新-21.二次根式的运算及化简求值

合集下载

二次根式及其运算

二次根式及其运算
【解析】 (1)原式=(3 2)2-1-[(2 2)2-4 2+1] =18-1-8+4 2-1=8+4 2.
(2)原式=( 10-3)2016×( 10+3)2016×( 10-3) =[( 10-3)( 10+3)]2016×( 10-3) =[( 10)2-32]2016×( 10-3) =(10-9)2016×( 10-3)=1×( 10-3) = 10-3.
★名师指津 最简二次根式成立的条件缺一不可,而二次 根式在表达形式上,容易导致认识错误,例如 0.2b和 x2-y2,会误以为前者不含分母、后者含有能开方的因 式.应注意对数学概念的理解:小数可以转化成分数, 因式和项有区别.
易错点3
二次根式的性质
=|a|
1 1 1 2 【典例 3】 化简并求值:a+ a + 2-2,其中 a= . a 5 12 a - 1 1 1 【错解】 原式= + a = +a- =a. a a a 1 1 当 a= 时,原式=a= . 5 5 12 a - 1 【析错】 化简 a2+ 2-2= 根据 a2=|a|, a 时, a 可知结果一定是非负数. 12 1 a- a- 1 1 1 ∵当 a= 时,a- <0,∴ a = a = -a, 5 a a 1 而不是 a- . a
按时完成课后强化训练5,全面提升自我!
单击此处进入课后强化训练5
x≤ 9
x- 1 【类题演练 1】 (2016· 怀化)函数 y= 中, 自变量 x x- 2 的取值范围是 ( ) A. x≥0 B. x>1 C. x≥1 且 x≠2 D. x≠2
【解析】 根据二次根式有意义的条件,得 x-1≥0,由 分式有意义的条件,得 x-2≠0, ∴x≥1 且 x≠2.
【答案】 D
2.(2016· 自贡)下列根式中,不是最简二次根式的是( A. 10 B. 8 C. 6 D. 2

二次根式化简求值的十种技巧

二次根式化简求值的十种技巧

二次根式化简求值的十种技巧
1、分解因子:将多项式的括号分解,提取未知项;
2、分子分母同乘以同一因子或者最小公倍数:分子分母乘以最小公倍数后,可分解未知项;
3、比例问题转化为相似三角形:通过比例问题比较两个等式,转化为两个相似三角形,求他们的包含角;
4、代入等式方法:把另外一个等式中的已知值替换掉未知项,再用未知项代入其他等式求解;
5、化简为等式:将式子中的所有常数项移到右边,使左边的各未知项组成解;
6、同类项除法:直接将同类项的分子分母分别相除,可消去某项未知数;
7、加减同乘:可以把加/减法式改成乘法式,使同类项可相除;
8、乘除同加:可以把乘/除法式改成加法式,使同类项可分解;
9、移项求值:把式子中的所有未知项移到右边,用常数项求出变量值;
10、套管问题:将多项式中的未知数抽出,再套回原来的表达式中去,计算未知项的值。

二次根式的化简求值—2023-2024学年八年级数学下册压轴题(沪科版)(解析版)

二次根式的化简求值—2023-2024学年八年级数学下册压轴题(沪科版)(解析版)

