半导体存储器的分类

合集下载

第七章 半导体存储器 半导体存储器的分类

第七章 半导体存储器 半导体存储器的分类

第七章 半导体存储器数字信息在运算或处理过程中,需要使用专门的存储器进行较长时间的存储,正是因为有了存储器,计算机才有了对信息的记忆功能。

存储器的种类很多,本章主要讨论半导体存储器。

半导体存储器以其品种多、容量大、速度快、耗电省、体积小、操作方便、维护容易等优点,在数字设备中得到广泛应用。

目前,微型计算机的内存普遍采用了大容量的半导体存储器。

存储器——用以存储一系列二进制数码的器件。

半导体存储器的分类根据使用功能的不同,半导体存储器可分为随机存取存储器(RAM —Random Access Memory )和只读存储器(ROM —Read-Only memory )。

按照存储机理的不同,RAM 又可分为静态RAM 和动态RAM 。

存储器的容量存储器的容量=字长(n )×字数(m )7.1随机存取存储器(RAM )随机存取存储器简称RAM ,也叫做读/写存储器,既能方便地读出所存数据,又能随时写入新的数据。

RAM 的缺点是数据的易失性,即一旦掉电,所存的数据全部丢失。

一. RAM 的基本结构由存储矩阵、地址译码器、读写控制器、输入/输出控制、片选控制等几部分组成。

存储矩阵读/写控制器地址译码器地址码输片选读/写控制输入/输出入图7.1—1 RAM 的结构示意框图1. 存储矩阵RAM 的核心部分是一个寄存器矩阵,用来存储信息,称为存储矩阵。

图7.1—5所示是1024×1位的存储矩阵和地址译码器。

属多字1位结构,1024个字排列成32×32的矩阵,中间的每一个小方块代表一个存储单元。

为了存取方便,给它们编上号,32行编号为X 0、X 1、…、X 31,32列编号为Y 0、Y 1、…、Y 31。

这样每一个存储单元都有了一个固定的编号(X i 行、Y j 列),称为地址。

11113131131********列 译 码 器行译码器...........位线位线位线位线位线位线.......X X X Y Y Y 0131131A A A A A A A A A A 地 址 输 入地址输入0123456789D D数据线....图7.1-5 1024×1位RAM 的存储矩阵2. 址译码器址译码器的作用,是将寄存器地址所对应的二进制数译成有效的行选信号和列选信号,从而选中该存储单元。

半导体存储器分类

半导体存储器分类

半导体存储器一.存储器简介存储器(Memory)是现代信息技术中用于保存信息的记忆设备。

在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。

计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。

存储器件是计算机系统的重要组成部分,现代计算机的内存储器多采用半导体存储器。

存储器(Memory)计算机系统中的记忆设备,用来存放程序和数据。

计算机中的全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。

它根据控制器指定的位置存入和取出信息。

自世界上第一台计算机问世以来,计算机的存储器件也在不断的发展更新,从一开始的汞延迟线,磁带,磁鼓,磁芯,到现在的半导体存储器,磁盘,光盘,纳米存储等,无不体现着科学技术的快速发展。

存储器的主要功能是存储程序和各种数据,并能在计算机运行过程中高速、自动地完成程序或数据的存取。

存储器是具有“记忆”功能的设备,它采用具有两种稳定状态的物理器件来存储信息。

这些器件也称为记忆元件。

在计算机中采用只有两个数码“0”和“1”的二进制来表示数据。

记忆元件的两种稳定状态分别表示为“0”和“1”。

日常使用的十进制数必须转换成等值的二进制数才能存入存储器中。

计算机中处理的各种字符,例如英文字母、运算符号等,也要转换成二进制代码才能存储和操作。

储器的存储介质,存储元,它可存储一个二进制代码。

由若干个存储元组成一个存储单元,然后再由许多存储单元组成一个存储器。

一个存储器包含许多存储单元,每个存储单元可存放一个字节(按字节编址)。

每个存储单元的位置都有一个编号,即地址,一般用十六进制表示。

一个存储器中所有存储单元可存放数据的总和称为它的存储容量。

假设一个存储器的地址码由20位二进制数(即5位十六进制数)组成,则可表示2的20次方,即1M个存储单元地址。

半导体存储器分类

半导体存储器分类

半导体存储器分类
半导体存储器分类
1、按功能分为
(1)随机存取存储器(RAM)特点:包括DRAM(动态随机存取存储器)和SRAM(静态随机存取存储器),当关机或断电时,其中的信息都会随之丢失。

