,∴a+b=4c,∵△ABC的周长L=5,∴a+b+c=5,∴c=1,a+b=4.∵面积S=﹣(a2+b2),∴absinC=﹣(a2+b2)=﹣[(a+b)2﹣2ab]=ab,∴sinC=,∵c<a+b,C是锐角,∴cosC==.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}为等差数列,a2=3,a4=7;数列{b n}为公比为q(q>1)的等比数列,且满足集合{b1,b2,b3}={1,2,4}.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)通过联立a2=3、a4=7计算可知等差数列{a n}的首项和公差,从而可得其通项公式;通过等比数列{b n}成公比大于1的等比数列可确定b1=1、b2=2、b3=4,进而可求出首项和公比,从而可得通项公式;(Ⅱ)通过(I),利用分组求和法计算即得结论.【解答】解:(Ⅰ)设等差数列的首项和公差分别为a1、d,∵a2=3,a4=7,∴a1+d=3,a1+3d=7,解得:a1=1,d=2,∴a n=1+2(n﹣1)=2n﹣1,∵等比数列{b n}成公比大于1的等比数列且{b1,b2,b3}={1,2,4},∴b1=1,b2=2,b3=4,∴b1=1,q=2,∴b n=2n﹣1;(Ⅱ)由(I)可知S n=(a1+a2+…+a n)+(b1+b2+…+b n)=+=n2+2n﹣1.18.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.1 0.2[30,60)0.2 0.2[60,90)0.3 0.3[90,120)0.2 0.2[120,150] 0.2 0.1优秀不优秀总计甲班乙班总计2.072 2.7063.841 5.024 6.635 7.879 10.828k00.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k0)(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?【考点】独立性检验;古典概型及其概率计算公式.【分析】(Ⅰ)由图表得到乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.然后利用枚举法得到从这六名学生随机抽取两名的基本事件个数,进一步得到恰有一位学生成绩优秀的事件个数,由古典概型概率计算公式得答案;(Ⅱ)直接由公式求出K的值,结合图表得答案.【解答】解:(Ⅰ)乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.从这六名学生随机抽取两名的基本事件有:{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个,设事件G表示恰有一位学生成绩优秀,符合要求的事件有:{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共8个,∴;(Ⅱ)优秀不优秀总计甲班 4 16 20乙班 2 18 20总计 6 34 40.在犯错概率小于0.1的前提下,没有足够的把握说明学生的数学成绩是否优秀与班级有关系.19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面平行的性质.【分析】(1)证明FB∥平面AED,BC∥平面AED,利用面面平行的判定定理可得结论;(2)连接AC,AC∩BD=O,证明AO⊥面BDEF,即可求出四棱锥A﹣BDEF的体积.【解答】(1)证明:∵ABCD是菱形,∴BC∥AD,∵BC⊄面ADE,AD⊂面ADE,∴BC∥面ADE…∵BDEF是矩形,∴BF∥DE,∵BF⊄面ADE,DE⊂面ADE,∴BF∥面ADE,∵BC⊂面BCF,BF⊂面BCF,BC∩BF=B,∴面BCF∥面ADE…(2)解:连接AC,AC∩BD=O∵ABCD是菱形,∴AC⊥BD∵ED⊥面ABCD,AC⊂面ABCD,∴ED⊥AC,∵ED,BD⊂面BDEF,ED∩BD=D,∴AO⊥面BDEF,…∴AO为四棱锥A﹣BDEF的高由ABCD是菱形,,则△ABD为等边三角形,由BF=BD=a,则,∵,∴…20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过曲线C上的一点作两条直线分别交曲线于A,B两点,已知OA,OB的斜率互为相反数,求直线AB的斜率.【考点】直线与圆的位置关系.【分析】(Ⅰ)设圆P的半径为r,由题意得|PM|+|PN|=(1+r)+(5﹣r)=6,从而曲线C是以(﹣1,0),(1,0)为焦点,长轴长为6的椭圆,由此能求出曲线C的方程.(Ⅱ)设直线QA、QB的斜率分别为k,﹣k,则A(1+λ,),B(1+μ,),由此能求出直线AB的斜率.【解答】解:(Ⅰ)∵圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C,设圆P的半径为r,由题意得|PM|+|PN|=(1+r)+(5﹣r)=6,∴曲线C是以(﹣1,0),(1,0)为焦点,长轴长为6的椭圆,∴曲线C的方程为.(Ⅱ)设直线QA、QB的斜率分别为k,﹣k,则直线QA、QB的一个方向向量为(1,k),(1,﹣k),则=λ(1,k),=μ(1,﹣k),∴A(1+λ,),B(1+μ,),代入=1,并整理,得,两式相减,得:λ﹣μ=﹣,两式相加,得:λ+μ=﹣,∴直线AB的斜率k AB==.21.已知函数f(x)=lnx﹣mx2,g(x)=mx2+x,m∈R,令F(x)=f(x)+g(x).(Ⅰ)当时,求函数f(x)的单调区间及极值;(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(Ⅱ)法一:令,求出函数的导数,通过讨论m的范围求出函数的单调区间,从而求出m的最小值即可;法二:分离参数,得到恒成立,令,根据函数的单调性求出函数h(x)的最大值,从而求出m的最小值即可.【解答】解:(Ⅰ),所以.…令f′(x)=0得x=1;…由f′(x)>0得0<x<1,所以f(x)的单调递增区间为(0,1).由f′(x)<0得x>1,所以f(x)的单调递增区间为(1,+∞).