z二次根式的化简求值整体思想:指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。

一、二次根式的定义形如√a (a ≥0)的式子叫做二次根式,√⬚叫做二次根号,a 叫做被开方数. 二、二次根式有意义的条件1.二次根式中的被开方数是非负数;2.二次根式具有非负性:√a ≥0. 三、判断二次根式有意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是 非负数;2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.四、二次根式的性质性质1:&√a'!=a (a ≥0),即一个非负数的算术平方根的平方等于它本身;性质2:√a !=|a|=)a (a ≥0)−a (a <0),即一个任意实数平方的算术平方根等于它本身的绝对值.五、同类二次根式把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式. ①同类二次根式类似于整式中的同类项;②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.◆知识点总结◆思想方法z六、二次根式的加减法则二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变. 七、二次根式的乘除法则①二次根式的乘法法则:√a ∙√b =√a ∙b(a ≥0,b ≥0); ②积的算术平方根:√a ∙b =√a ∙√b(a ≥0,b ≥0); ③二次根式的除法法则:√#√$=5#$(a ≥0,b >0);④商的算术平方根:5#$=√#√$(a ≥0,b >0).八、最简二次根式我们把满足①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.这两个条件的二次根式,叫做最简二次根式. 九、分母有理化1.分母有理化是指把分母中的根号化去:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母 组成平方差公式;2.两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个 二次根式的有理化因式不止一个.【典例1】阅读下列材料,然后回答问题.①在进行二次根式的化简与运算时,我们有时会碰上如!√%&'一样的式子,其实我们还可以将其进一步化简:!√%&'= !(√%)')(√%&')(√%)')= !(√%)')(√%)!)'=!(√%)')!= √3−1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知 a +b =2,ab = -3 ,求a !+b !.我们可以把a +b 和ab 看成是一个整体,令 x =a +b , y = ab ,则a !+b !=(a +b)!−2ab =x !−2y =4+6=10.这样,我们不用求出a ,b ,就可以得到最后的结果. (1)计算:'√%&'+ '√+&√%+ '√,&√++ ...+'√!-'.&√!-',;◆典例分析z(2)m 是正整数, a =√/&')√/√/&'&√/,b =√/&'&√/√/&')√/且2a !+1823ab +2b !=2019.求 m .(3)已知√15+x !−√26−x !=1,求√15+x !+√26−x !的值.(1)由题目所给出的规律进行计算即可;(2)先求出a +b =2(2m +1),ab =1再由2a !+1823ab +2b !=2019进行变形再求值即可;(3)先得到√15+x !⋅√26−x !=20,然后可得(√15+x !+√26−x !)!=(√15+x !−√26−x !)!+4√15+x !⋅√26−x !=81,最后由√15+x !≥0,√26−x !≥0,求出结果. 解:(1)原式=√%)'!+√+)√%!+√,)√+!+⋯+√!-'.)√!-',!=√3−1+√5−√3+√7−√5+⋯+√2019−√20172=√!-'.)'!, (2)∵a =√/&')√/√/&'&√/,b =√/&'&√/√/&')√/,∴a +b =(√/&')√/)!&(√/&'&√/)!(√/&'&√/)(√/&')√/)=2(2m +1),ab =1,∵2a !+1823ab +2b !=2019, ∴2(a !+b !)+1823=2019, ∴a !+b !=98, ∴4(2m +1)!=100, ∴2m =±5−1, ∵m 是正整数, ∴m =2.(3)由√15+x !−√26−x !=1得出(√15+x !−√26−x !)!=1, ∴√15+x !⋅√26−x !=20,∵(√15+x !+√26−x !)!=(√15+x !−√26−x !)!+4√15+x !⋅√26−x !=81, 又∵√15+x !≥0,√26−x !≥0, ∴√15+x !+√26−x !=9.z1.(2023下·浙江·八年级阶段练习)已知x =√2−√3,y =√2+√3,则代数式Kx !+2xy +y !+x −y −4的值为( ) A .√%! B .%C .√3−1D .√+)'!【思路点拨】根据已知,得到x +y =√2−√3+√2+√3=2√2,x −y =√2−√3−√2−√3=−2√3,整体思想带入求值即可. 【解题过程】解:∵x =√2−√3,y =√2+√3,∴x +y =√2−√3+√2+√3=2√2,x −y =√2−√3−√2−√3=−2√3, ∴Kx !+2xy +y !+x −y −4=K (x +y )!+(x −y )−4 =5&2√2'!−2√3−4 =58−2√3−4 =54−2√3 =5&√3'!−2√3+1 =5&√3−1'! =√3−1. 故选C .2.(2022下·广西钦州·八年级统考阶段练习)已知x +'1=7(0<x <1),则√x −'√1的值为( )A .−√7B .−√5C .√7D .√5【思路点拨】由0<x <1,得0<x <'1,故√x <'√1,将√x −'√1平方展开计算,后开平方即可.【解题过程】解:∵0<x <1, ∴0<x <'1,◆学霸必刷∴√x<'√1,∵(√x−'√1)!=x−2+'1,x+'1=7(0<x<1),∴(√x−'√1)!=5,∴√x−'√1=-√5或√x−'√1=√5,∵√x<'√1,∴√x−'√1<0,∴√x−'√1= -√5,√x−'√1=√5不符合题意,舍去,故选B.3.(2023·浙江宁波·校考一模)若x!+y!=1,则√x!−4x+4+K xy−3x+y−3的值为()A.0 B.1 C.2 D.3【思路点拨】先根据x!+y!=1得出−1≤x≤1,−1≤y≤1,根据√x!−4x+4+K xy−3x+y−3要有意义,得出(x+1)(y−3)≥0,根据y−3<0得出x+1≤0,从而得出x=−1,将x=−1代入即可求出式子的值.【解题过程】解:∵x!+y!=1,∴−1≤x≤1,−1≤y≤1,∵√x!−4x+4+K xy−3x+y−3要有意义,∴xy−3x+y−3≥0,整理得:(x+1)(y−3)≥0,∵y−3<0,∴x+1≤0,∴x=−1,∴√x!−4x+4+K xy−3x+y−3=K(x−2)!+K(x+1)(y−3)=K(−1−2)!+K(−1+1)(y−3)=3+0=3,故D正确.故选:D.4.(2023上·四川达州·八年级校考期中)已知x='√!-!-)√!-'.,则x6﹣2√2019x5﹣x4+x3﹣2√2020x2+2x ﹣√2020的值为()A.0 B.1 C.√2019D.√2020【思路点拨】对已知进行变形,再代入所求式子,反复代入即可.【解题过程】解:∵x='√!-!-)√!-'.=√2020+√2019,∴x2−2√2019x+−x0+x%−2√2020x!+2x−√2020,=x+&x−2√2019'−x0+x!&x−2√2020'+2x−√2020,=x+&√2020+√2019−2√2019'−x0+x!&√2020+√2019−2√2020'+2x−√2020,=x+&√2020−√2019'−x0+x!&√2019−√2020'+2x−√2020,=x0Mx&√2020−√2019'−1N+x!&√2019−√2020'+2x−√2020,=x&√2020+√2019'&√2019−√2020'+2x−√2020=−x+2x−√2020,=x−√2020,=√2019,故选:C.5.