DRAM主要用于主存(内存的主体部分),SRAM主要用于高速缓存存储器。

(2)只读存储器(ROM)特点:只读存储器的特点是只能读出不能随意写入信息,在主板上的ROM里面固化了一个基本输入/输出系统,称为BIOS(基本输入输出系统)。

其主要作用是完成对系统的加电自检、系统中各功能模块的初始化、系统的基本输入/输出的驱动程序及引导操作系统。

2、按其制造工艺可分为
(1)双极型存储器特点:运算速度比磁芯存储器速度约快3个数量级,而且与双极型逻辑电路型式相同,使接口大为简化。

半导体存储器的分类

半导体存储器的分类

半导体存储器的分类一.ROM只读存储器,英文名为ROM(Read Only Memory),所谓只读,从字面上理解就是只可以从里面读出数据,而不能写进去,ROM就是单片机用来存放程序的地方。

只要让存储器满足一定的条件就能把数据预先写进去(用指令编写好程序,再将程序编译成机器码hex文件,用编程器写入单片机集成电路中。

)二.Flash ROM是一种快速存储式只读存储器,这种程序存储器的特点是既可以电擦写,而且掉电后程序还能保存,编程寿命可以达到一千次左右,可以反复烧写的。

目前新型的单片机都采用这种程序存储器。

还有两种早期的程序存储器产品:PROM,EPROM和EEPROM。

(1) PROM:被称为可编程只读存储器,只能写一次,不能重新擦写,习惯上我们把带这种程序存储器的单片机称为OTP型单片机。

存储器容量单位1KB=1024B;1MB=1024KB;1GB=1024MB。

(2)EPROM;称之为紫外线擦除的可编程只读存储器,它里面的内容写上去之后,如果觉得不满意,可以用一个特殊的方法去掉后重写,就是用紫外线照射,这种芯片可以擦除的次数也是有限的,几十次吧,电脑上的BIOS芯片采用的就是这种结构的存储器。

(3) EEPROM:而这种存储器可以直接用电擦写,比较方便数据的改写,它有点类似以Flash存储器,但比Flash存储器速度要慢,现在新型的外部扩展存储器都是这种结构的。

三.RAM:了解了ROM,我们再来讲另外一种存储器,叫随机存取存储器,也叫内存,英文缩写为RAM(Random Access Memory),它是一种既可以随时改写,也可以随时读出里面数据的存储器,类似以我们上课用的黑板,可以随时写东四上去,也可以用黑板擦随时擦掉重写,它也是单片机的重要组成部分,单片机中很多功能寄存器都与它有关。

半导体存储器的分类

半导体存储器的分类

半导体存储器的分类作者去者日期 2010-3-20 14:27:0021.按制造工艺分类半导体存储器可以分为双极型和金属氧化物半导体型两类。

双极型(bipolar)由TTL晶体管逻辑电路构成。

该类存储器件的工作速度快,与CPU处在同一量级,但集成度低,功耗大,价格偏高,在微机系统中常用做高速缓冲存储器cache。

金属氧化物半导体型,简称MOS型。

该类存储器有多种制造工艺,如NMOS, HMOS, CMOS, CHMOS等,可用来制造多种半导体存储器件,如静态RAM、动态RAM、EPROM等。

该类存储器的集成度高,功耗低,价格便宜,但速度较双极型器件慢。

微机的内存主要由MOS型半导体构成。

2.按存取方式分类半导体存储器可分为只读存储器(ROM)和随机存取存储器(RAM)两大类。

ROM是一种非易失性存储器,其特点是信息一旦写入,就固定不变,掉电后,信息也不会丢失。

在使用过程中,只能读出,一般不能修改,常用于保存无须修改就可长期使用的程序和数据,如主板上的基本输入/输出系统程序BIOS、打印机中的汉字库、外部设备的驱动程序等,也可作为I/O数据缓冲存储器、堆栈等。

