PLC控制恒压供水系统方案
基于PLC变频恒压供水控制系统设计

基于PLC变频恒压供水控制系统设计PLC变频恒压供水控制系统的设计供水系统是一种常见的工业和建筑领域常用的系统。
PLC变频恒压供水控制系统是一种可以控制和调节水泵的电气控制系统,以实现恒压供水的目的。
下面将介绍一个基于PLC变频恒压供水控制系统的设计。
设计目标:1.实现恒定的供水压力,不受进水压力和水流量的波动影响。
2.实现多台水泵的协调运行,实现水泵的均衡负荷运行,延长水泵寿命。
3.实现故障自动检测和报警,提高供水系统的可靠性。
系统组成:1.传感器:使用压力传感器和流量传感器来感知进水压力和供水流量。
2.PLC:使用可编程逻辑控制器(PLC)来实现逻辑控制和运算。
3.变频器:使用变频器来控制水泵的转速,从而实现恒扬程供水控制。
4.水泵:使用多台水泵来实现供水。
系统工作原理:1.系统启动:当水泵系统运行时,PLC会控制最初的启动过程,按照设定的启动顺序依次启动水泵,避免同时启动造成的电网冲击。
2.进水压力检测:系统通过压力传感器检测进水压力,当进水压力小于设定的最小进水压力时,PLC会自动启动水泵,以提供足够的进水压力。
3.恒压供水控制:PLC通过控制变频器,改变水泵的转速来实现供水流量和压力的稳定。
当供水压力低于设定的最小供水压力时,PLC会增加水泵的转速以提供足够的供水压力;当供水压力高于设定的最大供水压力时,PLC会降低水泵的转速以避免过高的压力。
4.水泵协调运行:通过PLC控制,多台水泵可以根据供水流量需求实现均衡负载运行,避免其中一台水泵长时间运行。
系统优势:1.系统能够自动检测供水压力,保持恒定的供水压力,避免由于进水压力和水流量的波动而导致的供水压力变化。
2.系统能够实现多台水泵的协调运行,避免单一水泵长时间运行而导致的设备损坏。
3.系统具有快速故障检测和报警功能,及时发现水泵等设备的故障,减少停机时间。
总结:基于PLC变频恒压供水控制系统的设计可以实现恒定的供水压力,提高供水系统的稳定性和可靠性。
《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化的快速发展,供水系统的稳定性和效率成为了关键性的问题。
恒压供水系统作为解决这一问题的有效手段,已经得到了广泛的应用。
其中,基于PLC(可编程逻辑控制器)的恒压变频供水系统以其高效、稳定、智能的特点,在供水领域得到了极大的关注。
本文将详细介绍基于PLC恒压变频供水系统的设计与实现。
二、系统设计1. 系统架构设计本系统主要由三部分组成:PLC控制器、变频器和供水泵站。
其中,PLC控制器负责接收压力传感器传来的信号,通过运算处理后,控制变频器调节供水泵的转速,从而达到恒压供水的目的。
2. PLC控制器设计PLC控制器是本系统的核心部分,它需要接收压力传感器的实时数据,对数据进行处理和计算,然后发出控制指令。
此外,还需要具有与其他设备通信的能力。
在设计过程中,应充分考虑PLC的稳定性、可扩展性、抗干扰能力等因素。
3. 变频器与供水泵站设计变频器是连接PLC控制器和供水泵站的桥梁,它接收PLC 的控制指令,调节供水泵的转速。
供水泵站则负责实际的供水任务。
在设计过程中,应考虑泵站的布局、管道的设计、泵的选型等因素,以确保整个系统的稳定性和效率。
三、系统实现1. 硬件实现硬件部分主要包括PLC控制器、变频器、压力传感器、供水泵站等设备的选型和安装。
在选型过程中,应充分考虑设备的性能、价格、维护等因素。
安装过程中,应遵循相关的安全规范,确保系统的稳定性和安全性。
2. 软件实现软件部分主要包括PLC程序的编写和调试。
在编写过程中,应充分考虑系统的控制逻辑、数据处理、通信协议等因素。
在调试过程中,应对系统进行反复测试和优化,确保系统的稳定性和准确性。
四、系统测试与运行1. 系统测试在系统安装完成后,应进行系统测试。
