高考数学一轮复习课时作业9对数与对数函数理

合集下载

2020版高考数学人教版理科一轮复习课时作业:9 对数与对数函数 Word版含解析

2020版高考数学人教版理科一轮复习课时作业:9 对数与对数函数 Word版含解析

课时作业9 对数与对数函数一、选择题1.函数y =log 3(2x -1)+1的定义域是( C ) A .[1,2]B .[1,2)C.⎣⎢⎡⎭⎪⎫23,+∞ D.⎝ ⎛⎭⎪⎫23,+∞ 解析:由⎩⎪⎨⎪⎧log 3(2x -1)+1≥0,2x -1>0,即⎩⎪⎨⎪⎧log 3(2x -1)≥log 313,x >12,解得x ≥23.2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( A )A .log 2x B.12x C .log 12xD .2x -2解析:由题意知f (x )=log a x (a >0,且a ≠1),∵f (2)=1,∴log a 2=1,∴a =2.∴f (x )=log 2x .3.函数f (x )=x a 满足f (2)=4,那么函数g (x )=|log a (x +1)|的图象大致为( C )解析:由f (2)=2a =4,得a =2.所以g (x )=|log 2(x +1)|,则g (x )的图象由y =|log 2x |的图象向左平移一个单位得到,C 满足. 4.(2019·惠州市调研)若a =20.5,b =log π3,c =log 2sin 2π5,则( D )A .b >c >aB .b >a >cC .c >a >bD .a >b >c解析:依题意,得a >1,0<b =log π3<log ππ=1,而由0<sin 2π5 <1,2>1,得c <0,故a >b >c ,故选D.5.若函数f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为( A )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)解析:令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).6.(2019·洛阳市第一次联考)设a =log 36,b =log 510,c =log 714,则( D )A .c >b >aB .b >c >aC .a >c >bD .a >b >c解析:因为a =log 36=log 33+log 32=1+log 32,b =log 510=log 55+log 52=1+log 52,c =log 714=log 77+log 72=1+log 72,因为log 32>log 52>log 72,所以a >b >c ,故选D.7.(2019·贵阳市摸底考试)20世纪30年代,为了防范地震带来的灾害,里克特(C.F.Richter)制定了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为M =lg A -lg A 0,其中A 是被测地震的最大振幅,A 0是“标准地震”的振幅.已知5级地震给人的震感已经比较明显,则7级地震的最大振幅是5级地震的最大振幅的( D )A .10倍B .20倍C .50倍D .100倍解析:根据题意有lg A =lg A 0+lg10M =lg(A 0·10M ),所以A =A 0·10M ,则A 0×107A 0×105=100.故选D.二、填空题8.(2018·全国卷Ⅰ)已知函数f (x )=log 2(x 2+a ).若f (3)=1.则a =-7.解析:由f (3)=1得log 2(32+a )=1,所以9+a =2,解得a =-7.9.若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞).解析:若a >1,则log a 34<0,不等式log a 34<1一定成立;若0<a <1,则log a 34<1=log a a ,根据对数函数性质可得a <34,又a >0,故0<a <34.所以a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞).10.已知f (x )=2+log 3x ,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是13.解析:由f (x )=2+log 3x ,x ∈[1,9],得f (x 2)=2+log 3x 2,x 2∈[1,9],即x ∈[1,3],得函数y =[f (x )]2+f (x 2)的定义域为[1,3].y =(2+log 3x )2+2+log 3x 2,即y =(log 3x )2+6log 3x +6=(log 3x +3)2-3,令log 3x =t,0≤t ≤1,则y =(t +3)2-3,当t =log 3x =1,即x =3时,y max =13.三、解答题11.已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x ).所以函数f (x )的解析式为f (x )=错误!(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4).又因为函数f (x )在(0,+∞)上是减函数,所以|x 2-1|<4,解得-5<x < 5.即不等式的解集为(-5,5).12.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的值域. 解:(1)∵f (1)=2,∴log a 4=2(a >0,且a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3),∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.又f (0)=log 23,f (32)=log 2154,log 23<log 2154,∴函数f (x )在[0,32]上的最小值是f (0)=log 23.故函数f (x )在区间[0,32]上的值域为[log 23,2].13.(2018·全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( B ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b解析:由a =log 0.20.3得1a =log 0.30.2,由b =log 20.3得1b =log 0.32,所以1a +1b =log 0.30.2+log 0.32=log 0.30.4,所以0<1a +1b <1,得0<a +b ab <1.又a >0,b <0,所以ab <0,所以ab <a +b <0.14.(2019·成都诊断性检测)已知定义在R 上的奇函数f (x )满足f (x +2)+f (x )=0,且当x ∈[0,1]时,f (x )=log 2(x +1),则下列不等式正确的是( C )A .f (log 27)<f (-5)<f (6)B .f (log 27)<f (6)<f (-5)C .f (-5)<f (log 27)<f (6)D .f (-5)<f (6)<f (log 27)解析:f (x +2)+f (x )=0⇒f (x +2)=-f (x )⇒f (x +4)=-f (x +2)=f (x ),所以f (x )是周期为4的周期函数.又f (-x )=-f (x ),且有f (2)=-f (0)=0,所以f (-5)=-f (5)=-f (1)=-log 22=-1,f (6)=f (2)=0. 又2<log 27<3,所以0<log 27-2<1,即0<log 274<1, f (log 27)+f (log 27-2)=0⇒f (log 27)=-f (log 27-2) =-f (log 274)=-log 2(log 274+1)=-log 2(log 272), 又1<log 272<2,所以0<log 2(log 272)<1, 所以-1<-log 2(log 272)<0, 所以f (-5)<f (log 27)<f (6).尖子生小题库——供重点班学生使用,普通班学生慎用 15.若A (a ,b ),B (e ,c )(其中e 为自然对数的底数)是f (x )=ln x 图象上不同的两点,则下列各点一定在f (x )图象上的是( A )A .(a e ,b +1)B .(a +e ,b +1)C .(a +e ,b )D .(a e ,b )解析:∵A(a,b),B(e,c)是f(x)=ln x图象上不同的两个点,∴ln a=b,lne=1=c,∴b+1=b+c=ln a+lne=ln(a e),∴(a e,b+1)在f(x)图象上,故选A.16.(2019·湖北八校联考)已知π为圆周率,e=2.718 28…为自然对数的底数,则(B)A.πe<3e B.πlog3e>3logπeC.3e-2π<3πe-2D.logπe>log3e解析:对于A,∵函数y=x e是(0,+∞)上的增函数,且π>3,∴πe>3e,A错误;对于B,πlog3e>3logπe⇔πln3>3lnπ⇔πlnπ>3ln3⇔ππ>33,B正确;对于C,3e-2π<3πe-2⇔3e-3<πe-3,而函数y=x e-3是(0,+∞)上的减函数,C错误;对于D,logπe>log3e⇔1lnπ>1ln3⇔lnπ<ln3,而函数y=ln x是(0,+∞)上的增函数,D错误.综上,故选B.。

高三一轮复习精题组对数与对数函数(有详细答案)

高三一轮复习精题组对数与对数函数(有详细答案)