(2023·安徽·校联考模拟预测)设a为K3+√5−K3−√5的小数部分,b为K6+3√3−K6−3√3的小数部分,则!b −'#的值为()A.√6+√2−1B.√6−√2+1C.√6−√2−1 D.√6+√2+1【思路点拨】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【解题过程】解:K3+√5−K3−√5=P 6+2√52-P 6-2√52=√5+1√2-√5-1√2=√2∴a 的小数部分为√2-1, 56+3√3−56−3√3 =P 12+6√32−P 12−6√32=√3+3√2-3-√3√2=√6∴b 的小数部分为√6-2, ∴!b −'#=!√2-!-'√!-'=√6+2-√2-1=√6-√2+1,故选:B .6.(2022上·湖南益阳·八年级统考期末)设a '=1+''!+'!!,a !=1+'!!+'%!,a %=1+'%!+'0!,……,a 5=1+'5!+'(5&')!.其中n 为正整数,则√a '+√a !+K a %+⋅⋅⋅+K a !-!'的值是( ) A .2020!-'.!-!-B .2020!-!-!-!'C .2021!-!-!-!'D .2021!-!'!-!!【思路点拨】根据题意,先求出K a 5=1+'5(5&'),然后把代数式进行化简,再进行计算,即可得到答案.【解题过程】解:∵n 为正整数, ∴K a 5=51+'5!+'(5&')! =55!•(5&')!&(5&')!&5!5!(5&')!=5[5(5&')]!&!5(5&')&'5!(5&')!=9(5!&5&')!5(5&')=5!&5&'5(5&')=1+'5(5&');∴√a'+√a!+K a%+⋯+K a!-!'=(1+''×!)+(1+'!×%)+(1+'%×0)+…+(1+'!-!'×!-!!)=2021+1﹣'!+'!−'%+'%−'+⋯+'!-!'−'!-!!=2021+1﹣'!-!!=2021!-!'!-!!.故选:D.7.(2023上·上海金山·八年级校考期中)如果a=√5−2,则'#+5'#!+a!−2=.【思路点拨】本题考查了二次根式的化简求值,熟练掌握二次根式的性质、完全平方公式是解题关键.先根据二次根式的分母有理化可得'#,从而可得'#−a>0,再利用完全平方公式化简二次根式,代入计算即可得.【解题过程】解:∵a=√5−2,∴'#='√+)!=√+&!;√+&!<;√+)!<=√5+2,∴'#−a=√5+2−&√5−2'=4>0,∴1a+P1a!+a!−2=1a+P R1a−aS!=1a+R1a−aS=√5+2+4=√5+6.故答案为:√5+6.8.(2022上·湖南长沙·七年级校联考阶段练习)已知x=+)√',√',)%,y=√',)%+)√',,则4x!−3xy+4y!=.【思路点拨】先把x和y的值分母有理化得到x=√',)'0,y=√',&',则x−y=−'!,xy=1,再利用完全平方公式变形原式得到4(x−y)!+5xy,然后利用整体代入的方法计算.解:∵x=+)√',√',)%,y=√',)%+)√',,∴x=;+)√',<;√',&%<;√',)%<;√',&%<=√',)',y=;√',)%<;+&√',<;+)√',<;+&√',<=√',&',∴x−y=−'!,xy=1,∴原式=4(x−y)!+5xy=4×(−12)!+5×1=6.故答案为6.9.(2022下·浙江杭州·八年级校考期中)已知√x+'√1=2,那么511!&%1&'−511!&.1&'的值等于.【思路点拨】通过完全平方公式求出x+'1=2,把待求式的被开方数都用x+'1的代数式表示,然后再进行计算.【解题过程】解:∵√x+'√1=2,∴U√x+'√1V!=4,∴x+'1+2=4∴x+'1=2,∴511!&%1&'−511!&.1&'=P 1x+3+1x−P1x+9+1x=P 12+3−P12+9=√++−√''''.故答案为:√++−√''''.10.(2023下·广东深圳·九年级深圳中学校考自主招生)已知x,y为正整数,x K y+y√x−√7x−√7y+ K7xy=7,求x+y=.将等式进行因式分解,得到&√x+K y+√7'&K xy−√7'=0,求得xy=7,即可求解.【解题过程】解:∵x K y+y√x−√7x−K7y+K7xy=7,∴x K y+y√x−√7x−K7y+K7xy−7=0,∴K xy&√x+K y'−√7&√x+K y'+√7&K xy−√7'=0,∴&√x+K y'&K xy−√7'+√7&K xy−√7'=0,∴&√x+K y+√7'&K xy−√7'=0,∵√x+K y+√7>0,∴K xy−√7=0,∴xy=7,又x,y为正整数,则(x,y)=(1,7)或(7,1),从而x+y=8,故答案为:8.11.(2023下·黑龙江绥化·八年级校考阶段练习)设x=√3−2,则x2+3x++11x%+2x+1=.【思路点拨】利用(x+2)!=x!+4x+4和x=√3−2,推得x!+4x+1=0,借助该式将多项式进行降幂化简,即可求解.【解题过程】解:∵x=√3−2,∴(x+2)!=&√3−2+2'!=3,又∵(x+2)!=x!+4x+4,即x!+4x+4=3,整理得x!+4x+1=0,x2+3x++11x%+2x+1=x0(x!+4x+1)+3x++11x%+2x+1−4x+−x0=−x+−x0+11x%+2x+1=−x%(x!+4x+1)−x0+11x%+2x+1+4x0+x%=3x0+12x%+2x+1=3x!(x!+4x+1)+2x+1−3x!=−3x!+2x+1=−3(x!+4x+1)+2x+1+12x+3=14x+4,将x=√3−2代入原式可得14×&√3−2'+4=14√3−24.故答案为:14√3−24.12.(2022下·湖北武汉·九年级统考自主招生)已知x=%&√+!,则代数式2x%−3x!−7x+2022的值为.【思路点拨】将已知条件x=%&√+!变形得,x!−3x=−1,再将所求代数式变形为2x%−6x!+3x!−7x+2022,由此即可求解.【解题过程】解:已知x=%&√+!,∴2x=3+√5,即2x−3=√5,等式两边同时平方得,(2x−3)!=&√5'!,整理得,4x!−12x+9=5,即4x!−12x=−4,∴x!−3x=−1,∵2x%−3x!−7x+2022=2x(x!−3x)+3x!−7x+20022把x!−3x=−1代入得,=2x×(−1)+3x!−7x+2022=3x!−2x−7x+2022=3x!−9x+2022=3(x!−3x)+2022把x!−3x=−1代入得,=3×(−1)+2022=2019,故答案为:2019.13.(2022上·上海闵行·八年级上海市闵行区莘松中学校考期中)先化简,再求值:1)=√1)√=+1&=&!√1=√1&√=,其中x=3,y='%.首先对第一个式子的分子利用平方差公式分解,第二个式子利用完全平方公式分解,然后约分,合并同类二次根式即可化简,然后代入数值计算即可.【解题过程】解:原式=(√1)√=)(√1&√=)√1)√=+(√1&√=)!√1&√==√x+K y+√x+K y =2√x+2K y当x=3,y='%时,原式=2√3+25'%=2√3+23√3=>%√3.14.(2023·北京·九年级专题练习)已知x=√%)√!√%&√!,y=√%&√!√%)√!,求1=!+=1!的值.【思路点拨】首先把x和y进行分母有理化,然后将其化简后的结果代入计算即可.【解题过程】解:∵x=√%)√!√%&√!=(√%)√!)(√%)√!)(√%&√!)(√%)√!)=5−2√6,y=√%&√!√%)√!=(√%&√!)(√%&√!)(√%)√!)(√%&√!)=5+2√6,∴原式=+)!√2(+&!√2)!++&!√2(+)!√2)!=5−2√649+20√6+5+2√649−20√6=(5−2√6)(49−20√6)(49+20√6)(49−20√6)+(5+2√6)(49+20√6)(49−20√6)(49+20√6)=245−100√6−98√6+240+245+100√6+98√6+240 =970.15.(2023下·山东威海·九年级校考期中)已知a+b=−8,ab=12,求b5$#+a5#$的值.【思路点拨】根据题意可判断a和b都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.解:∵a +b =−8,ab =12, ∴a 和b 均为负数,a !