测试过程中,应检查各部分的连接是否正常,系统运行是否稳定,数据是否准确等。
如果发现问题,应及时进行排查和修复。
2. 系统运行经过测试后,系统可以正式投入运行。
基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计1. 引言1.1 背景介绍恒压供水系统是一种能够保持管网压力恒定的供水系统,其特点是在用户用水量变化时能够自动调节工作状态,保持供水压力恒定。
随着城市建设的发展和人们对供水质量和供水压力要求的提高,恒压供水系统在城市供水系统中得到了广泛的应用。
在传统的供水系统中,因为管网压力波动大,用户在高峰时段可能会出现供水压力不足的情况,影响用户的用水体验。
而恒压供水系统通过在系统中增加变频器或调速器等设备,能够根据用户用水量的变化实时调节泵的运行状态,从而保持管网的压力稳定,提高供水系统的稳定性和可靠性。
恒压供水系统的设计和应用对于提高城市供水系统的运行效率和水质保障具有重要意义。
基于PLC的恒压供水系统能够更加智能化地控制供水系统的运行,提高系统的运行效率和稳定性。
研究基于PLC 的恒压供水系统的设计对于推动供水系统的智能化和可持续发展具有重要的意义。
1.2 研究意义恒压供水系统作为现代生活中不可或缺的设备,其稳定可靠的运行对于保障用户正常生活和生产经营具有重要意义。
传统的恒压供水系统存在着一些问题,如压力波动大、能耗高、维护成本高等。
对于基于PLC的恒压供水系统的研究具有重要的意义。
通过对基于PLC的恒压供水系统进行研究和设计,不仅可以提升系统的性能和可靠性,还可以为恒压供水系统的发展带来新的技术突破和创新,推动相关领域的发展。
本文旨在探讨基于PLC技术的恒压供水系统的设计原理和方法,为相关研究和应用提供参考和借鉴。
1.3 研究目的研究目的是为了探索基于PLC的恒压供水系统设计的有效性和可行性。
通过对恒压供水系统的原理和特点进行分析,以及PLC在恒压供水系统中的应用情况进行研究,我们可以更好地理解恒压供水系统的设计要求和实施步骤。
通过对基于PLC的恒压供水系统的硬件设计和软件设计进行详细的讨论,可以为工程师和研究人员提供实用的设计方案和技术支持。
通过本研究,我们希望能够总结出基于PLC的恒压供水系统设计的优势和特点,为未来的恒压供水系统设计和研究提供参考和借鉴。
PLC控制变频器的恒压供水系统的设计

PLC控制变频器的恒压供水系统的设计恒压供水系统是一种能够根据管网压力变化自动调节水泵运行速度的系统,常用于公共建筑、工业厂房和住宅小区的水供应系统中。
PLC(可编程逻辑控制器)控制变频器的恒压供水系统设计是一种自动化控制方案,能够有效地提高供水系统的稳定性和能效。
1.系统布局设计:需要根据实际的供水系统布局来确定变频器的安装位置和水泵的布置,以确保系统的整体效果最优。
通常情况下,变频器和PLC控制器会安装在一个控制柜中,方便集中控制和管理。
2.传感器选择与安装:恒压供水系统需要通过传感器来实时监测管网压力的变化,常用的传感器包括压力传感器和流量传感器。
这些传感器需要适当地安装在管道上,并与PLC控制器相连接,以便实时采集和反馈数据。
3.变频器选择与参数设置:根据水泵的功率和变频器的性能需求,选择合适的变频器,并进行参数设置。
在供水系统中,变频器的作用是通过控制电机的转速来调整水泵的出水量,从而满足恒压供水的需求。
4.PLC程序设计:根据实际的供水系统需求,编写PLC程序进行控制逻辑的设计。
程序中需要包括对传感器数据的采集和处理、对变频器的频率设置和控制、对水泵的启停控制等功能。
5.系统调试与优化:在完成PLC程序的设计后,需要进行系统的调试与优化。
通过实际操作和测试,确定系统的参数设置和控制策略是否满足恒压供水系统的要求,并对系统进行优化,提高供水系统的工作效率和稳定性。