RAM是一种易失性存储器,其特点是在使用过程中,信息可以随机写入或读出,使用灵活,但信息不能永久保存,一旦掉电,信息就会自动丢失,常用做内存,存放正在运行的程序和数据。

(1)ROM的类型根据不同的编程写入方式,ROM分为以下几种。

① 掩膜ROM掩膜ROM存储的信息是由生产厂家根据用户的要求,在生产过程中采用掩膜工艺(即光刻图形技术)一次性直接写入的。

掩膜ROM一旦制成后,其内容不能再改写,因此它只适合于存储永久性保存的程序和数据。

② PROMPROM(programmable ROM)为一次编程ROM。

它的编程逻辑器件靠存储单元中熔丝的断开与接通来表示存储的信息:当熔丝被烧断时,表示信息“0”;当熔丝接通时,表示信息“1”。

由于存储单元的熔丝一旦被烧断就不能恢复,因此PROM存储的信息只能写入一次,不能擦除和改写。

半导体存储器的分类及应用

半导体存储器的分类及应用

半导体存储器的分类及应用半导体存储器主要分为随机存储器(RAM)和只读存储器(ROM)两大类。

1. 随机存储器(RAM):RAM是一种易失性存储器,其中存储的数据在断电后会丢失。

RAM主要用于临时存储计算机的运行数据和程序。

根据存储单元的结构,RAM可分为静态随机存储器(SRAM)和动态随机存储器(DRAM)。

- 静态随机存储器(SRAM):SRAM由触发器构成,每个存储单元需要多个晶体管和电容器来存储一个位。

SRAM具有快速访问速度和较低的功耗,常用于高速缓存、寄存器文件和缓冲存储器等。

- 动态随机存储器(DRAM):DRAM由电容器和晶体管构成,每个存储单元只需要一个电容器和一个晶体管来存储一个位。

DRAM的存储单元较小,但在每次读取数据后需要刷新电容器,因此访问速度相对较慢。

DRAM广泛应用于主存储器(内存)和图形存储缓冲区等。

2. 只读存储器(ROM):ROM是一种非易失性存储器,其中存储的数据在断电后不会丢失。

ROM主要用于存储不需要频繁修改的固定数据,例如计算机的固件程序、启动代码和存储器初始化信息等。

根据存储单元的可编程性,ROM可分为可编程只读存储器(PROM)、可擦除可编程只读存储器(EPROM)和电可擦除可编程只读存储器(EEPROM)。

- 可编程只读存储器(PROM):PROM的存储单元由固定的晶体管和电容器组成,存储内容不能被修改。

- 可擦除可编程只读存储器(EPROM):EPROM的存储单元由浮栅晶体管(FET)和电容器组成,可以通过曝光紫外光擦除并重新编程。

EPROM的擦除程序相对麻烦。

- 电可擦除可编程只读存储器(EEPROM):EEPROM的存储单元由浮栅晶体管(FET)和电容器组成,可以通过电信号擦除和编程。

EEPROM的擦除和编程过程相对容易,且可以单独对存储单元进行操作。

半导体存储器广泛应用于计算机、通信、嵌入式系统等领域,包括但不限于以下几个应用:- 主存储器(内存):作为计算机的主要存储器,用于存储正在执行的程序和运行数据。

半导体存储器

半导体存储器

半导体存储器(semi-conductormemory)半导体存储器是一种以半导体电路作为存储媒体的存储器。

按其制造工艺可分为:双极晶体管存储器和MOS晶体管存储器。

其优点是:存储速度快、存储密度高、与逻辑电路接口容易。

主要用作高速缓冲存储器、主存储器、只读存储器、堆栈存储器等1、按存储器的稳定性进行分类:2、按存储器的存储方式进行分类:一、技术现状半导体存储器是计算机中最重要的部件之一,冯.诺依曼计算机存储原理就是利用存储器的记忆功能把程序存放起来,使计算机可以脱离人的干预自动地工作。