§2.6 对数与对数函数1.对数的概念如果a x=N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中__a __叫做对数的底数,__N __叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ;②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log am M n=n mlog a M . (2)对数的性质①a log a N =__N __;②log a a N=__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b(a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质4.反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线__y=x__对称.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)若log2(log3x)=log3(log2y)=0,则x+y=5. ( √)(2)2log510+log50.25=5. ( ×)(3)已知函数f(x)=lg x,若f(ab)=1,则f(a2)+f(b2)=2. ( √)(4)log2x2=2log2x. ( ×)(5)当x>1时,log a x>0. ( ×)(6)当x>1时,若log a x>log b x,则a<b. ( ×) 2.(2013·课标全国Ⅱ)设a=log36,b=log510,c=log714,则( ) A.c>b>a B.b>c>aC.a>c>b D.a>b>c答案 D解析a=log36=1+log32=1+1log23,b=log510=1+log52=1+1log25,c=log714=1+log72=1+1log27,显然a>b>c.3.(2013·浙江)已知x,y为正实数,则( )A .2lg x +lg y =2lg x+2lg yB .2lg(x +y )=2lg x·2lg yC .2lg x ·lg y=2lg x+2lg yD .2lg(xy )=2lg x ·2lg y答案 D 解析 2lg x·2lg y=2lg x +lg y=2lg(xy ).故选D.4.函数f (x )=log 5(2x +1)的单调增区间是________.答案 (-12,+∞)解析 函数f (x )的定义域为(-12,+∞),令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在(-12,+∞)上为增函数,所以函数y =log 5(2x +1)的单调增区间是(-12,+∞).5.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f ⎝ ⎛⎭⎪⎫13=0,则不等式f (log 18x )>0的解集为________________.答案 ⎝ ⎛⎭⎪⎫0,12∪(2,+∞)解析 ∵f (x )是R 上的偶函数,∴它的图象关于y 轴对称. ∵f (x )在[0,+∞)上为增函数, ∴f (x )在(-∞,0]上为减函数,由f ⎝ ⎛⎭⎪⎫13=0,得f ⎝ ⎛⎭⎪⎫-13=0. ∴f (log 18x )>0⇒log 18x <-13或log 18x >13⇒x >2或0<x <12,∴x ∈⎝ ⎛⎭⎪⎫0,12∪(2,+∞).题型一 对数式的运算例1 (1)若x =log 43,则(2x-2-x )2等于( )A.94B.54C.103D.43(2)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f (f (1))+f (log 312)的值是( )A .5B .3C .-1D.72思维启迪 (1)利用对数的定义将x =log 43化成4x=3; (2)利用分段函数的意义先求f (1),再求f (f (1));f (log 312)可利用对数恒等式进行计算.答案 (1)D (2)A解析 (1)由x =log 43,得4x=3,即2x=3,2-x =33,所以(2x -2-x )2=(233)2=43.(2)因为f (1)=log 21=0,所以f (f (1))=f (0)=2. 因为log 312<0,所以f (log 312)=3-log 312+1=3log 32+1=2+1=3.所以f (f (1))+f (log 312)=2+3=5.思维升华 在对数运算中,要熟练掌握对数式的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量化成同底的形式.已知函数f (x )=⎩⎪⎨⎪⎧(12)x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为________.答案124解析 因为2+log 23<4, 所以f (2+log 23)=f (3+log 23), 而3+log 23>4,所以f (3+log 23)=(12)3+log 23=18×(12)log 23=18×13=124. 题型二 对数函数的图象和性质例2 (1)函数y =2log 4(1-x )的图象大致是( )(2)已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 213),c =f (0.2-0.6),则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .b <c <aD .a <b <c思维启迪 (1)结合函数的定义域、单调性、特殊点可判断函数图象;(2)比较函数值的大小可先看几个对数值的大小,利用函数的单调性或中间值可达到目的. 答案 (1)C (2)B解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ; 又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C. (2)log 213=-log 23=-log 49,b =f (log 213)=f (-log 49)=f (log 49),log 47<log 49,0.2-0.6=⎝ ⎛⎭⎪⎫15-35=5125>532=2>log 49, 又f (x )是定义在(-∞,+∞)上的偶函数, 且在(-∞,0]上是增函数,故f (x )在[0,+∞)上是单调递减的,∴f (0.2-0.6)<f (log 213)<f (log 47),即c <b <a .思维升华 (1)函数的单调性是函数最重要的性质,可以用来比较函数值的大小,解不等式等;(2)函数图象可以直观表示函数的所有关系,充分利用函数图象解题也体现了数形结合的思想.(1)已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a(2)已知函数f (x )=log a (x +b ) (a >0且a ≠1)的图象过两点(-1,0)和(0,1),则a =________,b =________. 答案 (1)A (2)2 2解析 (1)b =⎝ ⎛⎭⎪⎫12-0.8=20.8<21.2=a ,c =2log 52=log 522<log 55=1<20.8=b ,故c <b <a .(2)f (x )的图象过两点(-1,0)和(0,1).则f (-1)=log a (-1+b )=0且f (0)=log a (0+b )=1, ∴⎩⎪⎨⎪⎧b -1=1b =a,即⎩⎪⎨⎪⎧b =2a =2.题型三 对数函数的应用例3 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.思维启迪 f (x )恒有意义转化为“恒成立”问题,分离参数a 来解决;探究a 是否存在,可从单调性入手.解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )最小值为3-2a ,当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立.∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数, ∵f (x )在区间[1,2]上为减函数, ∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0log a (3-a )=1,即⎩⎪⎨⎪⎧a <32a =32,故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 思维升华 解决对数函数综合问题时,无论是讨论函数的性质,还是利用函数的性质 (1)要分清函数的底数是a ∈(0,1),还是a ∈(1,+∞);(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行;(3)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.已知f (x )=log 4(4x-1).(1)求f (x )的定义域;(2)讨论f (x )的单调性;(3)求f (x )在区间[12,2]上的值域.解 (1)由4x-1>0,解得x >0, 因此f (x )的定义域为(0,+∞). (2)设0<x 1<x 2,则0<4x 1-1<4x 2-1,因此log 4(4x 1-1)<log 4(4x 2-1),即f (x 1)<f (x 2), 故f (x )在(0,+∞)上递增.(3)f (x )在区间[12,2]上递增,又f (12)=0,f (2)=log 415,因此f (x )在[12,2]上的值域为[0,log 415].利用函数性质比较幂、对数的大小典例:(15分)(1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( ) A .a >b >c B .a <b <c C .b <a <cD .a <c <bA .a >b >cB .b >a >cC .a >c >bD .c >a >b(3)已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b思维启迪 (1)利用幂函数y =x 0.5和对数函数y =log 0.3x 的单调性,结合中间值比较a ,b ,c 的大小;(2)化成同底的指数式,只需比较log 23.4、log 43.6、-log 30.3=log 3103的大小即可,可以利用中间值或数形结合进行比较;(3)先判断函数φ(x )=xf (x )的单调性,再根据20.2,log π3,log 39的大小关系求解.解析 (1)根据幂函数y =x 0.5的单调性,可得0.30.5<0.50.5<10.5=1,即b <a <1; 根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .方法一 在同一坐标系中分别作出函数y =log2x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.(3)因为函数y =f (x )关于y 轴对称,所以函数y =xf (x )为奇函数. 因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时,[xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减; 因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减. 因为1<20.2<2,0<log π3<1,log 39=2, 所以0<log π3<20.2<log 39, 所以b >a >c ,选A. 答案 (1)C (2)C (3)A温馨提醒 (1)比较幂、对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.方法与技巧1.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.2.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 3.多个对数函数图象比较底数大小的问题,可通过图象与直线y =1交点的横坐标进行判定. 失误与防范1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N +,且α为偶数).2.指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值A 组 专项基础训练一、选择题 1.函数y =2-xlg x的定义域是( )A .{x |0<x <2}B .{x |0<x <1或1<x <2}C .{x |0<x ≤2}D .{x |0<x <1或1<x ≤2}答案 D解析 要使函数有意义只需要⎩⎪⎨⎪⎧2-x ≥0x >0lg x ≠0,解得0<x <1或1<x ≤2,∴定义域为{x |0<x <1或1<x ≤2}. 2.函数y =lg|x -1|的图象是( )答案 A解析 ∵y =lg|x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1lg (1-x ),x <1.∴A 项符合题意.3.已知x =ln π,y =log 52,z =e 21-,则 ( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x答案 D解析 ∵x =ln π>ln e ,∴x >1.∵y =log 52<log 55,∴0<y <12.∵z =e21-=1e >14=12,∴12<z <1.综上可得,y <z <x .4.A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)答案 C⇒a >1或-1<a <0.5.函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是 ( )A .(1,+∞)B .(0,1) C.⎝ ⎛⎭⎪⎫0,13D .(3,+∞)答案 D解析 由于a >0,且a ≠1,∴u =ax -3为增函数, ∴若函数f (x )为增函数,则f (x )=log a u 必为增函数, 因此a >1.又y =ax -3在[1,3]上恒为正, ∴a -3>0,即a >3,故选D. 二、填空题 6.7.已知函数f (x )=⎩⎪⎨⎪⎧ 3x +1,x ≤0,log 2x ,x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是________________.答案 {x |-1<x ≤0或x >2}解析 当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,∴x >2.综上所述,x 的取值范围为-1<x ≤0或x >2.8.若log 2a 1+a 21+a<0,则a 的取值范围是____________. 答案 ⎝ ⎛⎭⎪⎫12,1 解析 当2a >1时,∵log 2a 1+a 21+a<0=log 2a 1, ∴1+a 21+a<1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1. 当0<2a <1时,∵log 2a 1+a 21+a<0=log 2a 1, ∴1+a 21+a>1.∵1+a >0,∴1+a 2>1+a , ∴a 2-a >0,∴a <0或a >1,此时不合题意.综上所述,a ∈⎝ ⎛⎭⎪⎫12,1. 三、解答题9.已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.解 (1)要使函数f (x )有意义.则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f (x )的定义域为{x |-1<x <1}.(2)由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ),故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}内是增函数,所以f (x )>0⇔x +11-x>1,解得0<x <1. 所以使f (x )>0的x 的解集是{x |0<x <1}.10.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2)=12(log 2a x +3log a x +2)=12(log a x +32)2-18.当f (x )取最小值-18时,log a x =-32.又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =2-13,=2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f (x )取得最小值时,x =(12)-32=22∈[2,8],符合题意,∴a =12.B 组 专项能力提升1.设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是 () A .(-1,0) B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)答案 A解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x1-x ,定义域为(-1,1).由f (x )<0,可得0<1+x1-x <1,∴-1<x <0.2.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有()A .f (13)<f (2)<f (12) B .f (12)<f (2)<f (13) C .f (12)<f (13)<f (2) D .f (2)<f (12)<f (13) 答案 C解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2). 3.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 015)=8,则f (x 21)+f (x 22)+…+f (x 22 015)=________.答案 16解析 f (x 1x 2…x 2 015)=log a (x 1x 2…x 2 015)=8,f (x 21)+f (x 22)+…+f (x 22 015) =log a x 21+log a x 22+…+log a x 22 015=log a (x 1x 2…x 2 015)2=2log a (x 1x 2…x 2 015)=16.4.设f (x )=|lg x |,a ,b 为实数,且0<a <b .(1)求方程f (x )=1的解;(2)若a ,b 满足f (a )=f (b ),求证:a ·b =1,a +b 2>1. (3)在(2)的条件下,求证:由关系式f (b )=2f (a +b 2)所得到的关于b 的方程g (b )=0,存在b 0∈(3,4),使g (b 0)=0.(1)解 由f (x )=1得,lg x =±1,所以x =10或110. (2)证明 结合函数图象,由f (a )=f (b )可判断a ∈(0,1),b ∈(1,+∞),从而-lg a =lg b ,从而ab =1.又a +b 2=1b +b 2>21b ·b 2=1(因1b≠b ). (3)证明 由已知可得b =(a +b 2)2,得4b =a 2+b 2+2ab ,得1b 2+b 2+2-4b =0, g (b )=1b 2+b 2+2-4b , 因为g (3)<0,g (4)>0,根据零点存在性定理可知,函数g (b )在(3,4)内一定存在零点,即存在b 0∈(3,4),使g (b 0)=0.5.已知函数y =log 21 (x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解 函数y =log 21 (x 2-ax +a )是由函数y =log 21t 和t =x 2-ax +a 复合而成.因为函数y =log 21t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a 2)上单调递减, 故函数y =log 21 (x 2-ax +a )在区间(-∞,a 2]上单调递增. 又因为函数y =log 21 (x 2-ax +a )在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a 2,(2)2-2a +a ≥0,解得⎩⎨⎧ a ≥22,2-2a +a ≥0,即22≤a ≤2(2+1).。