6.联动控制与报警功能设计:为了确保供水系统的安全性和稳定性,在PLC控制变频器的恒压供水系统设计中,还需要考虑系统的联动控制和报警功能。
例如,当系统发生故障或异常情况时,PLC控制器可以发出报警信号,并采取相应的措施来保护设备和系统的运行。
总而言之,PLC控制变频器的恒压供水系统设计是一项复杂而重要的工作,它能够实现供水系统的自动化控制,提高系统的稳定性和能效。
要设计一个好的恒压供水系统,需要充分了解供水系统的要求和实际情况,并合理选择和配置设备,进行有效的控制策略设计和系统优化。
《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化水平的不断提高,PLC(可编程逻辑控制器)在供水系统中的应用越来越广泛。
恒压变频供水系统作为一种高效、节能的供水方式,其设计及实现成为现代供水工程的重要课题。
本文将详细介绍PLC在恒压变频供水系统设计中的应用,包括系统构成、工作原理、设计方法及实施效果等方面。
二、系统构成恒压变频供水系统主要由水源、水泵、压力传感器、PLC控制器、变频器等部分组成。
其中,水源提供系统所需的水资源,水泵负责将水输送到指定地点,压力传感器实时监测水管中的水压,PLC控制器则负责整个系统的控制与调节,变频器则用于调节水泵电机的转速,实现恒压供水。
三、工作原理恒压变频供水系统的工作原理是通过PLC控制器实时采集压力传感器的数据,根据设定的压力值与实际压力值的差异,通过变频器调节水泵电机的转速,从而保持水管中的水压恒定。
当实际水压低于设定值时,PLC控制器会增加水泵电机的转速,提高水压;反之,则会降低水泵电机的转速,降低水压。
此外,系统还具有过载、过流、过压等保护功能,确保系统的安全稳定运行。
四、设计方法1. 确定系统参数:根据实际需求,确定供水系统的流量、扬程、工作压力等参数。
2. 选择设备:根据系统参数,选择合适的水泵、压力传感器、PLC控制器及变频器等设备。
3. 设计电路:设计PLC控制电路及变频器驱动电路,确保电路的稳定性和可靠性。
4. 编程控制:使用编程软件对PLC进行编程,实现恒压控制、故障诊断及保护等功能。
5. 安装调试:将设备安装到现场,进行系统调试,确保系统正常运行。
五、实施效果PLC实现恒压变频供水系统的设计具有以下优点:1. 节能:通过实时调节水泵电机的转速,实现恒压供水,避免了能源的浪费。
2. 稳定:系统具有较高的稳定性,能够根据实际需求自动调节水压,保证供水的稳定性和连续性。
3. 智能:通过PLC控制器实现智能化控制,具有故障诊断及保护等功能,提高了系统的安全性。
PLC控制的恒压供水系统设计分析

PLC一、引言恒压供水系统是一种能够保证水压稳定的供水系统,在现代城市建设中得到了广泛的应用。
PLC 控制恒压供水系统是利用PLC 控制器实现对水泵的控制和监测,使水泵自动调节输出水压,保证水压始终在设定范围内。
本文将就PLC 控制恒压供水系统的设计与分析进行探讨。
二、恒压供水系统的原理恒压供水系统是通过调整水泵的输出水压来使得供水管网的水压始终保持在一个合理的范围内,这种供水系统的组成部分主要包括:水源地、进水管道、水泵、水箱、水管及其控制系统等。
在恒压供水系统中,水泵的输出水压是由水泵的运行状态和电机的功率来决定的。
水泵的运行状态可以通过PLC 控制器来控制,通过PLC 控制器读取水压传感器采集的压力信号,并根据控制程序计算出控制命令,调节水泵工作状态与转速,使水泵可以准确地输出所需的水压。
通过这种方式,恒压供水系统可以保证供水管网的水压恒定。
三、PLC 控制系统的设计PLC 控制器通常由CPU、I/O 接口和存储单元等组成。
在这种设计中,我们选择使用PLC 控制器作为控制系统,以控制水泵的运行。
1.硬件设计PLC 控制系统的硬件设计主要包括PLC 主机、输入输出模块、玻璃管电位器、压力传感器和液位传感器等。