它的存取时间和存储容量直接影响着计算机的性能。

随着大规模集成电路和存储技术封长足发张,半导体存储器的集成度以每三年翻两倍的速度在提高,相同容量的存储器在计算机中的体积和成本所占用的比例已越来越小。

从使用功能角度看,半导体存储器可以分为两大类,随机存储器RAM(Random Access Memory),只读存储器ROM(Read only Memory)。

根据工作原理和条件不同,RAM又分别称为静态读写存储器SRAM(Static RAM)和动态的读写存储器DRAM(Dynamic RAM)。

目前市场上SRAM主要用于高速缓存Cache,这种存储器位于CPU和DRAM住存储器之间,规模较小,但速度很快。

SDRAM正在淡出历史舞台,DDR(DoubleDate Rage RAM)在P4已经开始全面采用。

DDR称为双数据率SDRAM,其特点也是在单个时钟周期的上升和下降沿内都传送数据,所以,具有比普通单数据率SDRAM多1倍的传输速度和内存带宽。

对于大型应用程序和复杂的3D应用很适合。

ROM主要有课电擦除课变成的EEPROM,在EPROM和EEPROM芯片技术基础上发展起来的快擦写存储器FlashMemory、利用铁点材料的极化方向来存储数据的铁电读写存储器FRAM。

二、存储器发展趋势微处理器的而高速发展使存储器发展速度远不能满足CPU的发展要求,而且这种差距还在拉大。

半导体存储器

半导体存储器

半导体存储器半导体存储器,是一种以存储二值信息的大规模集成电路作为存储媒体的存储器,常用于存储程序、常数、原始数据、中间结果和最终结果等数据,是微型计算机的重要记忆元件。

半导体存储器有存储速度快、存储密度高、与逻辑电路接口容易等优点,主要用作高速缓冲存储器、主存储器、只读存储器、堆栈存储器等。

目录∙半导体存储器概述∙半导体存储器分类∙半导体存储器原理∙半导体存储器的指标∙半导体存储器概述o和逻辑运算器一样,半导体存储器同样也是各种电子计算机的关键部件,并且广泛应用于各类通讯和家用电子设备中;如今大到超级计算机和航天飞机,小到手机、语言复读机、各种电子玩具以及智能卡,都用到不同种类的半导体存储器;没有存储记忆功能的数字集成系统芯片(system on chip, SOC),就像人的大脑失去了记忆,如此可知存储器和逻辑运算器同等重要、缺一不可。

现代半导体存储器的基本特点包括高密度、大容量、高速度、低功耗、低成本、类型多、功能强、用途广,几乎在每种半导体存储器中都采用金属-氧化层-半导体(MOS)工艺,并位于整个MOS芯片制造工艺的前沿。

∙半导体存储器分类o半导体存储器是存储二值信息的大规模集成电路,是现代数字系统的重要组成部分。

半导体存储器分类如下:按制造工艺分,有双极型和MOS型两类。

双极型存储器具有工作速度快、功耗大、价格较高的特点。

MOS型存储器具有集成度高、功耗小、工艺简单、价格低等特点。

按存取方式分,有顺序存取存储器(SAM)、随机存取存储器(RAM)和只读存储器(ROM)三类。

1.顺序存取存储器(简称SAM):对信息的存入(写)或取出(读)是按顺序进行的,即具有“先入先出”或“先入后出”的特点。

2.随机存取存储器(简称RAM):可在任何时刻随机地对任意一个单元直接存取信息。

根据所采用的存储单元工作原理的不同,又将随机存储器分为静态存储器SRAM和动态存储器DRAM。

DRAM存储单元结构非常简单,它所能达到的集成度远高于SRAM。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体存储器的分类作者去者日期 2010-3-20 14:27:00
2
推荐
1.按制造工艺分类
半导体存储器可以分为双极型和金属氧化物半导体型两类。