…所以函数,无极小值…(Ⅱ)法一:令.所以.…当m≤0时,因为x>0,所以G′(x)>0所以G(x)在(0,+∞)上是递增函数,又因为.所以关于x的不等式G(x)≤mx﹣1不能恒成立.…当m>0时,.令G′(x)=0得,所以当时,G′(x)>0;当时,G′(x)<0.因此函数G(x)在是增函数,在是减函数.…故函数G(x)的最大值为.令,因为.又因为h(m)在m∈(0,+∞)上是减函数,所以当m≥2时,h(m)<0.所以整数m的最小值为2.…法二:由F(x)≤mx﹣1恒成立知恒成立…令,则…令φ(x)=2lnx+x,因为,φ(1)=1>0,则φ(x)为增函数故存在,使φ(x0)=0,即2lnx0+x0=0…当时,h′(x)>0,h(x)为增函数当x0<x时,h′(x)<0,h(x)为减函数…所以,而,所以所以整数m的最小值为2.…请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.(1)求证:AD•AB=AE•AC;(2)求线段BC的长度.【考点】与圆有关的比例线段;圆內接多边形的性质与判定.【分析】(1)推导出B,C,D,E四点在以BC为直径的圆上,由割线定理能证明AD•AB=AE •AC.(2)过点F作FG⊥BC于点G,推导出B,G,F,D四点共圆,F,G,C,E四点共圆,由此利用割线定理能求出BC的长.【解答】证明:(1)由已知∠BDC=∠BEC=90°,所以B,C,D,E四点在以BC为直径的圆上,由割线定理知:AD•AB=AE•AC.…解:(2)如图,过点F作FG⊥BC于点G,由已知,∠BDC=90°,又因为FG⊥BC,所以B,G,F,D四点共圆,所以由割线定理知:CG•CB=CF•CD,①…同理,F,G,C,E四点共圆,由割线定理知:BF•BE=BG•BC,②…①+②得:CG•CB+BG•BC=CF•CD+BF•BE,即BC2=CF•CD+BF•BE=3×5+3×5=30,…所以BC=.…[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.【考点】简单曲线的极坐标方程;点的极坐标和直角坐标的互化.【分析】解:(I)利用cos2φ+sin2φ=1,即可把圆C的参数方程化为直角坐标方程.(II)设(ρ1,θ1)为点P的极坐标,由,联立即可解得.设(ρ2,θ2)为点Q的极坐标,同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.【解答】解:(I)利用cos2φ+sin2φ=1,把圆C的参数方程为参数)化为(x﹣1)2+y2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.(II)设(ρ1,θ1)为点P的极坐标,由,解得.设(ρ2,θ2)为点Q的极坐标,由,解得.∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.[选修4-5:不等式选讲]24.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用零点分段法去掉绝对值符号,转化为不等式组,解出x的范围;(2)由基本不等式,可以解得m2+n2+p2≥mn+mp+np,将条件平方可得(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,代入m2+n2+p2≥mn+mp+np,即可证得要求证得式子.【解答】(1)解:①x≥2时,f(x)=2x﹣4+x+1=3x﹣3,由f(x)<6,∴3x﹣3<6,∴x<3,即2≤x<3,②﹣1<x<2时,f(x)=4﹣2x+x+1=5﹣x,由f(x)<6,∴5﹣x<6,∴x>﹣1,即﹣1<x <2,③x≤﹣1时,f(x)=4﹣2x﹣1﹣x=3﹣3x,由f(x)<6,∴3﹣3x<6,∴x>﹣1,可知无解,综上,不等式f(x)<6的解集为(﹣1,3);(2)证明:∵f(x)=2|x﹣2|+|x+1|,∴f(2)=3,∴m+n+p=f(2)=3,且m,n,p为正实数∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,∵m2+n2≥2mn,m2+p2≥2mp,n2+p2≥2np,∴m2+n2+p2≥mn+mp+np,∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9≥3(mn+mp+np)又m,n,p为正实数,∴可以解得mn+np+pm≤3.故证毕.2016年10月19日。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)
2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014全国统一高考数学真题及逐题详细解析(文科)—广西卷
2014年普通高等学校统一考试广西(大纲)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( )A .2B .3C .5D .72.已知角α的终边经过点(4,3)-,则cos α=( ) A .45 B .35 C .35- D .45- 3.不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x > 4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16 B C .13 D5.函数1)(1)y x =>-的反函数是( ) A .3(1)(1)x y e x =->- B .3(1)(1)x y e x =->- C .3(1)()x y e x R =-∈ D .3(1)()x y e x R =-∈6.已知a b 、为单位向量,其夹角为060,则(2)a b b -∙=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( ) A .31 B .32 C .63 D .649. 已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π11.