其中PLC 主机是控制系统的核心,输入输出模块用于PLC 主机与外部设备之间的控制信号传输,玻璃管电位器用于控制水泵转速,压力传感器和液位传感器则用于监测水压与水位变化。
2.软件设计软件设计是PLC 控制系统中最为重要的部分,它是实现控制逻辑的核心。
软件设计需要分为以下几个步骤:1.选择编程语言在这里我们选择使用Ladder Logic (绝缘逻辑)作为编程语言,因为它是针对PLC 系统开发的。
这种语言比较容易理解,也可以方便地进行调试和修改。
2.编写控制程序控制程序是PLC 控制系统的核心部分,通过编写控制程序,可以实现对水泵的控制。
控制程序需要使用Ladder Logic 编写,简单易懂。
《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化和智能化水平的不断提高,PLC(可编程逻辑控制器)在工业控制领域的应用越来越广泛。
恒压变频供水系统作为现代建筑和工业生产中的重要组成部分,其稳定性和可靠性对于保障供水系统的正常运行至关重要。
本文将详细介绍如何利用PLC实现恒压变频供水系统的设计。
二、系统设计目标本系统设计的主要目标是实现恒压供水,即通过PLC控制变频器,使水泵电机运行在最佳状态,以保持供水压力的恒定。
同时,系统应具备自动化、智能化、高效率和低能耗的特点,确保供水的稳定性和可靠性。
三、系统组成恒压变频供水系统主要由PLC控制器、变频器、水泵电机、压力传感器、水管网等部分组成。
其中,PLC控制器是系统的核心,负责接收压力传感器的信号,根据设定的压力值控制变频器,从而调节水泵电机的运行状态。
四、PLC控制策略1. 压力采集:通过压力传感器实时采集供水系统的压力信号,并将其传输给PLC控制器。
2. 压力设定:在PLC控制器中设定目标压力值,与实际采集的压力值进行比较。
3. 变频控制:根据压力差值,PLC控制器输出控制信号给变频器,调节水泵电机的运行频率,使供水压力接近目标压力值。
4. 故障诊断与保护:PLC控制器具备故障诊断与保护功能,当系统出现故障时,能及时切断电源,保护设备安全。
五、系统实现1. 硬件选型与配置:根据系统需求,选择合适的PLC控制器、变频器、水泵电机和压力传感器等设备,并进行合理的配置。
2. PLC编程:根据控制策略,编写PLC程序,实现压力的实时采集、比较、控制和故障诊断与保护等功能。
3. 系统调试:对系统进行整体调试,确保各部分设备正常运行,达到恒压供水的目标。
4. 运行维护:定期对系统进行巡检和维护,确保系统的稳定性和可靠性。
六、系统优势1. 自动化程度高:通过PLC控制,实现供水的自动化,减少人工干预,提高工作效率。
2. 节能环保:根据实际需求调节水泵电机的运行状态,降低能耗,减少对环境的影响。
基于plc控制的恒压供水系统设计

基于PLC的恒压供水系统任务设计书基于PLC的恒压供水系统任务设计书一、系统概述众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。
主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能导致水管爆破和用水设备的损坏。
在此情况下,我们小组讨论并设计了该“基于PLC的恒压供水系统”。
本文根据中国城市小区的供水要求,设计了一套基于PLC的变频调速恒压供水系统。
变频恒压供水系统由可编程控制器、变频器、水泵机组、压力传感器等构成。
本系统包含三台水泵电机,它们组成变频循环运行方式。
采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则。
压力传感器检测当前水压信号,送入PLC与设定值比较后进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。