双极型(bipolar)由TTL晶体管逻辑电路构成。

该类存储器件的工作速度快,与CPU处在同一量级,但集成度低,功耗大,价格偏高,在微机系统中常用做高速缓冲存储器cache。

金属氧化物半导体型,简称MOS型。

该类存储器有多种制造工艺,如NMOS, HMOS, CMOS, CHMOS等,可用来制造多种半导体存储器件,如静态RAM、动态RAM、EPROM等。

该类存储器的集成度高,功耗低,价格便宜,但速度较双极型器件慢。

微机的内存主要由MOS型半导体构成。

2.按存取方式分类
半导体存储器可分为只读存储器(ROM)和随机存取存储器(RAM)两大类。

ROM是一种非易失性存储器,其特点是信息一旦写入,就固定不变,掉电后,信息也不会丢失。

在使用过程中,只能读出,一般不能修改,常用于保存无须修改就可长期使用的程序和数据,如主板上的基本输入/输出系统程序BIOS、打印机中的汉字库、外部设备的驱动程序等,也可作为I/O数据缓冲存储器、堆栈等。

RAM是一种易失性存储器,其特点是在使用过程中,信息可以随机写入或读出,使用灵活,但信息不能永久保存,一旦掉电,信息就会自动丢失,常用做内存,存放正在运行的程序和数据。

(1)ROM的类型
根据不同的编程写入方式,ROM分为以下几种。

① 掩膜ROM
掩膜ROM存储的信息是由生产厂家根据用户的要求,在生产过程中采用掩膜工艺(即光刻图形技术)一次性直接写入的。

掩膜ROM一旦制成后,其内容不能再改写,因此它只适合于存储永久性保存的程序和数据。

② PROM
PROM(programmable ROM)为一次编程ROM。

它的编程逻辑器件靠存储单元中熔丝的断开与接通来表示存储的信息:当熔丝被烧断时,表示信息“0”;当熔丝接通时,表示信息“1”。

由于存储单元的熔丝一旦被烧断就不能恢复,因此PROM存储的信息只能写入一次,不能擦除和改写。

③ EPROM
EPROM(erasable programmable ROM)是一种紫外线可擦除可编程ROM。

写入信息是在专用编程器上实现的,具有能多次改写的功能。

EPROM芯片的上方有一个石英玻璃窗口,当需要改写时,将它放在紫外线灯光下照射约15~20分钟便可擦除信息,使所有的擦除单元恢复到初始状态“1”,又可以编程写入新的内容。