高考数学一轮复习学案 第9讲 对数函数(原卷版)

高考数学一轮复习学案 第9讲 对数函数(原卷版)

第9讲 对数函数(原卷版)考点内容解读要求 常考题型 1.对数函数的图像和性质 理解对数函数的定义图象及性质 Ⅰ 选择题,填空题 2.对数函数的应用 对数函数性质的归纳与运用Ⅱ选择题,填空题1.对数1.对数的概念:一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以a 为底N 的对数,记作:Nx a log =(a — 底数,N — 真数,Na log — 对数式)说明:① 注意底数的限制0>a ,且1≠a ; ②xN N a a x =⇔=log ;③ 注意对数的书写格式. 两个重要对数:① 常用对数:以10为底的对数N lg ;② 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 2.对数函数的特征特征⎩⎪⎨⎪⎧log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数log a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log7x 是对数函数,而函数y =-3log4x 和y =logx2均不是对数函数,其原因是不符合对数函数解析式的特点. 3.对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ①Ma (log ·=)N ;②=N M alog ;③ n a M log n =M a log )(R n ∈.注意:换底公式a bb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).利用换底公式推导下面的结论(1)b m n b a na m log log =;(2)a b b a log 1log =.2.对数函数及其性质 1.对数函数的定义:函数 x y a log =)10(≠>a a 且叫做 。

2.对数函数的性质:(1)定义域、值域:对数函数x y a log =)10(≠>a a 且的定义域为 ,值域为 .(2)图象:由于对数函数是指数函数的 ,所以对数函数的图象只须由相应的指数函数图象作关于 的对称图形,即可获得。

2021年新高考数学一轮专题复习第09讲-对数与对数函数(解析版)

2021年新高考数学一轮专题复习第09讲-对数与对数函数(解析版)

(2)由题意,易知 a>1.
在同一坐标系内作出 y=(x-1)2,x∈(1,2)及 y=logax 的图象.
若 y=logax 过点(2,1),得 loga2=1,所以 a=2. 根据题意,函数 y=logax,x∈(1,2)的图象恒在 y=(x-1)2,x∈(1,2)的上方. 结合图象,a 的取值范围是(1,2]. 规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高 点、最低点等)排除不符合要求的选项. 2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 考点三 对数函数的性质及应用 【例 3-1】 已知函数 f(x)=ln x+ln(2-x),则( )
调性时,一定要明确底数 a 的取值对函数增减性的影响,及真数必须为正的限制条件.
[方法技巧]
1.对数值取正、负值的规律
当 a>1 且 b>1 或 0<a<1 且 0<b<1 时,logab>0;
当 a>1 且 0<b<1 或 0<a<1 且 b>1 时,logab<0.
2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化
2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.
1,-1
3.对数函数 y=logax(a>0,且 a≠1)的图象过定点(1,0),且过点(a,1),a
,函数图象只在
第一、四象限.
三、 经典例题
考点一 对数的运算
【例 1-1】
(1)计算:
lg1-lg 25 4
÷100-1=________.