二、总体方案设计PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,该系统的控制流程图如图1所示:图1变频恒压供水系统控制流程图从图中可看出,系统可分为:执行机构、信号检测机构、控制机构三大部分,具体为:(l) 执行机构:执行机构是由一组水泵组成,它们用于将水供入用户管网,其中由一台变频泵和两台工频泵构成,变频泵是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定;工频泵只运行于启、停两种工作状态,用以在用水量很大(变频泵达到工频运行状态都无法满足用水要求时)的情况下投入工作。
(2) 信号检测机构:在系统控制过程中,需要检测的信号包括管网水压信号、水池水位信号和报警信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高级技师职业资格鉴定论文文章题目:PLC在控制恒压供水系统的应用*名:***所在省市:山东省济宁市兖州区所在单位:山东省济宁兖州通力轮胎有限公司职业(工种):维修电工摘要:本设计是针对居民生活用水/消防用水而设计的。
由变频器、PLC控制系统,调节水泵的输出流量。
电动机泵组由三台水泵并联而成,由变频器或工频电网供电,根据供水系统出口水压和流量来控制变频器电动机泵组之间的切换及速度,使系统运行在最合理的状态,保证按需供水。
采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力调节。
通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。
运行结果表明,该系统具有压力稳定,结构简单,工作可靠操作方便等优点。
关键词:供水系统变频器 PLC目录第一章概述 (1)1-1 常见的供水方式及变频恒压调节的 (1)一、原理 (1)二、水泵选择的一般性原则 (1)1-2 PLC、变频器控制的恒压供水系统方案 (3)一、恒压供水系统组成及主要自控设备的作用 (3)二、方案特点 (3)三、变频-工频双回路恒压供水方案优点 (3)四、设备选型及目的 (4)第二章硬件部分设计 (6)2-1硬件选择 (6)一、PLC介绍 (6)二、变频器介绍 (7)2-2变频驱动方式和传感变频器的使用 (7)一、驱动方式 (7)二、调节方式 (7)三、关于压力传感变频器的使用 (8)2-3 电动机调速方案的比较 (9)一、电动机的选择 (9)二、模拟供水系统的拟定 (10)第三章主电路设计 (11)3-1 硬件电路 (11)一、电路介绍 (11)二、控制流程图 (14)三、输入输出元件与PLC地址对照表 (15)第四章软件系统设计 (17)4-1 PLC程序设计 (17)总结 (20)致谢 (21)参考文献 (22)第一章概述变频供水的一种典型方式是变频恒压供水。
变频恒压供水时使用变频器的调速功能通过调节供水的水泵的转速,以维持供水始端压力,变使之保持相对的恒定,故又称恒压供水。
现在变频供水以逐步渗透到各种行业,品种也从单一简单的变频恒压供水向专业多功能和高级的变频、变压供水及职能化控制的方向发展。
基于触摸屏和PLC作为控制变频器作为驱动调速的恒压供水技术,相对于传统的技术而言具有节能效益明显、控制和保护功能完善、可实现机组的软件停机、输入电压范围宽、电磁冲击小、泵机运行组合切换灵活方便等优越性,目前广泛应用于水厂送水泵站、二次加压站、工业锅炉供水、小区和高楼给水、其他工业供水等领域。
触摸屏和PLC在对现场系统和设备的自动控制上显示出令人鼓舞的优势,现代的供水系统已随着微型计算机及电力电子技术的发展,在传统的供水基础上将触摸屏、PLC和变频器等应用到其中,不断的提高供水的质量以及整个供水系统的自动化程度。