+b !=(a +b )!−2ab =40 b P b a +a5a b =b P b !ab +a P a !ab=b√b !√ab +a √a !√ab =b√b !+a√a !√ab=b (−b )+a (−a )√ab=−b !−a !√ab=−(a !+b !)√ab=−40√12 =−40√1212 =−40×2√312 =−20√33 16.(2023上·上海杨浦·七年级校考阶段练习)已知a −2√ab −15b =0,求#&√#$&!$#)!√#$&$的值.【思路点拨】讨论:当a >0,b >0,利用因式分解的方法得到&√a −5√b'&√a +3√b'=0,解得a =25b ,当a<0,b <0,则−M&√−a +5√−b'&√−a −3√−b'N =0,解得a =9b ,然后把a =25b ,a =9b 代入#&√#$&!$#)!√#$&$中进行分式的化简求解. 【解题过程】解: ∵ a −2√ab −15b =0要有意义,即ab ≥0, ∴ a >0且b >0或a<0且b <0,当a>0且b>0时,∵a−2√ab−15b=&√a−5√b'&√a+3√b'=0,∴√a−5√b=0或√a+3√b=0(舍去),解得:a=25b,把a=25b代入#&√#$&!$#)!√#$&$得:#&√#$&!$#)!√#$&$=!+$&+$&!$!+$)'-$&$=2;当a<0且b<0时,∵a−2√ab−15b=−M&√−a+5√−b'&√−a−3√−b'N=0,∴√−a+5√−b=0(舍去)或√−a−3√−b=0,解得:a=9b,把a=9b代入#&√#$&!$#)!√#$&$得:#&√#$&!$#)!√#$&$=.$&%√$!&!$.$)2√$!&$=.$)%$&!$.$&2$&$='!.17.(2023上·四川成都·八年级成都市三原外国语学校校考阶段练习)已知x='√'-)%,y='√'-&%.(1)求x!+2xy+y!的值.(2)求9(1!)01&0)1(1)!)−9(=!&!=&')=(=&')值.【思路点拨】(1)先将x、y进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x、y进行计算即可.【解题过程】(1)∵x='√'-)%=√10+3,y='√'-&%=√10−3,∴x+y=2√10,x−y=6,∴x!+2xy+y!=(x+y)!=(2√10)!=40.(2)∵x=√10+3,y=√10−3,∴x−2>0,y+1>0,∴K(x!−4x+4)x(x−2)−K(y!+2y+1)y(y+1)=x−2x(x−2)−y+1y(y+1)=1x−1y=1√10+3−1√10−3=√10−3−√10−3=−6.18.(2023上·河北衡水·八年级校联考阶段练习)已知x=2−√3,y=2+√3.(1)求x+y和xy的值;(2)求x!+y!−3xy的值;(3)若x的小数部分是a,y的整数部分是b,求ax−by的值.【思路点拨】本题考查了二次根式的混合运算、利用完全平方公式进行计算、无理数的估算,熟练掌握以上知识点并灵活运用是解此题的关键.(1)代入x=2−√3,y=2+√3即可求出x+y和xy的值;(2)将原式变形为(x+y)!−5xy,代入数值进行计算即可;(3)先估算出1<√3<2,从而得出a=2−√3,b=3,再代入进行计算即可得出答案.【解题过程】(1)解:∵x=2−√3,y=2+√3,∴x+y=2−√3+2+√3=4,xy=&2−√3'&2+√3'=4−3=1;(2)解:由(1)得:x+y=4,xy=1,∴x!+y!−3xy=(x+y)!−5xy=4!−5×1=11(3)解:∵1<3<4,∴√1<√3<√4,即1<√3<2,∴−2<−√3<−1,∴0<2−√3<1,∵x的小数部分是a,∴a=2−√3,∵3<2+√3<4,y的整数部分是b,∴b=3,∴ax−by=&2−√3'&2−√3'−3&2+√3'=4−4√3+3−6−3√3=1−7√3.19.(2023下·广东江门·八年级统考期中)有这样一类题目:将K a ±2√b 化简,如果你能找到两个数m 、n ,使m !+n !=a 且mn =√b ,a ±2√b 将变成m !+n !±2mn ,即变成(m ±n)!,从而使K a ±2√b 得以化简. (1)例如,∵5+2√6=3+2+2√6=(√3)!+(√2)!+2√2×√3=(√3+√2)!, ∴K 5+2√6=5(√3+√2)!=______,请完成填空. (2)仿照上面的例子,请化简K 4−2√3;(3)利用上面的方法,设A =K 6+4√2,B =K 3−√5,求A +B 的值. 【思路点拨】(1)根据二次根式的性质:√a !=|a|=Z a(a >0)0(a =0)−a(a <0),即可得出相应结果.(2)根据(1)中“5+2√6=3+2+2√6=(√3)!+(√2)!+2√2×√3=(√3+√2)!”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A 式和B 式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B 式的结果分别算出,最后把A 式和B 式再代入A +B 中,求出A +B 的值. 【解题过程】(1)∵5+2√6=2+3+2√6=&√2'!+&√3'!+2×√2×√3=&√2+√3'!∴K 5+2√6=5(√3+√2)!=√3+√2 故答案为:√3+√2(2)∵4−2√3=3+1−2√3=&√3'!+1−2√3=&√3−1'!∴K 4−2√3=5(√3−1)!=√3−1.(3)∵A =6+4√2=4+2+4√2=&√4'!+&√2'!+2×√4×√2=(2+√2)! ∴A =K 6+4√2=2+√2 ∵B =3−√5=2)!√+!=+&')!√+!=;√+<!&'!)!×'×√+!=(√+)')!! ∴B =K 3−√5=5;√+)'<!!=√+)'√!=√'-)√!!='!√10−'!√2∴把A 式和B 式的值代入A +B 中,得:A+B=2+√2+12√10−12√2=2+12√10+√2220.(2023下·广西钦州·八年级校考阶段练习)我们将&√a+√b'、&√a−√b'称为一对“对偶式”,因为&√a+√b'&√a−√b'=(√a)!−(√b)!=a−b,所以构造“对偶式”再将其相乘可以有效的将&√a+√b'和&√a−√b'中的“√⬚”去掉于是二次根式除法可以这样解:如'√%=√%√%×√%=√%%,!&√!!)√!=(!&√!)!(!)√!)×(!&√!)=3+2√2.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小'√,)!_____'√2)√%用“>”、“<”或“=”填空);(2)已知x=√+&!√+)!,y=√+)!√+&!,求1)=1!=&1=!的值;(3)计算:!%&√%+!+√%&%√++!,√+&+√,+⋯+!..√.,&.,√..【思路点拨】(1)先分母有理化,然后根据作差法,比较大小即可求解;(2)先求得x−y,xy的值,然后代入即可求解;(3)将每一项分母有理化,然后就根据二次根式的加减进行计算即可求解.【解题过程】(1)'√,)!=√,&!;√,)!<;√,&!<=√,&!%,'√2)√%=√2&√%;√2)√%<;√2&√%<=√2&√%%∵√7>√6,2>√3∴√,&!%−√2&√%%='%M&√7−√6'+&2−√3'N>0,∴'√,)!>'√2)√%,故答案为:>.(2)∵x=√+&!√+)!=;√+&!<!;√+&!<;√+)!<=5+4√5+4=9+4√5,y=√+)!√+&!=;√+)!<!;√+&!<;√+)!<=5−4√5+4=9−4√5,∴x+y=9+4√5+9−4√5=18,x−y=9+4√5+−9+4√5=8√5,xy=&9+4√5'&9−4√5'=81−80=1,∴1)=1!=&1=!=1)=1=(1&=)=>√+'×'>=0√+.;(3)!%&√%+!+√%&%√++!,√+&+√,+⋯+!..√.,&.,√..=2(3−√3)(3+√3)(3−√3)+2(5√3−3√5)(5√3+3√5)(5√3−3√5)+√97+97√99(7√5+5√7)(7√5−5√7)+⋯+2(99√97−97√99)(99√97+97√99)(99√97−97√99)=1−√33+√33−√55+√55−√77+⋯+√9797−√9999=1−√99 99=1−√''%%.。