人教A版高中数学必修一新课标高考一轮复习训练手册文科第九课时对数与对数函数

人教A版高中数学必修一新课标高考一轮复习训练手册文科第九课时对数与对数函数

课时作业(九) [第9讲 对数与对数函数][时间:45分钟 分值:100分]1.[2011·安徽卷] 若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( )A.⎝⎛⎭⎫1a ,b B .(10a,1-b ) C.⎝⎛⎭⎫10a ,b +1 D .(a 2,2b ) 2.[2012·淄博模拟] 函数f (x )=log 2(3x +1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)3.[2011·莆田质检] 已知函数f (x )=a x (a >0,a ≠1)是定义在R 上的单调递减函数,则函数g (x )=log a (x +1)的图象大致是( )14.log 225·log 322·log 59=( )A .3B .4C .5D .6能力提升5.设函数f (x )=log a x (a >0且a ≠1),若f (x 1x 2…x 2011)=8,则f (x 21)+f (x 22)+…+f (x 22011)=( )A .4B .8C .16D .2log a 86.[2012·淄博模拟] 设a =log 54,b =(log 53)2,c =log 45,则( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c7.[2012·金华一中月考] 函数f (x )=lg ⎝ ⎛⎭⎪⎫21-x -1的图象关于( ) A .y 轴对称 B .直线x =1对称C .点(1,0)对称D .原点对称8.已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( )A.12B.14C .2D .49.[2011·锦州一模] 设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)10.设点P (x 0,y 0)是函数y =ln x -1与y =-x (x >0)的图象的一个交点,则ln x 20+2x 0=________.11.化简(log 43+log 83)(log 32+log 92)=________.12.已知log a (3a -1)恒为正数,那么实数a 的取值范围是________.13.已知函数f (x )=log a |x |在(0,+∞)上单调递增,则f (-2)、f (1)、f (3)的大小关系为________.14.(10分)若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2f (a )=2(a ≠1).求f (log 2x )的最小值及对应的x 值.15.(13分)已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.难点突破16.(12分)已知f (x )=log a x ,g (x )=2log a (2x +t -2)(a >0,a ≠1,t ∈R ).(1)当t =4,x ∈[1,2],且F (x )=g (x )-f (x )有最小值2时,求a 的值;(2)当0<a <1,x ∈[1,2]时,有f (x )≥g (x )恒成立,求实数t 的取值范围.课时作业(九)【基础热身】1.D [解析] 由点(a ,b )在y =lg x 图象上,得b =lg a .当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 图象上.2.A [解析] 因为3x +1>1,所以log 2(3x +1)>0,故选A.3.D [解析] 由题可知0<a <1,函数g (x )的图象由y =log a x 的图象向左平移一个单位得到,故选D.4.D [解析] 原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6. 【能力提升】5.C [解析] 依题意有log a (x 1x 2…x 2011)=8,而f (x 21)+f (x 22)+…+f (x 22011)=log a x 21+log a x 22+…+log a x 22011=log a (x 1x 2…x 2011)2=2log a (x 1x 2…x 2011)=2×8=16.6.D [解析] 由对数函数的性质知,log 45>1,0<log 54<1,0<(log 53)2<1,即c 最大,排除A 、B ;又b =(log 53)2<(log 54)2<log 54=a ,所以b <a <c ,选D.7.D [解析] f (x )=lg ⎝ ⎛⎭⎪⎫21-x -1=lg 1+x 1-x,易得其定义域为{x |-1<x <1},且f (-x )+f (x )=lg 1-x 1+x +lg 1+x 1-x=0,所以f (x )是定义域上的奇函数,所以图象关于原点对称.故选D.8.C [解析] 无论a >1还是0<a <1总有a +log a 1+a 2+log a 2=log a 2+6,解得a =2.9.C [解析] f (x )<0⇔log a (a 2x -2a x -2)<0⇔log a (a 2x -2a x -2)<log a 1,因为0<a <1,所以a 2x -2a x -2>1,即(a x )2-2a x +1>4⇔(a x -1)2>4⇔a x -1>2或a x -1<-2,所以a x >3或a x <-1(舍去),因此x <log a 3,故选C.10.2 [解析] 由已知得ln x 0-1=-x 0,即ln x 0+x 0=1,所以ln x 20+2x 0=2(ln x 0+x 0)=2.11.54 [解析] 原式=12log 23+13log 23log 32+12log 32=56log 23·32log 32=54. 12.⎝⎛⎭⎫13,23∪(1,+∞) [解析] 当a >1时,由log a (3a -1)>0=log a 1,得3a -1>1,解得a >23,故a >1;当0<a <1时,由log a (3a -1)>0=log a 1,得0<3a -1<1,解得13<a <23. 13.f (1)<f (-2)<f (3) [解析] 因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,f (1)<f (2)<f (3).又函数f (x )=log a |x |为偶函数,所以f (2)=f (-2),所以f (1)<f (-2)<f (3).14.[解答] 因为f (x )=x 2-x +b ,所以f (log 2a )=(log 2a )2-log 2a +b ,由已知(log 2a )2-log 2a +b =b ,∴log 2a (log 2a -1)=0.因为a ≠1,所以log 2a =1,所以a =2.又log 2f (a )=2,所以f (a )=4.所以a 2-a +b =4,所以b =4-a 2+a =2.故f (x )=x 2-x +2.从而f (log 2x )=(log 2x )2-log 2x +2=⎝⎛⎭⎫log 2x -122+74. 所以当log 2x =12,即x =2时,f (log 2x )有最小值74. 15.[解答] (1)因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,a =-1,这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,所以函数定义域为(-1,3).令g (x )=-x 2+2x +3.则g (x )在(-∞,1)上递增,在(1,+∞)上递减,又y =log 4x 在(0,+∞)上递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是[1,3).(2)假设存在实数a 使f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,12a -44a =1,解得a =12. 故存在实数a =12使f (x )的最小值等于0.【难点突破】16.[解答] (1)当t =4时,F (x )=g (x )-f (x )=log a (2x +2)2x,x ∈[1,2]. 令h (x )=(2x +2)2x =4⎝⎛⎭⎫x +1x +2, ∵x ∈[1,2],∴h (x )∈[16,18].当0<a <1时,有F (x )min =log a 18, 令log a 18=2,解得a =32>1,舍去; 当a >1时,F (x )min =log a 16,令log a 16=2,解得a =4>1,∴a =4.(2)当0<a <1,x ∈[1,2]时,f (x )≥g (x )恒成立 ⇔log a x ≥log a (2x +t -2)对x ∈[1,2]恒成立 ⇔t ≥-2x +x +2对x ∈[1,2]恒成立⇔t ≥1.。