双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,则C 的焦距等于( )A .2 B. C .4 D.12.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 6(2)x -的展开式中3x 的系数为 .(用数字作答) 14.函数cos22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)数列{}n a 满足12212,2,22n n n a a a a a ++===-+. (1)设1n n n b a a +=-,证明{}n b 是等差数列;(2)求{}n a 的通项公式. 18. (本小题满分12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知13cos 2cos ,tan 3a C c A A ==,求B. 19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 1A AB C --的大小.20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用某种设备相互独立。
2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版
2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合,则中元素的个数为( )A .2B .3C .5D .72.已知角的终边经过点,则( )A .B .C .D .3.不等式组的解集为( )A .B .C .D .4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .B .C .D .{1,2,4,6,8},{1,2,3,5,6,7}M N ==MN α(4,3)-cos α=453535-45-(2)0||1x x x +>⎧⎨<⎩{|21}x x -<<-{|10}x x -<<{|01}x x <<{|1}x x>1661335.函数的反函数是( )A .B .C .D .6.已知为单位向量,其夹角为,则( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列的前n 项和为,若则( ) A .31 B .32 C .63 D .641)(1)y x =>-3(1)(1)x y e x =->-3(1)(1)xy e x =->-3(1)()x y e x R =-∈3(1)()xy e x R =-∈a b 、60(2)a b b -∙={}n a n S 243,15,S S ==6S =9. 已知椭圆C :的左、右焦点为、,离心率为,过的直线交C 于A 、B 两点,若的周长为C 的方程为( )A .B .C .D .10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A.B .C .D .11.双曲线C :的离心率为2,则C的焦距等于()A .2B .C .4D .22221x y a b+=(0)a b >>1F 2F 32F l 1AF B ∆22132x y +=2213x y +=221128x y +=221124x y +=814π16π9π274π22221(0,0)x y a b a b-=>>12.奇函数的定义域为R ,若为偶函数,且,则( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 的展开式中的系数为 .(用数字作答)14.函数的最大值为 .()f x (2)f x +(1)1f =(8)(9)f f +=6(2)x -3x cos 22sin y x x =+15. 设x 、y 满足约束条件,则的最大值为 .16. 直线和是圆的两条切线,若与的交点为(1,3),则与的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n+2=2a n+1-a n +2得a n+2- a n+1=a n+1-a n +2,即b n+1=b n +2,又b 1=a 2-a 1=1. 所以{b n }是首项为1,公差为2的等差数列;(1) 由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是于是a n -a 1=n 2-2n ,即a n =n 2-2n +1+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.(18)(本小题满分10分)02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩4z x y =+1l 2l 222x y +=1l 2l 1l 2l 111()(21)nnk k k k a a k +==-=-∑∑△ABC的内角A,B,C的对边分别是a,b,c,已知3acosC=2ccosA,tanA=,求B.解:由题设和正弦定理得,3sinAcosC=2sinCcosA,所以3tanAcosC=2sinC.因为tanA=,所以cosC=2sinC.tanC=.所以tanB=tan[180-(A+C)]=-tan(a+c)==-1,即B=135.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1,求二面角A1-AB-C的大小.解法一:(1)∵A1D⊥平面ABC, A1D平面AA1C1C,故平面AA1C1C⊥平面ABC,又BC⊥AC,所以BC⊥平面AA1C1C,连结A1C,因为侧面AA1C1C是棱形,所以AC1⊥A1C,由三垂线定理的AC1⊥A1B.