「初中数学」常见二次根式化简求值的几种技巧_0.doc

「初中数学」常见二次根式化简求值的几种技巧_0.doc

「初中数学」常见二次根式化简求值的几种
技巧
二次根式的化简求值是初中数学的重要内容,也是中考试题中的常见题型,对于特殊的二次根式的化简,除了掌握基本的概念和运算法则外,还应根据根式的具体结构特征,灵活一些特殊的方法和技巧,现就几种常用的方法和技巧举例说明如下:
一.巧用乘法公式
由于平方差公式:(a+b)(a一b)=a²一b²的结构特征的优越性,在根式的化简求值中简捷明了.
1.化简:(√2+√3+√5)(3√2+2√3一√30).
关键:对第二个因式提取√6后,发现与第一个因式的数量关系.
解:原式=(√2+√3+√5)√6(√3+√2一√5)=√6[(√2+√3)+√5][(√2+√3)一√5]=√6[(√2十√3)²一(√5)²]=√6(2+2√6+3一5)=√6×2√6=12.
2.化简:(√5+√6+√7)(√5+√6一√7)(√5十√7一√6)(√6十√7一√5).
解:原式=[(√5+√6)²一(√7)²][(√7)²一(√6一√5)²]=(4+2√30)(2√30一4)=(2√30)²一4²=104.
二.巧运逆运算
三.巧拆项
四.巧换元
五.巧因式分解
六.巧配方
七.巧平方
八.巧添项
九.巧取倒数
十.巧用1”代换
【总结】二次根式的化简求值题型多变,有较强的灵活性、技巧性、综合性。

在求解的过程中应根据根式的具体结构特征,灵活选用一些特殊的方法和技巧,不仅可以化难为易,迅捷获解,而且对于培养和提高同学们的数学思维能力,激发学习兴趣是大有帮助的。

二次根式化简求值约分法

二次根式化简求值约分法

二次根式化简求值约分法
二次根式化简求值约分法主要涉及到二次根式的化简和约分。

首先,我们需要了解二次根式的基本性质,如:
a×b=a×b(当a≥0且b≥0)
ba=ba(当a≥0,b>0)
接下来,我们按照以下步骤进行化简和约分:
1.化简二次根式:
▪将被开方数分解为能开得尽方的因数或因式的乘积。

▪使用二次根式的基本性质进行化简。

2.约分:
▪找出分子和分母中的公因式。

▪使用二次根式的基本性质进行约分。

3.求值:
▪将化简和约分后的二次根式代入给定的值进行计算。

下面通过一个具体的例子来说明这个过程:
例:化简并求值312+27。

解:
4.化简二次根式:
▪12=4×3=23
▪27=9×3=33
5.约分:
▪323+33=353
▪使用二次根式的基本性质进行约分,得到5。

6.求值:
▪在这个例子中,由于已经化简和约分到了最简形式,所以直接得到结果为5。

通过这个过程,我们可以看到二次根式化简求值约分法的主要步骤和技巧。

在实际应用中,我们还需要注意被开方数的取值范围,确保开方运算的合法性。

— 1 —。

13、二次根式的运算

13、二次根式的运算

二次根式的运算知识点1、二次根式的乘除法1、乘法法则:两个二次根式相乘,就是把被开方数相乘作为积的被开方数将被开方数,根指数不变。

如果ab b a b a =⋅≥≥那么有,0,0反之ab =b a ⋅0,0≥≥b a 即两个非负数的算术平方根的积,等于这两个非负数积的算术平方根注:①这里的b a ,即可以是数,也可以是代数式,但都必须满足0,0≥≥b a ;②二次根式与二次根式相乘时,可类比单项式与单项式相乘,把系数与系数相乘,被开方数与被开方数相乘.最后结果要化为最简二次根式,计算时要注意积的符号.2、除法法则:两个二次根式相除,把被开方数相除作为商的被开方数将被开方数,根指数不变。

如果b a ba b a =>≥那么有,0,0反之bab a =0,0≥≥b a 即两个非负数(除数不为0)的算术平方根的商,等于这两个数的商的算术平方根。

例2、二次根式除法计算知识点2、二次根式的化简1、最简二次根式的条件①根号内不含有开得尽方的因数或因式;②被开方的因数是整数,因式是整式:被开方数不含分母。

例3、最简二次根式的识别2、分母有理化(1)定义:二次根式除法的运算,通常采用把分子、分母同乘一个式子化去分母中的根号的方法来进行。

把分母去根号化去,叫做分母有理化。

(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就称作这两个代数式互为有理化因式.(3)常见的有理化因式的形式a a 和,b a b a +-和,bn a m b n a m -+和注意:分母有理化的关键是确定分母的有理化因式。

(4)分母有理化方法1)直接对ba分母有理化:法一:化为ba,然后分母有理化为b ab 法二:根据分式的性质,bab b ab ba==22)利用平方差公式法:()()aa a a+-+=111-11()()ba b a b a ba +-+=-1注:一个二次根式的有理化因式不唯一的,一般情况找最简单的。

二次根式的化简求值(含答案)

二次根式的化简求值(含答案)