高考数学(理科)一轮复习对数与对数函数学案带答案

高考数学(理科)一轮复习对数与对数函数学案带答案

高考数学(理科)一轮复习对数与对数函数学案带答案本资料为woRD文档,请点击下载地址下载全文下载地址学案8 对数与对数函数导学目标:1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数,了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性与函数图象通过的特殊点,知道指数函数y=ax 与对数函数y=logax互为反函数,体会对数函数是一类重要的函数模型.自主梳理.对数的定义如果________________,那么数x叫做以a为底N的对数,记作__________,其中____叫做对数的底数,______叫做真数.2.对数的性质与运算法则对数的性质①=____;②=____;③=____;④=____.对数的重要公式①换底公式:logbN=________________;②=,推广=________.对数的运算法则如果a&gt;0且a≠1,m&gt;0,N&gt;0,那么①loga=___________________________;②logamN=______________________;③logamn=__________;④=nmlogam.3.对数函数的图象与性质a&gt;10&lt;a&lt;1图象性质定义域:______值域:______过点______,即x=____时,y=____当x&gt;1时,______当0&lt;x&lt;1时,______当x&gt;1时,______当0&lt;x&lt;1时,______是上的______函数是上的______函数4.反函数指数函数y=ax与对数函数____________互为反函数,它们的图象关于直线______对称.自我检测.2log510+log50.25的值为A.0B.1c.2D.42.设2a=5b=m,且1a+1b=2,则m的值为A.10B.10c.20D.1003.已知函数f满足:当x≥4时,f=12x;当x&lt;4时,f=f.则f的值为A.124B.112c.18D.384.定义在R上的偶函数f在[0,+∞)上递增,f=0,则满足&gt;0的x的取值范围是A.B.∪c.∪D.5.已知0&lt;a&lt;b&lt;1&lt;c,m=logac,n=logbc,则m与n的大小关系是______.探究点一对数式的化简与求值例1 计算:;12lg3249-43lg8+lg245;已知2lgx-y2=lgx+lgy,求.变式迁移1 计算:log2748+log212-12log242-1;2+lg2&#8226;lg50+lg25.探究点二含对数式的大小比较例2 比较下列各组数的大小.①log323与log565;②log1.10.7与log1.20.7.已知log12b&lt;log12a&lt;log12c,比较2b,2a,2c的大小关系.变式迁移2 设a=log3π,b=log23,c=log32,则A.a&gt;b&gt;cB.a&gt;c&gt;bc.b&gt;a&gt;cD.b&gt;c&gt;a设a,b,c均为正数,且2a=,b=,c=log2c,则A.a&lt;b&lt;cB.c&lt;b&lt;a0c.c&lt;a&lt;bD.b&lt;a&lt;c探究点三对数函数的图象与性质例3 已知f=logax,如果对于任意的x∈[13,2]都有|f|≤1成立,试求a的取值范围.变式迁移3 已知函数f=|lgx|,若0&lt;a&lt;b,且f=f,则a+2b的取值范围是A.B.[22,+∞)c.D.[3,+∞)分类讨论思想的应用例已知函数f=loga.解关于x的不等式:loga&gt;f;设A,B是f图象上的两点,求证:直线AB的斜率小于0.【答题模板】解∵f=loga,∴f=loga.∴1-a&gt;0.∴0&lt;a&lt;1.∴不等式可化为loga&gt;loga.∴1-ax&gt;0,1-ax&lt;1-a.,即ax&lt;1,ax&gt;a.∴0&lt;x&lt;1.∴不等式的解集为.[4分]证明设x1&lt;x2,则f-f=-=.∵1-ax&gt;0,∴ax&lt;1.∴a&gt;1时,f的定义域为;[6分]0&lt;a&lt;1时,f的定义域为.当0&lt;a&lt;1时,∵x2&gt;x1&gt;0,∴&lt;.∴&gt;1.∴&lt;0.∴f&lt;f,即y2&lt;y1.同理可证,当a&gt;1时,也有y2&lt;y1.[10分]综上:y2&lt;y1,即y2-y1&lt;0.∴kAB=y2-y1x2-x1&lt;0.∴直线AB的斜率小于0.[12分]【突破思维障碍】解决含参数的对数问题,不可忽视对底数a的分类讨论,即a&gt;1或0&lt;a&lt;1,其次要看定义域,如果将函数变换,务必保证等价性..求解与对数函数有关的复合函数的单调性的步骤:确定定义域;弄清函数是由哪些基本初等函数复合而成的,将复合函数分解成基本初等函数y=f,u=g;分别确定这两个函数的单调区间;若这两个函数同增或同减,则y=f)为增函数,若一增一减,则y=f)为减函数,即“同增异减”.2.用对数函数的性质比较大小同底数的两个对数值的大小比较例如,比较logaf与logag的大小,其中a&gt;0且a≠1.①若a&gt;1,则logaf&gt;logag&#8660;f&gt;g&gt;0.②若0&lt;a&lt;1,则logaf&gt;logag&#8660;0&lt;f&lt;g.同真数的对数值大小关系如图:图象在x轴上方的部分自左向右底逐渐增大,即0&lt;c&lt;d&lt;1&lt;a&lt;b.3.常见对数方程式或对数不等式的解法形如logaf=logag等价于f=g,但要注意验根.对于logaf&gt;logag等价于0&lt;a&lt;1时,a&gt;1时,形如F=0、F&gt;0或F&lt;0,一般采用换元法求解.一、选择题.设m={y|y=x,x∈[0,+∞)},N={y|y=log2x,x ∈A.∪[1,+∞)B.[0,+∞)c.∪2.设a=log32,b=ln2,c=5-12,则A.a&lt;b&lt;cB.b&lt;c&lt;ac.c&lt;a&lt;bD.c&lt;b&lt;a3.若函数f=log2x,x&gt;0,log12,x&lt;0,若f&gt;f,则实数a的取值范围是A.∪B.∪c.∪D.∪4.设函数f定义在实数集上,f=f,且当x≥1时,f =lnx,则有A.f&lt;f&lt;fB.f&lt;f&lt;fc.f&lt;f&lt;fD.f&lt;f&lt;f5.已知函数f=ax+logax在[1,2]上的最大值与最小值之和为loga2+6,则a的值为A.12B.14c.2D.4题号2345答案二、填空题6.2lg5+23lg8+lg5&#8226;lg20+lg22=________.7.已知函数f=lgax+a-2x在区间[1,2]上是增函数,则实数a的取值范围是____________.8.已知f=4xlog23+233,则f+f+f+…+f=________.三、解答题9.已知f=2+log3x,x∈[1,9],求y=[f]2+f的最大值及y取最大值时x的值.10.已知函数f=loga-loga,a&gt;0且a≠1.求f的定义域;判断f的奇偶性并予以证明;若a&gt;1时,求使f&gt;0的x的解集.1.已知函数f=lg.求y=f的定义域;在函数y=f的图象上是否存在不同的两点,使得过这两点的直线平行于x轴;当a,b满足什么条件时,f在上恒取正值.答案自主梳理.ax=N x=logaN a N 2.①N ②0 ③N ④1 ①logaNlogab②logad①logam+logaN②logam-logaN③nlogam 3.R10y&gt;0y&lt;0y&lt;0 y&gt;0增减 4.y=logax y=x自我检测.c 2.A3.A [因为3&lt;2+log23&lt;4,故f=f=f.又3+log23&gt;4,故f=123+log23=123&#8226;13=124.] 4.B [由题意可得:f=f=f,f&gt;f,f在[0,+∞)上递增,于是|log18x|&gt;13,解得x的取值范围是∪.] 5.m&gt;n解析∵m&lt;0,n&lt;0,∵mn=logac&#8226;logcb =logab&lt;logaa=1,∴m&gt;n.课堂活动区例1 解题导引在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底和指数与对数互化.解方法一利用对数定义求值:设=x,则x=2-3=12+3=-1,∴x=-1.方法二利用对数的运算性质求解:===-1.原式=12-43lg812+2lg245=12-43×32lg2+12=52lg2-lg7-2lg2+lg7+12lg5=12lg2+12lg5=12lg=12lg10=12.由已知得lg2=lgxy,∴2=xy,即x2-6xy+y2=0.∴2-6+1=0.∴xy=3±22.∵x-y&gt;0,x&gt;0,y&gt;0,∴xy&gt;1,∴xy=3+22,∴logxy=log=log&#61480;3-22&#61481;13-22=-1.变式迁移 1 解原式=log2748+log212-log242-log22=log27×1248×42×2=log2122=log22-32=-32.原式=lg2&#8226;+lg25=21g2+lg25=lg100=2.例2 解题导引比较对数式的大小或证明等式问题是对数中常见题型,解决此类问题的方法很多,①当底数相同时,可直接利用对数函数的单调性比较;②若底数不同,真数相同,可转化为同底或利用对数函数图象,数形结合解得;③若不同底,不同真数,则可利用中间量进行比较.解①∵log323&lt;log31=0,而log565&gt;log51=0,∴log323&lt;log565.②方法一∵0&lt;0.7&lt;1,1.1&lt;1.2,∴0&gt;log0.71.1&gt;log0.71.2.∴1log0.71.1&lt;1log0.71.2,由换底公式可得log1.10.7&lt;log1.20.7.方法二作出y=log1.1x与y=log1.2x的图象,如图所示,两图象与x=0.7相交可知log1.10.7&lt;log1.20.7.∵y=log12x为减函数,且log12b&lt;log12a&lt;log12c,∴b&gt;a&gt;c.而y=2x是增函数,∴2b&gt;2a&gt;2c.变式迁移 2 A [a=log3π&gt;1,b=12log23,则12&lt;b&lt;1,c=12log32&lt;12,∴a&gt;b&gt;c.]A [∵a,b,c均为正,∴log12a=2a&gt;1,log12b=b∈,log2c=c∈.∴0&lt;a&lt;12,12&lt;b&lt;1,1&lt;c&lt;2.故a&lt;b&lt;c.]例3 解题导引本题属于函数恒成立问题,即对于x ∈[13,2]时,|f|恒小于等于1,恒成立问题一般有两种思路:一是利用图象转化为最值问题;二是利用单调性转化为最值问题.由于本题底数a为参数,需对a分类讨论.解∵f=logax,则y=|f|的图象如右图.由图示,可使x∈[13,2]时恒有|f|≤1,只需|f|≤1,即-1≤loga13≤1,即logaa-1≤loga13≤logaa,亦当a&gt;1时,得a-1≤13≤a,即a≥3;当0&lt;a&lt;1时,得a-1≥13≥a,得0&lt;a≤13.综上所述,a的取值范围是.变式迁移3 c[画出函数f=|lgx|的图象如图所示.∵0&lt;a&lt;b,f=f,∴0&lt;a&lt;1,b&gt;1,∴lga&lt;0,lgb&gt;0.由f=f,∴-lga=lgb,ab=1.∴b=1a,∴a+2b=a+2a,又0&lt;a&lt;1,函数t=a+2a在上是减函数,∴a+2a&gt;1+21=3,即a+2b&gt;3.]课后练习区.c [∵x≥0,∴y=x∈=log2a,f=,f&gt;f,即log2a&gt;=log21a,∴a&gt;1a,解得a&gt;1.②当a&lt;0时,f=,f=log2,f&gt;f,即&gt;log2=,∴-a&lt;1-a,解得-1&lt;a&lt;0,由①②得-1&lt;a&lt;0或a&gt;1.]4.c [由f=f知f的图象关于直线x=2-x+x2=1对称,又当x≥1时,f=lnx,所以离对称轴x=1距离大的x的函数值大,∵|2-1|&gt;|13-1|&gt;|12-1|,∴f&lt;f&lt;f.]5.c [当x&gt;0时,函数ax,logax的单调性相同,因此函数f=ax+logax是上的单调函数,f在[1,2]上的最大值与最小值之和为f+f=a2+a+loga2,由题意得a2+a +loga2=6+loga2.即a2+a-6=0,解得a=2或a=-3.] 6.37.解析因为f=lga+a-2x在区间[1,2]上是增函数,所以g=a+a-2x在区间[1,2]上是增函数,且g&gt;0,于是a-2&lt;0,且2a-2&gt;0,即1&lt;a&lt;2.8.XX解析令3x=t,f=4log2t+233,∴f+f+f+…+f=4×+8×233=4×36+1864=XX.9.解∵f=2+log3x,∴y=[f]2+f=2+2+log3x2=log23x+6log3x+6=2-3.……∵函数f的定义域为[1,9],∴要使函数y=[f]2+f有意义,必须1≤x2≤9,1≤x ≤9,∴1≤x≤3,∴0≤log3x≤1,∴6≤2-3≤13.当log3x=1,即x=3时,ymax=13.∴当x=3时,函数y=[f]2+f取最大值13.………………………………………0.解f=loga-loga,则x+1&gt;0,1-x&gt;0,解得-1&lt;x&lt;1.故所求函数f的定义域为{x|-1&lt;x&lt;1}.………………………………………………由知f的定义域为{x|-1&lt;x&lt;1},且f=loga-loga=-[loga-loga]=-f,故f为奇函数.………………………………………………………………因为当a&gt;1时,f在定义域{x|-1&lt;x&lt;1}内是增函数,所以f&gt;0&#8660;x+11-x&gt;1.解得0&lt;x&lt;1.所以使f&gt;0的x的解集是{x|0&lt;x&lt;1}.…………………………………1.解由ax-bx&gt;0,得x&gt;1,且a&gt;1&gt;b&gt;0,得ab&gt;1,所以x&gt;0,即f的定义域为.…………………………………………………………………………………………任取x1&gt;x2&gt;0,a&gt;1&gt;b&gt;0,则&gt;&gt;0,,所以&gt;&gt;0,即&gt;.故f&gt;f.所以f在上为增函数.………………………………………………………假设函数y=f的图象上存在不同的两点A、B,使直线平行于x轴,则x1≠x2,y1=y2,这与f是增函数矛盾.故函数y=f的图象上不存在不同的两点使过两点的直线平行于x轴.…………因为f是增函数,所以当x∈时,f&gt;f.这样只需f =lg≥0,即当a≥b+1时,f在上恒取正值.……………………………………………。