由于EPROM在紫外线照射下信息易丢失,故在使用时应在玻璃窗口处用不透明的纸封严,以免信息丢失。

④ EEPROM
EEPROM也称E2PROM(electrically erasable programmable ROM)是一种电可擦除可编程ROM。

它是一种在线(或称在系统,即不用拔下来)可擦除可编程只读存储器。

它能像RAM那样随机地进行改写,又能像ROM那样在掉电的情况下使所保存的信息不丢失,即E2PROM兼有RAM和ROM的双重功能特点。

又因为它的改写不需要使用专用编程设备,只需在指定的引脚加上合适的电压(如+5V)即可进行在线擦除和改写,使用起来更加方便灵活。

⑤ 闪速存储器
闪速存储器(flash memory),简称Flash或闪存。

它与EEPROM类似,也是一种电擦写型ROM。

与E EPROM的主要区别是:EEPROM是按字节擦写,速度慢;而闪存是按块擦写,速度快,一般在65~170ns之
间。

Flash芯片从结构上分为串行传输和并行传输两大类:串行Flash能节约空间和成本,但存储容量小,速度慢;而并行Flash存储容量大,速度快。

Flash是近年来发展非常快的一种新型半导体存储器。

由于它具有在线电擦写,低功耗,大容量,擦写速度快的特点,同时,还具有与DRAM等同的低价位,低成本的优势,因此受到广大用户的青睐。

目前,Flash在微机系统、寻呼机系统、嵌入式系统和智能仪器仪表等领域得到了广泛的应用。

(2)RAM的类型
① SRAM
SRAM(static RAM)是一种静态随机存储器。

它的存储电路由MOS管触发器构成,用触发器的导通和截止状态来表示信息“0”或“1”。

其特点是速度快,工作稳定,且不需要刷新电路,使用方便灵活,但由于它所用MOS管较多,致使集成度低,功耗较大,成本也高。

在微机系统中,SRAM常用做小容量的高速缓冲存储器。

② DRAM
DRAM(dynamic RAM)是一种动态随机存储器。

它的存储电路是利用MOS管的栅极分布电容的充放电来保存信息,充电后表示“1”,放电后表示“0”。

其特点是集成度高,功耗低,价格便宜,但由于电容存在漏电现象,电容电荷会因为漏电而逐渐丢失,因此必须定时对DRAM进行充电(称为刷新)。

在微机系统中,DRAM常被用做内存(即内存条)。

③ NVRAM
NVRAM(non volatile RAM)是一种非易失性随机存储器。

它的存储电路由SRAM和E2PROM共同构成,在正常运行时和SRAM的功能相同,既可以随时写入,又可以随时读出。

但在掉电或电源发生故障的瞬间,它可以立即把SRAM中的信息保存到EEPROM中,使信息得到自动保护。

NVRAM多用于掉电保护和保存存储系统中的重要信息。

微型计算机中半导体存储器的分类如图5.2所示。

随着集成电路技术的不断发展,半导体存储器也得到迅速发展,不断涌现出新型存储器芯片。

静态RA M有同步突发SRAM(synchronous burst SRAM, SB SRAM)、管道突发SRAM(pipelined burst SRAM, PB SRAM)等。

动态RAM有快速页模式DRAM(fast page mode DRAM, FPM DRAM)、扩充数据输出RAM(exten ded data output RAM, EDORAM)、同步DRAM(synchronous DRAM, SDRAM)、Rambus公司推出的RDRAM(R ambus DRAM)、Intel公司推出的DRDRAM(direct Rambus DRAM)等。

专用存储器芯片有铁电体RAM(fer roeelectric RAM, FRAM)、双口RAM、先进先出存储器(FIFO RAM)等。

半导体存储器的性能指标
存储器是微机系统的重要部件之一,计算机在运行过程中,大部分的
总线周期都是对存储器进行读/写操作,因此存储器性能的好坏在很大程度上直接影响计算机的性能。

衡量半导体存储器性能的指标很多,但从功能和接口电路的角度来看,最重要的有以下几项。

1.存储容量
存储容量是指存储器所能容纳二进制信息的总量。

一位二进制数为最小单位(bit),8位二进制数为一个字节(Byte),单位用B表示。

由于微机中都是按字节编址的,因此字节(B)是存储器容量的基本单位。

存储器容量常用的单位还有KB, MB, GB和TB。

对于按字节编址的计算机,通常以字节数来表示容量,如KB, MB, GB和TB。

例如,某微机系统的存储容量为64KB,这就表明它所能容纳的二进制信息为524 288(64×1 024×8)位。

2.存取速度
存取速度通常用存取时间来衡量。

存取时间又称为访问时间或读/写时间,它是指从启动一次存储器操作到完成该操作所经历的时间。

例如,读出时间是指从CPU向存储器发出有效地址和读命令开始,直到将被选单元的内容读出送上数据总线为止所用的时间;写入时间是指从CPU向存储器发出有效地址和写命令开始,直到信息写入被选中单元为止所用的时间。

显然,存取时间越短,存取速度越快。

内存的存取时间通常用ns(纳秒)表示。

在一般情况下,超高速存储器的存取时间约为20ns,高速存储器的存取时间约为几十纳秒,中速存储器的存取时间约为100~250ns,而低速存储器的存取时间约为3 00ns左右。

例如,SRAM的存取时间约为60ns,DRAM的存取时间约为120~250ns。

3.可靠性
可靠性是指在规定的时间内,存储器无故障读/写的概率。

通常用平均无故障时间MTBF(mean time b etween failures)来衡量可靠性。

MTBF可以理解为两次故障之间的平均时间间隔,越长说明存储器的性能越好。

4.功耗
功耗反映存储器件耗电的多少,同时也反映了其发热的程度。

功耗越小,存储器件的工作稳定性越好。

大多数半导体存储器的维持功耗小于工作功耗。

相关文档
最新文档