第八讲 二次根式的化简求值用运算符号把数或表示数的字母连结而成的式子,叫做代数式,有理式和无理式统称代数式,整式和分式统称有理式.有条件的二次根式的化简求值问题是代数式的化简求值的重点与难点.这类问题包容了有理式的众多知识,又涉及最简根式、同类根式、有理化等二次根式的重要概念,同时联系着整体代入、分解变形、构造关系式等重要的技巧与方法,解题的关键是,有时需把已知条件化简,或把已知条件变形,有时需把待求式化简或变形,有时需把已知条件和待求式同时变形.例题求解 【例l 】已知21=+xx ,那么191322++-++x x x x x x 的值等于 .(2001年河北省初中数学创新与知识应用竞赛题)思路点拨 通过平方或分式性质,把已知条件和待求式的被开方数都用xx 1+的代数式表示.【例2】 满足等式2003200320032003=+--+xy y x x y y x 的正整数对(x ,y)的个数是( )A .1B .2C . 3D . 4 (2003年全国初中数学联赛题)思路点拨 对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.【例3】已知a 、b 是实数,且1)1)(1(22=++++b b a a ,问a 、b 之间有怎样的关系?请推导.(第20后俄罗斯数学臭林匹克竞赛题改编) 思路点拨 由特殊探求一般,在证明一般性的过程中,由因导果,从化简条件等式入手,而化简的基本方法是有理化.【例4】 已知:aa x 1+= (0<a<1),求代数式42422362222----+---+÷-+x x xx x x x x x x x 的值. (2002半四川省中考题)思路点拨 视x x x 4,22--为整体,把aa x 1+=平方,移项用含a 代数式表示x x x 4,22--,注意0<a1的制约.【例5】 (1)设a 、b 、c 、d 为正实数,a<b ,c<d ,bc>ad ,有一个三角形的三边长分别为22c a +,22d b +,22)()(c d a b -+-,求此三角形的面积;(第12届“五羊杯”竞赛题)(2)已知a ,b 均为正数,且a+b=2,求U=1422+++b a 的最小值.(2003年北京市竞赛题)思路点拨 (1)显然不能用面积公式求三角形面积(为什么?),22c a +的几何意义是以a 、c 为直角边的直角三角形的斜边,从构造图形人手,将复杂的根式计算转化为几何问题加以解决;(2)用代数的方法求U 的最小值较繁,运用对称分析,借助图形求U 的最小值.学历训练1.已知2323-+=x ,2323+-=y ,那么代数式22)()(y x xy y x xy +-++值为 .2.若41=+a a (0<a<1),则aa 1-= . 3.已知123123++=++x x ,则)225(423---÷--x x x x 的值.(2001年武汉市中考题)4.已知a 是34-的小数部分,那么代数式)4()2442(222a a a a aa a a a -⋅++++-+的值为 . (2003年黄石市中考题)5.若13+=x ,则53)321()32(23+-+++-x x x 的值是( ) A .2 B .4 C .6 D .8 (2003年河南省竞赛题) 6.已知实数a 满足a a a =-+-20012000,那么22000-a 的值是( ) A .1999 B .2000 C .2001 D .20027.设9971003+=a ,9991001+=a ,10002=c ,则a 、b 、c 之间的大小关系是( ) A .a<b<c B .c<b<a C . c<a<b D .a<c<b8.设a a x -=1,则24x x +的值为( )A .a a 1-B .a a -1C .aa 1+ D .不能确定 9.若a>0,b>0, 且)5(3)(b a b b a a +=+,求abb a ab b a +-++32的值.10.已知x x =--2)1(1,化简x x x x +++-+414122.11.已知31+=x ,那么2141212---++x x x = . (2003年“信利杯”全国初中数学竞赛题) 12.已知514=-++a a ,则a 26-= .13.已知9)12(42+-++x a 的最小值为= .(“希望杯”邀请赛试题)14.已知2002)2002)(2002(22=++++y y x x ,则58664322+----y x y xy x = .(第17届江苏省竞赛题) 15.1+a2如果22002+=+b a ,22002-=-b a ,3333c b c b -=+,那么a 3b 3-c 3的值为( ) (2003年武汉市选拔赛试题)A .20022002B .2001C .1D .016.已知12-=a ,622-=b ,26-=c ,那么a 、b 、c 的大小关系是( ) A .a<b<c B .b<a<c C .c<b<a c<a<b (2002年全国初中数学联赛题)17.当220021+=x 时,代数式20033)200120054(--x x 的值是( ) A . 0 B .一1 C . 1 D .- 22003 (2002年绍兴市竞赛题)18.设a 、b 、c 为有理数,且等式62532+=++c b a 成立,则2a+999b+1001c 的值是( ) A .1999 B . 2000 C . 2001 D .不能确定 (2001年全国初中数学联赛试题)19.某船在点O 处测得一小岛上的电视塔A 在北偏西60°的方向,船向西航行20海里到达B 处,测得电视塔在船的西北方向,问再向西航行多少海里,船离电视塔最近?20.已知实数 a 、b 满足条件1<=-a b b a ,化简代数式2)1()11(--⋅-b a ba ,将结果表示成不含b 的形式.21.已知a a x 21+=(a>0),化简:2222-++--+x x x x .22.已知自然数x 、y 、z 满足等式062=+--z y x ,求x+y+z 的值. (加拿大“奥林匹克”竞赛题)答案:。

二次根式的化简求值

二次根式的化简求值

二次根式的化简求值二次根式是数学中一个常见的概念,我们通过化简可以将一个复杂的二次根式简化为更为简洁的形式,方便计算和理解。

下面我们将介绍化简二次根式的具体方法和求值的步骤。

1. 化简二次根式的基本规则化简二次根式的基本原则是将根号内的式子化为平方数的乘积,通常采用以下两种方法:①合并同类项:将根号内的式子合并同类项,将它们看作一个整体,比如√6 + √24 就可以合并为√6 + 2√6 = 3√6。

②有理化分母:通过有理化分母,将分母中的根式化为整数,比如√2/2 这个二次根式,在分母上下乘以√2,就可以化为 1。

2. 化简二次根式的具体方法对于形如a√n 或a + b√n 的二次根式,我们可以通过以下方法进行化简:① a√n + b√n = (a + b)√n② a√n - b√n = (a - b)√n③ (a + b)√n + (c + d)√n = (a + b + c + d)√n④ (a + b)√n - (c + d)√n = (a + b - c - d)√n⑤ (√n + a)(√n + b) = n + a√n + b√n + ab = (a + b)√n + n⑥ (√n + a)(√n - b) = n - ab - b√n - a√n = (a - b)√n + n - ab3. 求解二次根式的具体步骤求解二次根式通常需要进行以下步骤:①化简二次根式,提取出公因数或合并同类项,得到一个简化后的式子。