2025高考一轮复习专练9 对数与对数函数【含答案】

2025高考一轮复习专练9 对数与对数函数【含答案】

2025高考一轮复习专练9对数与对数函数(原卷版)[基础强化]一、选择题1.lg 52+2lg 2-(12)-1=()A .1B .-1C .3D .-32.函数y =log 12(3x -2)的定义域是()A .[1,+∞)B .(23,+∞)C .23,1D .(23,1]3.函数f (x )=log 12(x 2-2x )的单调递增区间是()A .(-∞,0)B .(1,+∞)C .(2,+∞)D .(-∞,1)4.若函数f (x )=(m -2)x a 是幂函数,则函数g (x )=log a (x +m )(a >0且a ≠1)的图像过点()A .(-2,0)B .(2,0)C .(-3,0)D .(3,0)5.[2024·江西省高三联考]设a =log 0.222022,b =sin (sin 2022),c =20220.22则a ,b ,c 的大小关系为()A .a <b <cB .b <a <cC .b <c <aD .c <b <a 6.[2024·河北省高三二模]已知x =(43)54,y =log 45,z =log 34,则x 、y 、z 的大小关系为()A .y >x >zB .x >y >zC .z >x >yD .x >z >y7.已知函数f (x )=ln x +ln (2-x ),则()A .f (x )在(0,2)上单调递增B .f (x )在(0,2)上单调递减C .y =f (x )的图像关于直线x =1对称D .y =f (x )的图像关于点(1,0)对称8.若函数y =log a x (a >0且a ≠1)的图像如图所示,则下列函数图像正确的是()9.[2024·重庆市高三质量检测]若函数f (x )=log a (-3x 2+4ax -1)有最小值,则实数a 的取值范围是()A .(32,1)B .(1,3)C .(0,32)D .(3,+∞)二、填空题10.已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________.11.函数f (x )x-log 2(x +4)在区间[-2,2]上的最大值为________.12.函数f (x )=log 2(-x 2+22)的值域为________.[能力提升]13.[2024·江西省九江市二模]牛顿冷却定律,即温度高于周围环境的物体向周围媒质传递热量逐渐冷却时所遵循的规律.如果物体的初始温度为T 0,则经过一定时间t 分钟后的温度T 满足T -T c =(12)t h (T 0-T c ),其中T c 是环境温度,h 为常数.现有一个105℃的物体,放在室温15℃的环境中,该物体温度降至75℃大约用时1分钟,那么再经过m 分钟后,该物体的温度降至30℃,则m 的值约为(参考数据:lg 2≈0.3010,lg 3≈0.4771)()A .2.9B .3.4C .3.9D .4.414.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lg V.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(1010≈1.259)()A.1.5B.1.2C.0.8D.0.615.[2024·江西省高三一模]纳皮尔在他的《奇妙的对数表》一书中说过:没有什么比大数的运算更让数学工作者头痛,更阻碍了天文学的发展.许凯和斯蒂菲尔这两个数学家都想到了构造了如下一个双数列模型的方法处理大数运算.0123451248163267891011641282565121024204812 (19202122)4096 (524288104857620971524194304)232425…83886081677721633554432…如512×1024,我们发现512是9个2相乘,1024是10个2相乘.这两者的积,其实就是2的个数做一个加法.所以只需要计算9+10=19.那么接下来找到19对应的数524288,这就是结果了.若x=log4(20211226×1314520),则x落在区间()A.(15,16)B.(22,23)C.(42,44)D.(44,46)16.已知函数f(x)=log a(-x+1)(a>0且a≠1)在[-2,0]上的值域是[-1,0],若函数g(x)=a x+m-3的图像不经过第一象限,则m的取值范围为________2025高考一轮复习专练9对数与对数函数(解析版)1.B原式=lg 52+lg 4-2=lg -2=1-2=-1.2.D 由题意得log 12(3x -2)≥0,即0<3x -2≤1.∴23<x ≤1.3.A 函数f (x )=log 12(x 2-2x )的定义域为(-∞,0)∪(2,+∞),由复合函数的单调性可知,函数f (x )=log 12(x 2-2x )的单调增区间为(-∞,0).4.A ∵f (x )=(m -2)x a 为幂函数,∴m -2=1,m =3,∴g (x )=log a (x +3),又g (-2)=0,∴g (x )的图像过(-2,0).5.A 因为a =log 0.222022<log 0.2210.22=-1,-1<b =sin (sin 2022)<1,c =20220.22>20220=1,所以a <b <c .故选A.6.D ∵y =log 45>1,z =log 34>1,∴y z =log 45log 34=log 45·log 43≤(log 45+log 432)2=(log 4152)2=(log 415)2<(log 44)2=1,即z >y ,∵43=log 3343,而(343)3=34=81>43=64,∴43=log 3343>log 34,又43=(43)1<(43)54,∴x >z ,综上,x >z >y .7.C f (x )的定义域为(0,2),f (x )=ln x +ln (2-x )=ln [x (2-x )]=ln (-x 2+2x ).设u =-x 2+2x ,x ∈(0,2),则u =-x 2+2x 在(0,1)上单调递增,在(1,2)上单调递减.又y =ln u 在其定义域上单调递增,∴f (x )=ln (-x 2+2x )在(0,1)上单调递增,在(1,2)上单调递减.∴选项A 、B 错误;∵f (x )=ln x +ln (2-x )=f (2-x ),∴f (x )的图像关于直线x =1对称,∴选项C 正确;∵f (2-x )+f (x )=[ln (2-x )+ln x ]+[ln x +ln (2-x )]=2[ln x +ln (2-x )],不恒为0,∴f (x )的图像不关于点(1,0)对称,∴选项D 错误.8.B 由y =log a x 的图像可知1,所以a =3.对于选项A :y =3-x x为减函数,A 错误;对于选项B :y =x 3,显然满足条件;对于选项C :y =(-x )3=-x 3在R 上为减函数,C 错误;对于选项D :y =log 3(-x ),当x =-3时,y =1,D 错误.故选B.9.A 依题意a ∈(0,1)∪(1,+∞)且-3x 2+4ax -1>0,所以Δ=16a 2-12>0,解得a >32或a <-32,综上可得a ∈(32,1)∪(1,+∞),令-3x 2+4ax -1=0的根为x 1、x 2且x 1<x 2,u (x )=-3x 2+4ax -1,y =log a u ,若a ∈(1,+∞),则y =log a u 在定义域上单调递增,u (x )=-3x 2+4ax -1在(x 1,2a 3)上单调递增,在(2a 3,x 2)上单调递减,根据复合函数的单调性可知,f (x )=log a (-3x 2+4ax -1)在(x 1,2a 3)上单调递增,在(2a 3,x 2)上单调递减,函数不存在最小值,故舍去;若a ∈(32,1),则y =log a u 在定义域上单调递减,u (x )=-3x 2+4ax -1在(x 1,2a 3)上单调递增,在(2a 3,x 2)上单调递减,根据复合函数的单调性可知,f (x )=log a (-3x 2+4ax -1)在(x 1,2a 3)上单调递减,在(2a 3,x 2)上单调递增,所以函数在x =2a 3取得最小值,所以a ∈(32,1).10.-7解析:∵f (3)=log 2(9+a )=1,∴9+a =2,a =-7.11.8解析:因为函数y x,y =-log 2(x +4)在区间[-2,2]上都单调递减,f (x )x -log 2(x +4)在区间[-2,2]上单调递减,所以函数f (x )的最大值为f (-2)-2-24)=9-1=8.-∞,32解析:∵0<-x 2+22≤22,∴log 2(-x 2+22)≤log 222=32.13.B 由75-15=(12)1h (105-15),有(12)1h =23,又30-15=(12)m h (75-15),有(12)m h =14,即(23)m =14,则m lg 23=lg 14,解得m =-lg 4lg 2-lg 3=2lg 2lg 3-lg 2≈3.4.14.C 4.9=5+lg V ⇒lg V =-0.1⇒V =10-110=11010≈11.259≈0.8,所以该同学视力的小数记录法的数据约为0.8.15.B x =log 4(20211226×1314520)=12log 2(20211226×1314520),设20211226=2m ,1314520=2n ,由表格得知:220=1048576,221=2097152,224=16777216,225=33554432,所以24<m <25,则20<n <21,所以m +n ∈(44,46),log 2(20211226×1314520)∈(44,46),则x =12log 2(20211226×1314520)∈(22,23).16.[-1,+∞)解析:∵函数f (x )=log a (-x +1)(a >0且a ≠1)在[-2,0]上的值域是[-1,0],而f (0)=0,∴f(-2)=log a3=-1,∴a=13,∴g(x)x+m-3,令g(x)=0,得x=-m-1,则-m-1≤0,求得m≥-1,故m的取值范围为[-1,+∞).。