1-1 常见的供水方式及变频恒压调节的原理一、原理生产和生活中的供水方式有多种,常见的供水方式通常会设一台或多台泵;有多台泵时会根据不同的用水量启动不同数量的泵运行,供水水压式波动的。
要保证供水质量,稳定供水出口(或管网)的压力,变频恒压供水是最好的方式之一。
变频恒压供水系统实现恒压的工作过程和原理:安装于供水管或主管道上的压力传感变送器将供水管网压力转换成4~20mA(0~20mA、0~10V)的标准电信号,送到PID调节器(或过程控制器、PLC、DCS 等),经过运算处理后仍以标准电信号直接送到具有内置PID调节功能的变频器;变频器根据调速的给定信号或对压力传感变送器的标准电信号进行运算处理后,决定其输出频率实现对驱动典动机的转速调节,从而实现对供水的水量及供水压力调节,最终实现了对供水管网的压力调节,即实现恒压供水。
实际应用中,除了要实现变频恒压供水系统的PID调节功能外,还需配备外围辅助电路及PLC和触摸屏控制系统,来实现切换选择等自动控制功能,以保证自动控制系统出现故障时刻通过人工调节方式维持系统运行,保证连续生产。
图1-1 控制原理示意图二、水泵选择的一般性原则1.供水系统的水泵应尽量选用先进的低噪音、节能型水泵,不可采用淘汰产品。
2.根据实际流量、扬程选泵。
考虑因磨损等原因造成水泵出力下降,可按计算所得的扬程值乘以1.05~1.1后选泵,应能保证水泵工作在高效率的地方。
3.对单位及小规模的供水系统因尽量减少泵的台数,以用一台为宜,且配小型气压罐;当一台运行能满足要求时,则不宜采用多台泵并联方式;若必须采用多台并联运行或大小泵搭配方式时,其型号不宜太杂,台数不宜过多,型号一般不宜超过两种,泵的扬程范围应相同;并联运行时仍能保证每台泵在高效率范围内运行4.对于水厂及供水规模较大的供水系统及用水不均匀,且流量变化大的供水系统,则宜采用多台水泵组合供水,或多台水泵运行时,可按1或2台进行变频调速其余为工频恒速的方式运行。
5.同一供水系统所配水泵的扬程要相同,主供水泵之间的流量应相同或相近,液压泵流量和主供水泵流量的流量之比以不小于1/3为宜。
6.应注意的问题:抽水扬程越低,电机负荷越小—这是种错误的认识.1-2 PLC、变频器控制的恒压供水系统方案通常,生产和生活中常见的供水系统的控制并不复杂,但是对供水系统的质量及可靠性却有较为严格的要求。
根据该供水系统的设备配置情况及供水系统的特点做如下方案:该自动供水系统的控制核心采用PLC,并配置常规电气配电控制系统。
一、恒压供水系统组成及主要自控设备的作用1.在主系统中配置一台变频器分别驱动两台泵,使两台均为双主回路(变频-工频)的驱动方式。
2.控制系统有压力传感器、压力开关、液位控制器、PLC与触摸屏及电气自动控制系统等组成。
1)压力传感器。
用来测量供水水压。
2)PID调节器。
用来实现恒压控制。
3)压力开关。
作为水泵启动后能否投入供水系统运动的信号。
4)液位控制器。
用来监视并向PLC传递供水水箱的液位信号。
PLC电气控制系统用来完成整个供水系统的自动控制。
二、方案特点1.该供水系统控制方案可以在原有的供水系统的基础上改造,也可以作为新建供水系统的控制方案。
2.采用PLC为控制核心,利用变频器调速,控制面板采用常规的按钮开关控制。
3.保护配置:1)水泵电动机在工频状态运行时,受热继电器(过载)和空气断路器(短路、过电流)保护。
2)水泵电动机在变频状态运行时,受变频器(过载、短路、过电流、过电压、缺相)保护。
变频器又受空气断路器(短路、过电流)保护。
三、变频-工频双回路恒压供水方案优点1.具有自动调节及控制功能。
2.可设置跳跃频率避开管路的不良。
3.变频系统与工频控制系统互为备用,合理利用现有设备。
4.系统保护功能完善,如电机过电流、过载、过热;电源缺相,过、欠电压;电机接地故障;系统水压过高、水压过低;管网泄漏、堵塞等。
5.可设变频、工频自动切换任务。
系统组成结构:传感器、变频器、PLC与触摸屏及电气自动控制系统等组成。