(2) BC⊥平面AA1C1C,BC平面BCC1B1,故平面AA1C1C⊥平面BCC1B1,作A1E⊥C1C,E为垂足,则A1E⊥平面BCC1B1,又直线A A1∥平面BCC1B1,因而A1E为直线A A1与平面BCC1B1间的距离,A1,因为A1C为∠ACC1的平分线,故A1D=A1131312︒tan tan1tan tanA CA C+--︒︒⊂⊂作DF ⊥AB ,F 为垂足,连结A 1F,由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1-AB-C 的平面角,由,得D 为AC 的中点,DF=,tan ∠A 1FD=,所以二面角A 1-AB-C的大小为解法二:以C为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-x y z ,由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0)B (0,1,0),则(-2,1,0),,,由,即,于是①,所以.(2)设平面BCC 1B 1的法向量,则,,即,因,故y=0,且(a-2)x -c z =0,令x =c ,则z =2-a ,,点A到平面BCC 1B 1的距离为,又依题设,点A 到平面BCC 1B 1的距c=.代入①得a=3(舍去)或a=1.于是,设平面ABA 1的法向量,则,即.且-2p +q =0,令p,则q,r=1,,又为1=12AC BC AB ⨯⨯=1A DDF=AF =1(2,0,0),(2,0,)AC AA a c =-=-111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-12AA =2=2240a a c -+=11AC BA ⋅=2240a a c -+=11AC BA ⊥(,,)m x y z =m CB ⊥1,m CB m BB ⊥⊥10,0m CB m BB ⋅=⋅=11(0,1,0),(2,0,)CB BB AA a c ==-(,0,2)m c a =-cos ,CA m CA m CA c mc ⋅⋅<>===1(1AA =-(,,)n p q r =1,n AA n AB ⊥⊥10,0n AA n AB ⋅=⋅=0p -=(3,2n =(0,0,1)p =平面ABC 的法向量,故cos ,所以二面角A 1-AB-C 的大小为arccos20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2.B 表示事件:甲需使用设备.C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2··CP(B)=0.6,P(C)=0.4,P(A i )=.所以P(D)=P(A 1·B ·C+A 2·B+A 2··C )= P(A 1·B ·C)+P(A 2·B)+P(A 2··C ) = P(A 1P)·P(B)·P(C)+P(A 2)·P(B)+P(A 2)·p ()·p (C )=0.31. (2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B ·C ·A 2,P(E)=P(B ·C ·A 2)= P(B)·P(C)·P(A 2)=0.06; 若k=4,则P(F)=0.06<0.1. 所以k 的最小值为3.21. (本小题满分12分)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1),的判别式△=36(1-a ). (i )若a ≥1,则,且当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.1,4n p n p n p⋅<>==14B 220.5,0,1,2i C i ⨯=B B B 2()363f x ax x '=++2()3630f x ax x '=++=()0f x '≥()0f x '=(ii )由于a ≠0,故当a<1时,有两个根:, 若0<a<1,则当x ∈(-,x 2)或x ∈(x 1,+)时,,故f (x )在(-,x 2),(x 1,+)上是增函数;当x ∈(x 2,x 1)时,,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ,所以当a>0时,f (x )在区间(1,2)是增函数. 若a<0时,f (x )在区间(1,2)是增函数当且仅当且,解得. 综上,a 的取值范围是. 22. (本小题满分12分)已知抛物线C:的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.解:(1)设Q (x 0,4),代入由中得x 0=, 所以,由题设得,解得p =-2(舍去)或p =2.所以C 的方程为.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为,(m ≠0)代入中得,()0f x '=12x x ==∞∞()0f x '>∞∞()0f x '<()0f x '>(1)0f '≥(2)0f '≥504a -≤<5[,0)(0,)4-+∞22(0)y px p =>54QF PQ =l '22(0)y px p =>8p088,22p p PQ QF x p p ==+=+85824p p p+=⨯24y x =1x my =+24y x =2440y my --=设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4, 故AB 的中点为D (2m 2+1,2m ),,有直线的斜率为-m ,所以直线的方程为,将上式代入中,并整理得. 设M(x 3,y 3),N(x 4,y 4),则. 故MN的中点为E(). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于,从而,即,化简得 m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=02124(1)AB y m =-=+l 'l '2123x y m m=-++24y x =2244(23)0y y m m+-+=234344,4(23)y y y y m m+=-=-+23422223,),m MN y y m m ++-=-=12AE BE MN ==2221144AB DE MN +=222222224224(1)(21)4(1)(2)(2)m m m m m m m+++++++=。