2025年高考数学一轮复习课时作业-对数与对数函数【含解析】

2025年高考数学一轮复习课时作业-对数与对数函数【含解析】

2025年高考数学一轮复习课时作业-对数与对数函数【原卷版】(时间:45分钟分值:85分)【基础落实练】1.(5分)计算:lg4+2lg5+log28+823=()A.8B.9C.10D.12.(5分)函数f(x)=log0.5(2 -1)的定义域为()A.(12,1]B.[12,1)C.(-∞,12]D.[1,+∞)3.(5分)若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数且f(2)=1,则f(x)等于()A.log2xB.12C.lo g12x D.2x-24.(5分)设a=14log213,b=(12)0.3,则有()A.a+b>abB.a+b<abC.a+b=abD.a-b=ab5.(5分)(2023·濮阳模拟)已知a>0且a≠1,函数y=a x的图象如图所示,则函数f(x)=log a(-x+1)的部分图象大致为()6.(5分)(多选题)已知函数f(x)=|log a(x+1)|(a>1),下列说法正确的是()A.函数f(x)的图象恒过定点(0,0)B.函数f(x)在区间(0,+∞)上单调递减C.函数f(x)在区间[-12,1]上的最小值为0D.若对任意x∈[1,2],f(x)≥1恒成立,则实数a的取值范围是(1,2]7.(5分)已知lg2=a,lg3=b,用a,b表示log1815=.8.(5分)(2023·泸州模拟)若函数y=f(x)与y=5x互为反函数,则y=f(x2-2x)的单调递减区间是.9.(5分)已知f(x)=ln(x2+2x+m).若f(x)的值域为R,则实数m的取值范围是.10.(10分)已知f(x)=log a x+log a(4-x)(a>0,且a≠1),且f(2)=2.(1)求a的值及f(x)的定义域;(2)求f(x)在[1,72]上的值域.11.(10分)已知函数f(x)=(log2x)2-log2x-2.(1)若f(x)≤0,求x的取值范围;(2)当14≤x≤8时,求函数f(x)的值域.【能力提升练】12.(5分)(多选题)已知函数f(x)=ln(e2x+1)-x,则()A.f(ln2)=ln52B.f(x)是奇函数C.f(x)在(0,+∞)上单调递增D.f(x)的最小值为ln213.(5分)设实数a,b是关于x的方程|lg x|=c的两个不同实数根,且a<b<10,则abc 的取值范围是.14.(10分)已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=log a(x+1)(a>0,且a≠1).(1)求函数f(x)的解析式;(2)若-1<f(1)<1,求实数a的取值范围.2025年高考数学一轮复习课时作业-对数与对数函数【解析版】(时间:45分钟分值:85分)【基础落实练】1.(5分)计算:lg4+2lg5+log28+823=()A.8B.9C.10D.1【解析】选B.因为lg4+2lg5=lg4+lg52=lg4+lg25=lg100=2,log28=log223=3, 823=(23)23=22=4,所以lg4+2lg5+log28+823=2+3+4=9.2.(5分)函数f(x)=log0.5(2 -1)的定义域为()A.(12,1]B.[12,1)C.(-∞,12]D.[1,+∞)【解析】选A.由题意,要使函数f(x)=log0.5(2 -1)有意义,则满足log0.5(2x-1)≥0,所以0<2x-1≤1,解得12<x≤1,即函数f(x)的定义域为(12,1].3.(5分)若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数且f(2)=1,则f(x)等于()A.log2xB.12C.lo g12x D.2x-2【解析】选A.函数y=a x(a>0,且a≠1)的反函数是f(x)=log a x,又f(2)=1,即log a2=1,所以a=2.故f(x)=log2x.4.(5分)设a=14log213,b=(12)0.3,则有()A.a+b>abB.a+b<abC.a+b=abD.a-b=ab【解析】选A.因为a=14log213=-14log23,32<log23<2,所以-12<-14log23<-38,即-12<a<-38,b=(12)0.3>(12)1=12,所以a+b>0,ab<0,所以a+b>ab.5.(5分)(2023·濮阳模拟)已知a>0且a≠1,函数y=a x的图象如图所示,则函数f(x)=log a(-x+1)的部分图象大致为()【解析】选D.由函数y=a x的图象可判断出a>1.当a>1时,y=log a x的图象经过定点(1,0),且为增函数.因为y=log a x与y=log a(-x)的图象关于y轴对称,所以y=log a(-x)的图象经过定点(-1,0),为减函数.而f(x)=log a(-x+1)可以看作y=log a(-x)的图象向右平移1个单位长度得到的.所以f(x)=log a(-x+1)的图象经过定点(0,0),为减函数.6.(5分)(多选题)已知函数f(x)=|log a(x+1)|(a>1),下列说法正确的是()A.函数f(x)的图象恒过定点(0,0)B.函数f(x)在区间(0,+∞)上单调递减C.函数f(x)在区间[-12,1]上的最小值为0D.若对任意x∈[1,2],f(x)≥1恒成立,则实数a的取值范围是(1,2]【解析】选ACD.将(0,0)代入函数f(x)=|log a(x+1)|(a>1),成立,故A正确;当x∈(0,+∞)时,x+1∈(1,+∞),又a>1,所以f(x)=|log a(x+1)|=log a(x+1),由复合函数单调性可知,当x∈(0,+∞)时,f(x)=|log a(x+1)|=log a(x+1)单调递增,故B错误;当x∈[-12,1]时,x+1∈[12,2],所以f(x)=|log a(x+1)|≥log a1=0,故C正确;当x∈[1,2]时,f(x)=|log a(x+1)|=log a(x+1)≥1恒成立,所以由函数为增函数知log a2≥1,解得1<a≤2,故D正确.7.(5分)已知lg2=a,lg3=b,用a,b表示log1815=.【解析】log1815=lg15lg18=lg3+lg5lg2+2lg3= - +12 + .lg2+2lg3=lg3+1-lg2答案: - +12 +8.(5分)(2023·泸州模拟)若函数y=f(x)与y=5x互为反函数,则y=f(x2-2x)的单调递减区间是.【解析】因为y=f(x)与y=5x互为反函数,所以f(x)=log5x,则f(x2-2x)=log5(x2-2x).设μ=x2-2x,则f(μ)=log5μ,由x2-2x>0,解得x<0或x>2,因为f(μ)=log5μ在其定义域上单调递增,又μ=x2-2x在(-∞,0)上单调递减,在(2,+∞)上单调递增,所以y=f(x2-2x)的单调递减区间是(-∞,0).答案:(-∞,0)9.(5分)已知f(x)=ln(x2+2x+m).若f(x)的值域为R,则实数m的取值范围是.【解析】因为f(x)的值域为R,所以x2+2x+m取遍大于0的所有实数,则4-4m≥0,解得m≤1,所以实数m的取值范围是(-∞,1].答案:(-∞,1]10.(10分)已知f(x)=log a x+log a(4-x)(a>0,且a≠1),且f(2)=2.(1)求a的值及f(x)的定义域;【解析】(1)由f(2)=2得,log a2+log a(4-2)=2,解得a=2,所以f(x)=log2x+log2(4-x).由 >0,4- >0,解得0<x<4,故f(x)的定义域为(0,4).(2)求f(x)在[1,72]上的值域.【解析】(2)由(1)及条件知f(x)=log2x+log2(4-x)=log2[x(4-x)]=log2[-(x-2)2+4],设t(x)=-(x-2)2+4,x∈[1,72],则当x=2时,t(x)max=4;当x=1时,t(x)=3;当x=72时,t(x)=74,所以当x∈[1,72]时,t(x)∈[74,4],所以f(x)max=log24=2,f(x)min=log274=log27-2,所以f(x)在[1,72]上的值域为[log27-2,2].11.(10分)已知函数f(x)=(log2x)2-log2x-2.(1)若f(x)≤0,求x的取值范围;【解析】(1)令log2x=t,则y=t2-t-2,t∈R,由f(x)≤0得t2-t-2≤0,解得-1≤t≤2,所以-1≤log2x≤2,解得12≤x≤4,即x的取值范围为[12,4].