②根据需要,进行有理化分母,消去分母中的根式,使分母变为整数。

③如果需要求具体的值,将已有的数字代入式子中,进行计算。

4. 实际应用场景二次根式在现代数学和物理学中有着广泛的应用,比如:①网站安全性的评估:用于计算在用户的密码长度和密码字典的规模之下,恶意攻击者能够穷尽所有密码的最大数量。

②统计分析:用于计算标准差和方差。

③金融学:用于计算股票价格的变化幅度, volatility index。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的运算及化简求值一、最简二次根式二、同类二次根式三、二次根式的运算题型一:加减运算题型二:乘除运算题型三:混合运算题型四:巧算四、二次根式的化简求值五、二次根式的应用六、比较大小一、最简二次根式1.【易】(广州市育才中学2011学年第一学期)下列根式中不是最简二次根式的是()B C DA2.【易】(2013年上海市中考数学试卷)下列式子中,属于最简二次根式的是()【答案】B3.【易】(北京市西城区南区2012学年度第一学期期末)下列二次根式中,最简二次根式是()A B C D【答案】A4.【易】(北大附中2012式,结果为()A B C D【答案】C5.【易】(天津市河西区2010学年度第二学期八年级期末阶段性质量调查数学试卷)下列根式中属于最简二次根式的是()A B C D【答案】A6.【易】(2010广州天河期中考试)下列各式中是最简二次根式的是()B C DA7.【易】(2010年北京五中期中)下列各式不是最简二次根式的是()A B C D【答案】B8.【易】(2010年北京北师大期中)下列二次根式中,最简二次根式是()B C DA9.【易】(2010年北京怀柔区期末)下列各式中属于最简二次根式的是()AB C D10.【易】(北京市朝阳区2013年初二期末统考数学)下列二次根式中,最简二次根式是()A B C D【答案】B11.【易】(2010中,是最12.【中】最简二次根式有()A.1个B.2个C.3个D.4个【答案】C13.【中】下列二次根式中,最简二次根式的个数是().A.1个B.2个C.3个D.4个【答案】B二、同类二次根式14.【易】(2013年广西崇左市中考数学试卷)下列根式中,与是同类二次根式的是()【答案】B15.【易】(清华附中2013()AB C D 【答案】D16. 【易】(2010 )ABCD【答案】A17. 【易】(2010淄博)与是同类二次根式的是( )A B 1 C D .【答案】D18. 【中】(天津耀华中学2010学年度第一学期形成性检测初二数学)()0m n >>,其中是同类二次根式的是________. 【答案】⑵⑷19.【易】(2010是同类二次根式,则a =________. 【答案】620.【易】(2012学年四川省巴中市通江县铁佛中学八年级下第一次月考数学试卷)如果b=__________. 【答案】521.【易】(2010a 的取值可以是( ) A .5 B .3 C .7 D .8 【答案】B22.【中】(2013学年四川省遂宁市射洪中学外国语实验学校九年级上期中数学试卷))A.2个B.3个C.4个D.5个 【答案】B23. 【中】已知最简根式a 是同类二次根式,则满足条件的a ,b 的值( ) A .不存在 B .有一组 C .有二组 D .多于二组 【答案】B根据同类二次根式定义可知:227a b a b -=⎧⎨+=⎩,解之得31a b =⎧⎨=⎩.24. 【中】若a a ,b 为整数,则a =________,b =________.【解析】由题意可知,2a b +=,故2a a =30a b b a +=⇒=,2b =. 【答案】0;2.25.【中】如果最简根式a 与2a 是同类二次根式,求100()a b +的值. 【解析】根据题意可得42641141a b a b a b a b +=+⎧⎨+=++⎩,解得21a b =-⎧⎨=⎩,解得100()1a b +=.【答案】126. 【中】 )A.1B.2C.3D.4 【答案】C27. 【中】(2010这1999个式子中,与同类,共19个. 【答案】19三、二次根式的运算题型一:加减运算28.【易】(2012广西贵港)下列计算正确的是( )A B .3=C =D =【答案】C29.【易】(2013年新疆、生产建设兵团中考数学试卷)下列各式计算正确的是( )= B.()2139--=- C.01a = 2-【答案】A30.【易】(2013年江苏省泰州市中考数学试卷)下列计算正确的是( )A.1 C.2= D. 【答案】C31.【易】 )A. B - C D . 【答案】D32.【易】(2013 )A. C. 【答案】B33.【易】(2013年湖北省荆州市中考数学试卷)计算 )【答案】B34.【易】(2011=________35.【易】(2011________【答案】36.【易】=________.37.【易】(2012________.【答案】38.【易】(顺义初二上期末)计算:.39.【易】(杭州翠苑中学初一2011-【答案】640.【易】(河南省实验中学2009-2010学年上期期中试卷)【答案】-41.【易】(2012南外初二期末)计算:【答案】==42.【易】(泰安市高中段学校招生考试)化简:________【答案】-43.【易】________【答案】44.【易】45.【易】(北京161中期中)计算:【答案】46.【易】(2010【答案】47.【易】【答案】48.【易】(2010【答案】49.【易】(2010【答案】50.【易】(2011-2012北京171【答案】51.【易】(2011-2012北京171【答案】7 3 -52.【易】(2010-2011学年度北京市第三十五中学第二学期期中初二)计算:【答案】53.【易】(朝阳区20132+___________.【答案】.54.【易】(西城外国语初二期中)计算:【答案】原式==55.【中】(2011深圳中学初二上期末)计算:+56.【中】(北方交大附中2011-2012学年第二学期初二)【答案】57.【中】计算58.【答案】59.【中】(2005北京16560. 【中】(2011-2012北京17161. 【中】(天津市河西区2010-2011学年度第一学期八年级期末质量调查数学试卷)计【答案】3.562. 【中】==63. 【中】(2010年北京1区期中竞赛)-⎭64. 【中】(南昌市初中毕业考试)计算112-⎛⎫+= ⎪⎝⎭________. 【答案】265. 【中】1113-⎛⎫- ⎪⎝⎭266. 【中】(广东深圳外国语初二上)(231-+【答案】13- .67.【中】(东城区2013学年度第二学期期末初二数学教学梳一检测)计算:12【答案】068.【中】(2010a【答案】269.【中】(20103【答案】70.【中】(2011【答案】71.【中】(广州市育才中学2011学年第一学期)计算:【答案】-题型二:乘除运算72.