四、设备选型及目的1.可编程控制器整个控制系统的核心是PLC,选用日本三菱Fx2n-32MR-001可编程控制器。
FX2n系列是FX系列PLC家族中最先进的系列。
由于FX2n 系列具备如下特点:最大范围的包容了标准特点、程式执行更快、全面补充了通信功能、适合世界各国不同的电源以及满足单个需要的大量特殊功能模块,FX2n系列三菱PLC可以为你的工厂自动化应用提供最大的灵活性和控制能力。
2.变频器变频器连续调速功能是使用变频器的追踪速度模拟给定信号来改变输出频率功能,在此选择的变频器主要从其所驱动的负载特性、稳定性、品牌、价格及用户的要求几个方面来考虑,本文选用三菱FR-A540-2.2KW-CH型变频器。
3.其他开关电源、继电器、接触器、变压器、断路器等设备均应选用性能稳定、质量优良的产品。
变频系统的初次投资容易给投资者一种投资高、风险大的感觉,这主要是对变频节能效果不很了解或将变频系统的初次投资于传统的一些如液力耦合、滑轮电机、变速等调速装置的初次投资在为充分考虑节能效果及变频器功能的情况下进行比较,以及对变频器的质量、稳定性、售后服务等还不太了解;变频节能系统(装置)在各类调速系统中使用时,其节能效果对于单台设备可做到5%-75%,在风机水泵这类设备的一般应用的节能效果中,这些均值也可做到8%-50%,在未受到其他因素影响的情况下一般可取上限节能效果平均值,是在实际应用中得到,权威性数据可由市场上公开出售的资料书查到;通过这些数据在进行一些简单的投资回收率的计算可知:变频节能系统(装置)的投资回收期一般为4-20个月。
采用变频-工频双回路恒压供水装置及触摸屏监控使各类供水最大限度地得到经济、稳定和持续的保障。
综合上述,采用自动化程度较高的变频恒压供水系统,不仅能够最大限度地提高整个系统效率、延长寿命、节约能源,而且灵活性好,能构成复杂的、功能强大的供水系统。
第二章硬件部分设计2-1 硬件选择一、PLC介绍PLC即可编程控制器,是针对工业自动化控制领域开发设计的、适用于工业现场工作的、以现代微处理技术为核心的控制器。
PLC的控制功能可以根据使用者所编辑的软件的不同而不同,且可实现多种功能。
从结构上分,PLC分为固定式和组合式(模块式)两种。
固定式PLC 包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。
模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。
CPU的构成CPU是PLC的核心,起神经中枢的作用,每套PLC至少有一个CPU,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。
进入运行后,从用户程序存贮器中逐条读取指令,经分析后再按指令规定的任务产生相应的控制信号,去指挥有关的控制电路。
CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。
内存主要用于存储程序及数据,是PLC不可缺少的组成单元。
可编程控制器作为一种通用的自动控制装置。
它在控制系统中具有一些独特的优点。
1、可靠性高:PLC平均无故障时间可达几十万小时,也就是说一台PLC连续运行30多年不出故障。
可靠性非常好。
2、具有丰富的I/O接口模块。
PLC针对不同的工业现场信号,有相应的I/O模块与工业现场的器件或设备直接连接。
另外为了提高操作性能,它还有多种人机对话的接口模块;为了组成工业局部网络,它还有多种通讯联网的接口模块。
3、采用模块化结构。
为了适应各种工业控制需要,除了单元式的小型PLC以为,绝大多数PLC均采用模块化结构。
PLC的各个部件,包括CPU、电源、I/O等均采用模块化设计,有机架及电缆将各模块连接起来,系统的规模和功能可根据用户的需要自行组合。