(2)当14≤x≤8时,求函数f(x)的值域.【解析】(2)当14≤x≤8时,-2≤t≤3,因为y=t2-t-2,则当t=12时,有最小值-94;当t=-2或3时,有最大值4.所以函数f(x)的值域为[-94,4].【能力提升练】12.(5分)(多选题)已知函数f(x)=ln(e2x+1)-x,则()A.f(ln2)=ln52B.f(x)是奇函数C.f(x)在(0,+∞)上单调递增D.f(x)的最小值为ln2【解析】选ACD.f(ln2)=ln(e2ln2+1)-ln2=ln52,A正确;f(x)=ln(e2x+1)-x=ln(e2x+1)-ln e x=ln e2 +1e =ln(e x+e-x),所以f(-x)=ln(e x+e-x)=f(x),所以f(x)为偶函数,B错误;当x>0时,y=e x+e-x在(0,+∞)上单调递增,因此y=ln(e x+e-x)在(0,+∞)上单调递增,C正确;由于f(x)在(0,+∞)上单调递增,又f(x)为偶函数,所以f(x)在(-∞,0]上单调递减,所以f(x)的最小值为f(0)=ln2,D正确.13.(5分)设实数a,b是关于x的方程|lg x|=c的两个不同实数根,且a<b<10,则abc 的取值范围是.【解析】由题意知,在(0,10)上,函数y=|lg x|的图象和直线y=c有两个不同交点(如图),所以ab=1,0<c<lg10=1,所以abc的取值范围是(0,1).答案:(0,1)14.(10分)已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=log a(x+1)(a>0,且a≠1).(1)求函数f(x)的解析式;【解析】(1)当x<0时,-x>0,由题意知f(-x)=log a(-x+1),又f(x)是定义在R上的偶函数,所以f(-x)=f(x).所以当x<0时,f(x)=log a(-x+1),所以函数f(x)的解析式为f(x)=log ( +1), ≥0,log (- +1), <0.(2)若-1<f(1)<1,求实数a的取值范围.【解析】(2)因为-1<f(1)<1,所以-1<log a2<1,所以log a1 <log a2<log a a.①当a>1时,<2,>2,解得a>2;②当0<a<1时,>2,<2,解得0<a<12.综上,实数a的取值范围为(0,12)∪(2,+∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:当 x≤0 时,0<2x≤1,由图象可知方程 f(x)-a=0 有两个实根,即 y=f(x)与 y=a 的图象有两个交点,所以由图象可知 0<a≤1.
即实数 a 的取值范围为(0,1]. 答案:(0,1] 三、解答题 9.设 f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且 f(1)=2. (1)求 a 的值及 f(x)的定义域;
[ ] (2)求 f(x)在区间 0,32 上的最大值.
解析:(1)∵f(1)=2,∴loga4=2(a>0,a≠1),∴a=2. 由Error!得 x∈(-1,3), ∴函数 f(x)的定义域为(-1,3). (2)f(x)=log2(1+x)+log2(3-x) =log2(1+x)(3-x) =log2[-(x-1)2+4], ∴当 x∈(-1,1]时,f(x)是增函数; 当 x∈(1,3)时,f(x)是减函数,
答案:D
2.[2019·湖南永州模拟]下列函数中,与函数 y=2x-2-x 的定义域、单调性与奇偶性
均一致的是( )
A.y=sinx B.y=x3
( ) C.y=
1 2
x D.y=log2x
解析:y=2x-2-x 是定义域为 R 的单调递增函数,且是奇函数.
( 而
y=sinx
不是单调递增函数,不符合题意;y=
1 2
)x 是非奇非偶函数,不符合题意;
y=log2x 的定义域是(0,+∞),不符合题意;y=x3 是定义域为 R 的单调递增函数,且是奇
函数符合题意.故选 B.
答案:B
( 3.[2019·福建厦门模拟]已知 a= 1 2 系是( )
)0.3,b=log10.3,c=ab,则 a,b,c 的大小关 2
解析:∵函数 f(x)=loga(x+ x2+b)在区间(-∞,+∞)上是奇函数,∴f(0)=0,∴b=1, 又函数 f(x)=loga(x+ x2+b)在区间(-∞,+∞)上是增函数,所以 a>1,所以 g(x)=loga||x|- 1|的定义域为{x|x≠±1},且在(1,+∞)上递增,在(0,1)上递减,故选 A.
课时作业 9 对数与对数函数
[基础达标]
一、选择题
1.[2018·天津卷]已知 a=log2e,b=ln2,c=log 1 13,则 a,b,c 的大小关系为( ) 2
A.a>b>c B.b>a>c
C.c>b>a D.c>a>b
解析:本题主要考查对数的大小比较.
由已知得 c=log23,∵log23>log2e>1,b=ln2<1,∴c>a>b,故选 D.
答案:A
5.若 loga(a2+1)<loga2a<0,则 a 的取值范围是( )
( ) A.(0,1) B. 0,12 ( ) C. 12,1 D.(0,1)∪(1,+∞)
解析:由题意得 a>0 且 a≠1,故必有 a2+1>2a,
又 loga(a2+1)<loga2a<0,所以 0<a<1,
( ) 同时 2a>1,∴a>1.综上,a∈ 2
12,1
.
答案:C
二、填空题
6.[2019·山东济南模拟]函数 f(x)=
1
的定义域是________.
-lg x2+3lg x-2
解析:Error!⇒Error!⇒Error!⇒10<x<100,故函数的定义域为{x|10<x<100}.
答案:{x|10<x<100}
2
7.[2018·全国卷Ⅰ]已知函数 f(x)=log2(x2+a).若 f(3)=1,则 a=________. 解析:∵f(x)=log2(x2+a)且 f(3)=1,∴1=log2(9+a), ∴9+a=2,∴a=-7. 答案:-7 8.已知函数 f(x)=Error!若关于 x 的方程 f(x)-a=0 有两个实根,则 a 0,
2 2
B. 22,1
C.(1, 2) D.( 2,2)
解析:解法一 构造函数 f(x)=4x 和 g(x)=logax,当 a>1 时不满足条件,当 0<a<1 时,
4
( 画出两个函数的图象,可知,f 1 2
) (<g 1 2
),即
2<loga12,则
a>
2,所以 2
a
的取值范围
( ) 为 22,1 .
解法二 ∵0<x≤12,∴1<4x≤2,∴logax>4x>1,
∴0<a<1,排除选项 C,D;取 a=12,x=12,
1
则有
4
2
=2,log
1
1=1, 2
2
显然 4x<logax 不成立,排除选项 A. 答案:B
12.[2019·河南平顶山模拟]已知 f(x)是定义在(0,+∞)上的函数.对任意两个不相等
A.a<b<c B.c<a<b
C.a<c<b D.b<c<a
( 解析:b=log10.3>log11=1>a= 1
2
22
2
)0.3,c=ab<a.
1
∴c<a<b.故选 B. 答案:B 4.[2019·河南商丘模拟]已知 a>0 且 a≠1,函数 f(x)=loga(x+ x2+b)在区间(-∞,+ ∞)上既是奇函数又是增函数,则函数 g(x)=loga||x|-b|的图象是( )
3
[ ] 故函数 f(x)在 0,32 上的最大值是 f(1)=log24=2.
10.已知函数 f(x)=log21x+-a1x(a 为常数)是奇函数. (1)求 a 的值与函数 f(x)的定义域;
(2)若当 x∈(1,+∞)时,f(x)+log2(x-1)>m 恒成立.求实数 m 的取值范围. 解析:(1)因为函数 f(x)=log2 1x+-a1x是奇函数, 所以 f(-x)=-f(x), 所以 log2-1-x-ax1=-log21x+-a1x, 即 log2axx+-11=log21x+-a1x, 所以 a=1,令1x-+1x>0,解得 x<-1 或 x>1, 所以函数的定义域为{x|x<-1 或 x>1}.
(2)f(x)+log2(x-1)=log2(1+x), 当 x>1 时,x+1>2,
所以 log2(1+x)>log22=1. 因为 x∈(1,+∞),f(x)+log2(x-1)>m 恒成立,所以 m≤1,所以 m 的取值范围是(-
∞,1].
[能力挑战]
11.当 0<x≤12时,4x<logax,则 a 的取值范围是( )
相关文档
最新文档