【易】(2011年广西区钦州市中考数学试题)下列计算正确的是()A3-B.23=C3=±D【答案】B73.【易】(2011年广雅实验初三上期中)下列计算正确的是()A B C D3-【答案】B74.【易】(2010年北京通州区期末)下列各式中,计算正确的是()A(2)(4)8--=B4aC9D347=+=【答案】C75.【易】(房山区2012学年度第一学期终结性检测试卷)计算:a<)=________;;________.【答案】⑴2a-;⑵4;⑶2.76.【易】(201177.【易】(2010【答案】278.【易】(2010【答案】379. 【易】=53=80. 【易】【答案】原式=50.8242⎛⎫⨯-⨯=- ⎪⎝⎭81. 【易】(2012=3=82. 【中】(沈阳)计算÷【答案】÷32⎛=÷ ⎝⎭=题型三:混合运算83. 【易】(清华附中2013学年初二第二学期期末数学试卷)下面计算正确的是( )A .3+=B 3C =D 2=-【答案】B84. 【易】(衡阳市初中毕业学业考试试卷)下面计算正确的是( )A .3B 3C =D 2± 【答案】B85. 【易】下列算式中,正确的是( )A.112235+= B C= D .222()a b a b -=- 【答案】C86. 【易】(北京市第一六一中学2010-2011学年度初二期中检测)下列运算错误的是( )A BC D .(22=【答案】A87. 【易】(2012山东省德州一模)下列计算中,正确的是( )A 1=B a =C 4=D =【答案】C88. 【易】(天津市2011年河北区初中毕业生学业考试模拟试卷(三))下列计算中,正确的是( )A. B .C =D 3-【答案】C89. 【易】(天津市2011年南开区初中毕业生学业水平质量调查(二))下列计算中,正确的是( ) A.22-=- B =C .325a a a ⋅= D .22x x x -= 【答案】C90. 【易】(2012湖北宜昌中考)下列计算正确的是( )A B C D 2± 【答案】A91. 【易】(2011年四川省广安市中考数学试卷)下列运算正确的是( )A .()11x x --+=+ BC 22=-D .222()a b a b -=-【答案】C92. 【易】下列运算中,正确的是( )A .B .10C2±D =【答案】D93. 【易】(2010广州天河期中考试)下列计算正确的是( )A B =C D 【答案】C94. 【易】95. 【易】(2010()6-【答案】96.【易】(2010广州天河期中考试)计算:【答案】97.【易】.【答案】98.【易】=________【答案】599.【易】(20101-【答案】1100.【易】(2011-2012-【答案】0101.4【答案】1 2102.【易】2103.【易】(2012南外初二期末)计算:2【答案】238=+-11=-104.【易】【答案】1105.【易】【答案】1-106.【易】计算:2)=________.【答案】1107.【易】(北京市东城区南片2013学年下学期七年级期末数学考试))221-=_____.【答案】-108.【易】(2010年北京北师大期中)(【答案】2 109.【易】计算⑴⑵() 12+⑶-【答案】⑴2⑵32⑷3110.【易】(深中初二章测)()21【答案】21-111.【易】(沈阳)(2【答案】(2112.【易】)21【答案】7-113.【易】(25【答案】30-114.【易】(河南省实验中学2009-2010学年上期期中试卷)2(5-【答案】1115.【易】(2012【答案】2116.【易】【答案】-117.【易】(新疆乌鲁木齐市高中招生考试数学试卷)⎛÷⎝【答案】143(22=+2-⨯=20+3-=23-118. 【易】(朝阳区2013学年度七年级第二学期期末数学检测)计算:)41.【答案】10119. 【易】(2012初二深圳罗湖统考)化简:()22-【答案】7-120. 【易】(2010年北京顺义区期末)计算:⎛ ⎝【答案】2121. 【易】2⎛+- ⎝ 【答案】2122. 【中】(广州市育才中学2011学年第一学期)计算:⎛ ⎝【答案】314123. 【中】(2011深圳中学初二上期末)计算:【答案】2110124. 【中】(沈阳)⎛ ⎝172-125. 【易】01+1=126. 【易】计算:()03π-⑵【答案】⑴1-⑵-127. 【易】(01+【答案】6128. 【易】(201001)【答案】2129. 【易】02|(2)π+-.【答案】3130. 【易】(2010年北京怀柔区期末)计算:0(2009)|2|π-【答案】3131. 【易】(2010年北京通州区期末)(九中分校初一下期中)计算:)1+1132. 【易】(2011-2012北京171初一第二学期期中)计算:()21332π-⎛⎫---+ ⎪⎝⎭【答案】133. 【易】(2010年门头沟区初三年级第一次统一练习)计算:1132π-⎛⎫--- ⎪⎝⎭()【答案】1134. 【易】(2010年北京1011(2006)()2---+【答案】1+135. 【易】(2010)01【答案】136. 【易】(清华附中2013学年初二第二学期期末数学试卷)01)+ 【答案】0137. 【易】计算:101200822-⎛⎫+-+ ⎪⎝⎭-1+138.【易】(2010实验初二上期中)()101152π-⎛⎫-+-+-⎪⎝⎭6139.【易】(20111112-⎛⎫+ ⎪⎝⎭【答案】1140.【易】(东城区2013学年度第二学期期末初二数学教学梳一检测);141.【中】(2011年广雅实验初三上期中)计算:)1+24-÷-【答案】4142.【中】(北京一零一中2013学年度第二学期期末初二数学考试)计算:112-⎛⎫⎪⎝⎭3143.【中】(2010年北京五中期中)【答案】1-144.【中】(北京市西城区2013学年度第二学期期末试卷八年级数学)计算:1.【答案】145.【中】(河南省实验中学2013届八年级上期期末数学模拟试题一))11⑵【答案】⑴1⑵-146.【中】)22+【答案】1147.【中】(2010)11+【答案】5148. 【中】(2010(231⎛+-+ ⎝(231⎛+ ⎝=(3+=2149. 【中】(2010年北京四中期中)计算:150. 【中】(2011年广东省初中毕业生学业考试)下列式子运算正确的是( )A1 BC= D4+= 【答案】D151. 【中】(2011=________. 【答案】2-152. 【中】计算:()031---+【答案】-153. 【中】(20101--3154. 【中】(2010【答案】4155. 【中】(北方交大附中2011-2012学年第二学期初二)2⎡⎤⎢⎢⎝⎭⎣156. 【中】(2010年第22届“希望杯”全国数学邀请赛初2第1=________.【解析】(292+=+,故原式2=【答案】2+157.【中】(2012年全国初中数学竞赛)如果2a=-11123a+++的值为________。

相关文档
最新文档